O Online Bipartite Matching:

Given: Bipartite Graph [Ul=|Vl=n. G:(UUV,E)

U is known in advance.

V arrives online, one by one.

Goal: Maximize the size of matching.

ALGO 1. D-GREEDY ( Deterministic) ~ When the next vertex vert ampives:

match & to any available nor.

-Always returns a maximal matching. (1/2-appx)

- This is the best any det. algo can do.





## ALGOZ. RANDOM.

- When the next vertex ve V appives: match v to a nor picked uniformly at random from its set of available neighbors.



almost all vertices in  $V_1$  are matched to  $U_2$ .

V2 • RANDOM achieves a ratio of 1/2 and it is tight.

ALGO3. RANKING (KVV)  $\pi: U \rightarrow [n]$ 

· Pick a permutation TT of U, uniformly at random at beginning.

· when next vertex us V appives:

- match v to the highest ranked available (if any) neighbors.

OTheorem: RANKING achieves a ratio of (1-1/e) for online bipartite matching under adversarial arrival.

→ For simplicity, assume the input graph has a perfect matching. OPT= n. MOPT is optimal matching.



(π, u) is MATCH event at position t-

- Else we call (π, μ) is MISS event at position t

§ Observation relating MISS& MATCH. - Consider a MISS event  $(\Pi, u^{\dagger})$ . If  $(u^{\dagger}, v^{\dagger}) \in M_{OPT}$ , then when  $v^{\dagger}$ appeared some high ranked vertex  $u^{\prime}(s.t. \Pi(u^{\prime}) < \Pi(u^{\dagger}))$  was available.  $(\Pi, u^{\prime})$  was a MATCH event.

- For each MISS event,  
there is a MATCH event  
$$(\pi, u^*) \longrightarrow (\pi, u')$$
  
MISS MATCH

MISS



& no two MISS event map to same MATZH event.

> $(\pi, u^*) \rightarrow (\pi, u^*)$ then  $u^* = \hat{u}$ .  $(\pi, \tilde{u})$

= # MISS 
$$\leq$$
 # MATCH  
= # MATCH  $\gg \frac{1}{2}$ .  
= # MATCH  $\gg \frac{1}{2}$ .  
= is  $\frac{1}{2}$ . competitive.

However. this does not even full power of random permutations.

MISS event  $(\Pi, u^*)$ .  $\Pi: \mathcal{V} \to [\Pi]$ Say  $\Pi(u^*) = t$ . Let  $\Pi^{(i)}$  be the permutation produced by moving  $u^*$  to position *i* & keeping the relative order of all other vertices same. Note  $\Pi^{(t)} = \Pi$ .



Claim 1: Let  $(u^*, v^*) \in M_{OPT}, \pi(u^*) = t$ . If  $(\pi, u^*)$  be a MISS event sten  $u^*$  is matched in all  $\{\pi^{(i)}: i \in [n]\}$ to some vertex  $u^r \in U$  with  $\pi(u^r) \leq t$ . <u>Proof</u>: <u>Case 1</u>. Consider  $\Pi^{(i)}$  with i > t. Let  $v^*$  be matched to u' in  $\Pi$ .  $v^*$  continues to be matched to u',

 $\Pi(u') < \Pi(u^*) = t \cdot$ 



<u>Case 2</u>. Consider  $\Pi^{(i)}$  with  $i \leq t$ . If  $u^*$  is not matched, when  $v^*$  appears in  $\Pi^{(i)}$ , then  $v^*$  will be matched to  $u^*$  or higher ranked vertex.



Subcase a. v\* is not part of this alternating path. v\* is still matched to k.

subcase b: 10\* is part of this alt. path 10\* gets matched to a higher ranked vertex.

This observation gives a 1-to-n map from a MISS event  $(\pi, u^*)$ to n MATZH events  $(\pi^{(i)}, u_i)$ where  $u_i \in U$  is matched to  $v^*$ and  $\pi^{(i)}(u_i) \leq t$ .

• No double counting. Fix  $t \in [n]$ , consider M1SS event  $(\pi, u)$  with  $\pi(u) = t$ .

Claim 2: If two MISS events  $(T_1, u_1)$ and  $(T_2, u_2)$  with  $T_1(u_1) = t$ ,  $T_2(u_2) = t$ , map to a MATZH event  $(\widehat{T}, \widehat{U})$  then  $u_1 = u_2$ , and  $T_1 = T_2$ .

⇒ Let v\* be the vertex to which 
$$\hat{u}$$
  
is matched in  $(\hat{\Pi}, \hat{u})$ . Let  $(u^*, v^*) \in M_{\text{PT}}$ .  
By definition of mapping,  
 $u_1 = u_2 = u^*$ 

Since, the map only changes position of  $u_1$  and  $u_2$  in  $\Pi_2$  (from t to [n]), we get  $\Pi_r = \Pi_2$ .

· Claim 1+ Claim 2 ⇒

• Lemma: For every MISS event at position t, there are numque MATCH events at position  $\leq t$ .

The lemma implies, VtE[n]:

- n. IP[MISS event at position t]
- SET
  SET
  SET
- · Let IP[MARH event at position t] = Xt

$$\forall t \in [n], \ 1 - \alpha_t \leq \frac{1}{n} \leq \alpha_s, \ 0 \leq \alpha_t \leq 1$$
$$s \leq t$$
$$mein \leq \alpha_s,$$
$$s = 1$$

This factor revealing LP gives a  
lower bound on ALGO.  
Let 
$$S_t = \xi_{XS}^{*}$$
  
 $\Rightarrow 1 - (S_t - S_{t-1}) \leq \frac{1}{n} S_t$  Goal:  
 $\Rightarrow S_t (1 + \frac{1}{n}) \geq 1 + S_{t-1}$ .

Claim: If 
$$S_t(1+\frac{1}{n}) = 1+S_{t-1}$$
.  
and  $S_1 = 1$ . [Highest ranked gets always method)  
then  $S_t \ge \frac{1}{s} (1-\frac{1}{n+1})^s$   $\forall t$ .  
 $S_{=1}$ 

Proof by induction.  

$$S_{t} = \frac{n}{n+1} \cdot (1+S_{t-1})$$

$$\geq (1-\frac{1}{n+1}) \left[1+\sum_{s=1}^{t} (1-\frac{1}{n+1})^{s}\right]$$

$$\geq (1-\frac{1}{n+1}) + \sum_{s=2}^{t} (1-\frac{1}{n+1})^{s}$$

$$\geq \sum_{s=1}^{t} (1-\frac{1}{n+1})^{s}, \quad \square$$

Competitive Ratio inf Sn  

$$= \frac{1}{n} \sum_{s=1}^{\infty} (1 - \frac{1}{n+1})^{s} = \frac{1}{n} (1 - \frac{1}{n+1}) \frac{[1 - (1 - \frac{1}{n+1})]}{[1 - (1 - \frac{1}{n+1})]}$$

$$= \frac{1}{n} \cdot \frac{1}{n+1} \cdot \frac{1}{(1 - \frac{1}{n+1})} \frac{[1 - (1 - \frac{1}{n+1})]}{[1 - (1 - \frac{1}{n+1})]}$$

$$= (1 - (1 - \frac{1}{n+1})^{s}) \rightarrow 1 - \frac{1}{e} \quad ao \; n \rightarrow 20.$$

An Economic-based Analysis of Ranking (Eden et al.)

If  $(v_i, u_j) \in E$ , buyer  $v_i$  is interested in item  $u_j$ . Say value  $(u_j) = 1$  for  $v_i$ .

ALGO:

(1) Before arrival of buyers, every item up is assigned a price  $P_j (= g(w_j) = \tilde{e}^{j-1})$ where  $w_j \sim Uniform [0,1]$ , chosen independently for all items.

When buyer arrives, it chooses the item that maximizes

utility = value - price. [i.e. chooses cheapest price available neighbor] Define, util; = 1-p;, if v; purchased uy, = 0, if v; dirt purchase any item. rev; = p;, if uj was purchased = 0, otherwise. u; = 1-p; utility = 1-p; utility = 0, if uj was purchased = 0, otherwise. utility = 1-p; utility = 0, if uj was purchased = 0, otherwise. utility = 1-p; utility = 0, if uj was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. utility = 0, utility was purchased = 0, otherwise. claim: ALGO is equivalent to Ranking. - Since price of every item is a strictly monotonically increasing function g(voj) of wj and wj is chosen independently and uniformly and random, the permutn induced by item prices is a random permutation as in ranking.

Lem 1: Social welfare (util + rev.) = cardinality of matching T.

 $\Rightarrow \lesssim util_i + \lesssim rev; \\ v_i \in V \qquad u_j \in U \\ = \lesssim (1 - P_j) + \lesssim P_j = |T|. \\ (v_i, u_j) \in T \qquad (v_i, u_j) \in T \end{cases}$ 

Claim 2:  $\mathbb{E}[util_i + \operatorname{pev}_j] \ge 1 - \frac{1}{2}e; \in E$ 

we will prove claim 2 later. First, we show competitive ratio (1-4/e) assuming claim 2.

Now to finish, we need to prove:

Fix some arbitrary order of armival for buyers: J. Consider market without item uj. Let p be the price of the item (say u') chosen by 2: under J (except ug). [= 9(r)] If v: dont buy anything, set p=1. Then with uj, for J. we have: Property 1: Item uj is always sold if Pj < p. - as <u>either</u> some prevous buyer bought uj, <u>or</u> buyer Vi prefers uj over uí.

Property  $1 \Rightarrow 1 \mid u_j \text{ is sold } = 1 \mid P_j < P$ =  $1 \mid g(w_j) < g(y) = 1 \mid w_j < y.$  (\*\*)

Property 2: util; > 1-p. - After reintroducing U;, every buyer has same (or one extra) available items. [intuitively. introduction of item never forces a buyer to take a previously waived item, can be shown by induction on armival order]

- we want to maximize the above term  $\Rightarrow -g'(y) + g(y) = 0, g(1) = 1 [::max P=1]$  $\Rightarrow g(y) = Ke^{\gamma}, K = 1/e \Rightarrow g(y) = e^{\gamma-1}.$
- [Liebniz integral rule:  $\frac{d}{dx} \begin{bmatrix} b(x) = y \\ f(x,t) dt \end{bmatrix} = \frac{f(x,b(x))}{f(x,t) dt} = \frac{f(x,b(x))}{f(x,t) dt} = \frac{f(x,a(x))}{f(x,a(x))} + \frac{f(x,a(x))}{f(x,a(x))} + \frac{f(x,a(x))}{f(x,t) dt} = \frac{f(x,a(x))}{f(x,t) dt} + \frac{f(x,a(x))}{f(x,t) dt} = \frac{f(x,a(x))}{f(x,t) dt}$
- Hence,  $Z = 1 e^{\gamma 1} + \int e^{\psi j 1} dw_j$ =  $1 - e^{\gamma - 1} + [e^{\psi j - 1}]_0^{\gamma}$ =  $1 - e^{\gamma - 1} + e^{\gamma - 1} - e^{-1} = 1 - \frac{1}{e}$ .