Assignment 2

Due date: Feb 28, 2013

General instructions:

Submit your solutions by typesetting in IXTEX.

Write your solutions by furnishing all relevant details (you may assume the results already
covered in the class or previous homework problems).

You are strongly urged to solve the problems by yourself.

If you discuss with someone else or refer to any material (other than the course notes)
then please put a reference in your answer script stating clearly whom or what you have
consulted with and how it has benifited you. We would appreciate your honesty.

If you need any clarification, please ask the instructor.

Total: 40 points

In the following problems, N is the set of natural numbers and F, is the finite field with ¢

elements.

1.

(5 points) A number n is a Carmichael number if n is composite and for every a € N
that is coprime to n, " ' = 1 mod n. (Recall from class that these are the numbers
that fail Fermat’s primality test).

(a) (3 points) Show that a Carmichael number is square-free (i.e. there is no prime p
such that p? divides n).

(b) (2 points) Prove that a number n is a Carmichael number if and only if n is square-
free and for every prime factor p of n, p — 1 divides n — 1.

. (6 points) Suppose n = pg, where p and g are primes and let (Z),-) denote the group

of numbers in {1,...,n — 1} that are coprime to n under multiplication modulo n. In
this exercise, you will show that the problem of computing the order of an element in
(Z,-) is polynomial time equivalent to the problem of factoring integers (modulo the use
of randomness). Prove the following claims.

(a) (4 points) Given n, if there is a deterministic algorithm to compute the order of an
element in (2, -) in (logn)°® time, then there is a randomized algorithm to factor
n also in (logn)®W time.



(b)

(2 points) If there is a deterministic algorithm to factor integers in polynomial time
then there is a deterministic algorithm to compute the order of an element in (Z), -)
in (logn)°® time.

3. (5 points) Let n € N>;.

(a)

(b)
()

(1 point) Prove that the following are equivalent for u € Z,:
e u € Z) and order of u in ZX is n — 1.
e v" 1 =1 and v V/P £1 mod n for all prime divisors p of n — 1.
We will call an u € Z,, with these properties a ‘witness’ for the primality of n.
(1 point) Prove that n is a prime if and only if it has a witness.
(3 points) A ‘certificate’ C' for the primality of n is defined recursively as follows:
e C=(2,1) forn=2.
o C=(n,u;pi,e1,...,pr,er;C1,...,Cy) if n > 3 such that
— u is a ‘witness’ for n,
— p1 < ...<pr € N>y are primes, ej,...,e, € N>g, and n — 1 = p{'...p¢r is
the prime factorization of n — 1.
— For all ¢, C; is a ‘certificate’ for the primality of p;.

Prove that the length of a ‘certificate’ of n is (logn)®™) and given a certificate of n
we can check its correctness in (logn)?® time. Infer that PRIMES € NP.

4. (10 points) In this exercise, we will see how to compute the square root of an arbitrary
element in a prime field F), in (log p)o(l) time, starting with any quadratic non-residue in
F,. (Recall that an element z in F, is a quadratic non-residue if there is no y € F,, such
that y> = z.) Let a € F, be an input element whose square root we wish to compute.
Assume that we know 7, an arbitrarily fixed quadratic non-residue in IF),.

(a)
(b)

()

(d)

(1 point) Give a test, running in time (logp)°™M, to confirm that @ is actually a
quadratic residue.

(3 points) Suppose p — 1 = 2'w, where w is odd. Show that if we can compute the
square root of ¢ in time T then we can also compute the square root of ¢ in time
T + (logp)°M.

(2 points) Let o’ = a™. It follows from (b) that it is sufficient to compute the square

root of o’ efficiently. Notice that the element a’ belongs to Gy, = {c¢" : ¢ € Fp}, the

def

subgroup of F ¢ of size 2t. Prove that 7/ = n" is a generator of the cyclic group G,.

(4 points) Infer from (c) that there is an even number e < 2! such that 7’¢ = a'.
Therefore, if we can find e then 7/¢/2 is a square root of a’. Show that e can be
computed in (log p)®™) time.

5. (4 points) Let R be a commutative ring (with unity), k¥ € N5, and f,g € R[z] with
f(0)=1and fg =1 mod x*.

(a)
(b)

(1 point) Let d e N, e =1 — fg,and h = g- (! +e?=2 + ...+ e+ 1). Prove that
fh =1 mod z%.

(3 points) State an algorithm for computing inverse of f modulo z¢, where £ is a
power of d and analyze its time complexity.
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6. (10 points) Background: In the class, we have discussed a randomized procedure to find
an irreducible polynomial over a finite field. In this exercise, we will see how to find
irreducible polynomials deterministically for a special case. Let F), be a prime field and

Q-

, q¢ the distinct prime factors of p — 1.

Goal: To find an irreducible polynomial over IF,, of degree n = qiq2 - - qu.

Your task is to prove the following.

(a)

(4 points) Let a; be a ¢;-th power non-residue in F),. Prove that 2% —a; is irreducible
over F,.

(For your information: The Extended Riemann Hypothesis (ERH) implies that the
value of the least g;-th power non-residue in F,, is bounded by O((logp)?) - so it is
easy to find.)

(6 points) If we have irreducible polynomials f, g € F, of degree m and k, respec-
tively, where m is relatively prime to k, then we can find an irreducible polynomial
of degree mk over [F),.

Infer from (a) and (b) that we can find an irreducible polynomial of degree n deter-
ministically (putting our faith in the ERH) in time polynomial in n and log p.

To help you appreciate the usefulness of this process, here’s an example case: Start
with the finite field F7 and construct an irreducible polynomial of degree 7 — 1 =
2-3 = 6 over 7. With this construct and work with the extended field F;6 = F117649!



