
E0 215 : Homework 3

Deadline : 30th September, 2022, 6pm

Instructions

• Please write your answers using LATEX. Handwritten answers will not be accepted.

• You are forbidden from consulting the internet. You are strongly encouraged to work on the problems
on your own.

• You may discuss these problems with others. However, you must write your own solutions and list
your collaborators for each problem. Otherwise, it will be considered as plagiarism.

• Academic dishonesty/plagiarism will be dealt with severe punishment. Cases of academic dishon-
esty/plagiarism will be reported to the appropriate authorities.

• Late submissions are accepted only with prior approval (on or before the day of posting of HW) or
medical certificate.

1. Routing based on primal dual (8 marks)

We are given a capacitated graph G := (V,E) with |V | = n and capacity u(e) ∈ Z for each edge e ∈ E.
A set of n requests ri := (si, ti), i ∈ [n] arrives in an online fashion. To serve a request the algorithm
needs to choose a path between si and ti, and we say that one unit of bandwidth is allocated on this
path. The decisions of the algorithm are irrevocable and all requests are permanent. The load of an
edge is the ratio of total amount of bandwidth allocated to it and its edge capacity. The goal of the
algorithm is to serve as many requests as possible such that the maximum load of an edge does not
exceed one.
In the fractional variant, we can allocate to each request a fractional bandwidth in the range [0, 1]. In
addition, the bandwidth allocated to a request can be divided between several paths. The objective of
the algorithm is to maximize the sum of total allocated bandwidths under the following constraints: (i)
the total amount of bandwidth allocated to an edge does not exceed its capacity, and (ii) total amount
of bandwidth allocation corresponding to each request is at most one.

Give an O(1)-competitive algorithm for the above (fractional) problem such that it violates the capacity
of each edge by at most a factor of O(log n)

[Hint. Use Online (fractional) packing/covering LP framework.]

2. Two agents on a line (2+(3+3+2)=10 marks)

Two agents are initially placed on the number line, at positions x0, y0 ∈ Z, respectively. At time
t = 1, 2, . . . a request ft ∈ Z arrives. The request must be served by moving at least one of the agents
to ft. The cost of serving the request is the sum of the distances travelled by the two agents from
their previous positions to the configuration where one of them is positioned at ft. We want an online
algorithm (i.e., it does not know the future requests while serving ft) satisfying a sequence of n such
requests. The cost of the algorithm is the sum of the costs of satisfying these n requests.

• Show that Greedy (which always move the closest agent to ft) has unbounded competitive ratio.
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Now consider the following algorithm DoubleService (DS)
- Let xi, yi (xi ≤ yi) denote the positions of the servers before the ith request, resp.
- If fi ≤ xi, move the server at xi to fi.
- If fi ≥ yi, move the server at yi to fi.
- Otherwise if the request is in the interval (xi, yi), move the servers at the same speed towards the
request, until (at least) one reaches it.
We will prove that DS is 2-competitive using a potential function argument. Before the ith request, let
the position of agents in the optimal algorithm be ui and vi, resp. W.l.o.g., assume |xi−vi| ≥ |xi−ui|.
Define ai := |xi − ui|, bi := |yi − vi| and M := ai + bi, S := yi − xi. Define potential Φ := 2M + S.

• Show that to serve ith request, if OPT moves a distance d, Φ increases by at most 2d.

• Show that to serve ith request, if DS moves a distance d′, then Φ decreases by at least d′.

• Using the above two properties and the fact that Φ ≥ 0, show that DS is 2-competitive.

3. Lower bound for secretary (3+2+3+3=11 marks)

In this exercise, we will prove a lower bound for any algorithm A (even randomized) for the secretary
problem. Assume C = {1, 2, . . . , n} be the set of candidates and c∗ be the best candidate in C. Define
pi := P

[
the candidate appearing at the i’th position is accepted by A

]
, where the probability is over the

randomization in the order of input and the randomization in the algorithm. Note that w.l.o.g. we
can assume, pi := P

[
the candidate appearing at the i’th position is better than all previous candidates

and is accepted by A
]
. Show the following:

(a) pi ≤

1−
i−1∑
j=1

pj

 · 1

i
.

(b) P[c∗ gets accepted by A] =

n∑
i=1

(
pi ·

i

n

)
.

(c) Above two properties show that probability of choosing c∗ is upper bounded by the optimal value
for the following LP:

maximize

n∑
i=1

pi ·
i

n

subject to: p1 + · · ·+ pi−1 + i·pi ≤ 1, for all i ∈ {1, . . . , n}
pi ≥ 0, for all i ∈ {1, . . . , n}.

Write the dual of this LP.

(d) Show a feasible solution for this dual LP such that the objective value of this dual LP is 1
e + o(1),

thus showing that, for any constant ε > 0 there exists a large enough n such that A can not accept
c∗ with probability > 1/e+ ε.

4. Bin Packing (8+5=13 marks)

• Lower Bound for Online Bin Packing: Consider the following input instance (3m items in
the order of arrival) for online bin packing: First m items arrive, each of size ( 1

6 −ε); then another
m items arrive, each of of size ( 1

3 − ε). Finally, the remaining m items, each of size ( 1
2 + 2ε),

arrive. Here, ε ∈ (0, 0.01) is a small constant.
Using this input sequence (and its prefix subsequences), show that no online bin packing can
achieve a competitive ratio < 3/2.

[Hint. Let L1, L2, L3 be the first m, 2m, 3m items, resp. Then OPT(L1) = m
6 ,OPT(L2) = m

2 ,
OPT(L3) = m, where OPT is the offline optimal algorithm. Prove that for any online algorithm

ALGO, max
{

ALGO(L1)
OPT(L1)

, ALGO(L2)
OPT(L2)

, ALGO(L3)
OPT(L3)

}
≥ 3/2.]
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• Weight Functions: Consider a bin packing instance where all items have sizes in (1/4, 1]. So,
any bin contains at most three items. We want to show Best-Fit or First-Fit gives competitive
ratio of 3/2 for this instance, using weighting technique. For each item define weight based on
its size such that the following two properties are true: (a) any bin of the algorithm (Best-Fit or
First-Fit) has weight at least 1, and (b) any bin in the optimal packing can have weight at most
3/2. Show that these two properties imply a competitive ratio of 3/2.

5. Matching (4+4=8 marks)

(a) Consider the Ranking algorithm for unweighted bipartite matching, where π is the permutation
(chosen uniformly at random) on U (left-side vertices), whereas σ be the order of arrival of vertices
in V (right-side vertices). When v ∈ V appears we match it to the highest ranked (according to
π) available neighbor. Let M1 be the matching returned by the algorithm in this case.

Now consider another setting, where we interchange the roles of U and V , i.e., vertices in U arrive
arrive sequentially according to order π, and all vertices in V are available offline and ordered
using σ. Under this setting, on arrival of a vertex u ∈ U it is matched with available (if any)
unmatched vertex in V with the lowest rank according to σ. Let the matching output for this
case be M2. Show that M1 and M2 are identical for any π and σ.

[Hint. Use induction on the number of left and right vertices.]

(b) Now we give an alternate algorithm. At the beginning, the adversary assigns an arbitrary rank ρ
to all vertices in U (available offline), but lets the vertices in V arrive in random-order (secretarial
input, i.e., according to some permutation chosen uniformly at random). Then the algorithm, on
the arrival of a vertex in v ∈ V , matches v to an available neighbor u ∈ U with the lowest rank
according to ρ. Then show that the expected competitive ratio of this algorithm is also (1− 1/e).

[Hint. Use previous result, and the fact that Ranking has competitive ratio (1− 1/e).]

Bonus Problems: (2+2+2 marks.)

A. During the analysis of Ranking algorithm, we assumed that the underlying bipartite graph has a
perfect matching. Show that Ranking achieves the same performance guarantee (competitive ratio of
(1− 1/e)) even without the assumption of existence of a perfect matching.

B. Consider the bipartite graph G := (U ∪V,E) in the lower bound (of 1
2 +o(1)) example for the Random

algorithm in the class. Say, U := {u1, u2, . . . , un} and V := {v1, v2, . . . , vn}. Then (ui, vj) ∈ E if (i = j)
or (n/2 ≤ j ≤ n and 1 ≤ i ≤ n/2). What is the expected size of the matching returned by Ranking
on this graph?

C. Consider the LP we obtained during the analysis of Ranking.

maximize

n∑
s=1

xs

subject to: 1
n ·

t∑
s=1

xs ≥ 1− xt, for all t ∈ {1, . . . , n}

xt ∈ [0, 1], for all t ∈ {1, . . . , n}.

Write the dual of this LP. Show a feasible solution for this dual LP such that the objective value of
this dual LP is 1− 1/e+ o(1), thus showing the competitive ratio of Ranking is ≈ (1− 1/e).
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