E0 215 : Homework 4

Deadline: November 18, 2022, 6pm

Instructions

- Please write your answers using LATEX. Handwritten answers will not be accepted.
- You are forbidden from consulting the internet. You are strongly encouraged to work on the problems on your own.
- Please solve the problems by yourself and write your own solutions. Do not discuss with others. Otherwise, it will be considered as plagiarism.
- Academic dishonesty/plagiarism will be dealt with severe punishment. Cases of academic dishonesty/plagiarism will be reported to the appropriate authorities.
- Late submissions are accepted only with prior approval (on or before the day of posting of HW) or medical certificate.
- 1. CONVEXITY OF NORM (5+5 = 10 MARKS)

For real number $p \ge 1$, write $||x||_p$ to denote the ℓ_p norm of vector $x \in \mathbb{R}^n$,

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Prove that, for any $p \ge 1$, the norm-ball $\mathcal{B}_p \coloneqq \{x \in \mathbb{R}^n : \|x\|_p \le 1\}$ is a convex set.

Also, show that for all reals $r \in (0, 1)$ and some ambient dimension $n \in \mathbb{Z}_+$, the set \mathcal{B}_r —defined as follows—is *not* convex: $\mathcal{B}_r \coloneqq \left\{ x \in \mathbb{R}^n : (\sum_{i=1}^n |x_i|^r)^{1/r} \le 1 \right\}$.

2. HYPERPLANE SEPARATION (10 MARKS)

Let $K, L \subset \mathbb{R}^n$ be two disjoint, nonempty, convex sets in \mathbb{R}^n . Prove that there necessarily exists a hyperplane H that separates K and L. That is, there exists a nonzero vector $h \in \mathbb{R}^n$ and a scalar $c \in \mathbb{R}$ such that

 $\langle h, x \rangle \leq c$ for all $x \in K$, and $\langle h, y \rangle > c$ for all $y \in L$.

3. STRONG CONVEXITY OF NORM (15 MARKS)

For any real number $p \in (1,2]$ and parameter $\eta > 0$, show that the function $F(x) := \frac{1}{2n(p-1)} ||x||_p^2$ is $\frac{1}{n}$ -strongly convex, with respect to the ℓ_p norm, over all of \mathbb{R}^n .

4. FENCHEL CONJUGATE (15 MARKS)

Recall that a Fenchel Conjugate of a (closed) function $F : \mathbb{R}^n \mapsto \mathbb{R}$ is defined as

$$F^*(\theta) = \max_{x \in \mathbb{R}^n} \langle \theta, x \rangle - F(x)$$

Prove that, for any p > 1, the Fenchel conjugate of function $F(x) = \frac{1}{2} ||x||_p^2$ is $F^*(\theta) = \frac{1}{2} ||\theta||_q^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

5. NO-REGRET AGAINST SPARSE COSTS (10 MARKS)

Consider an online convex optimization (OCO) problem over the simplex, Δ^n , and with linear cost functions, $f_t(x) = \langle \ell_t, x \rangle$, for each round $t \in \{1, 2, ..., T\}$. Furthermore, for an integer $s \ge 2$ and each round $t \in \{1, ..., T\}$, the cost vector ℓ_t is guaranteed to be *s*-sparse¹ and satisfy $\|\ell_t\|_{\infty} \le 1$.

Develop a *polynomial-time* online algorithm that achieves regret at most $4\sqrt{T \log s}$ for this OCO problem.

¹A vector $v \in \mathbb{R}^n$ is said to be *s*-sparse iff the number of nonzero components in *v* is at most *s*.