Assignment 2

Due date: Feb 28, 2013

General instructions:

- Submit your solutions by typesetting in IAT_EX .
- Write your solutions by furnishing all relevant details (you may assume the results already covered in the class or previous homework problems).
- You are strongly urged to solve the problems by yourself.
- If you discuss with someone else or refer to any material (other than the course notes) then please put a reference in your answer script stating clearly whom or what you have consulted with and how it has benifited you. We would appreciate your honesty.
- If you need any clarification, please ask the instructor.

Total: 40 points

In the following problems, \mathbb{N} is the set of natural numbers and \mathbb{F}_q is the finite field with q elements.

- 1. (5 points) A number n is a Carmichael number if n is composite and for every $a \in \mathbb{N}$ that is coprime to $n, a^{n-1} = 1 \mod n$. (Recall from class that these are the numbers that fail Fermat's primality test).
 - (a) (3 points) Show that a Carmichael number is square-free (i.e. there is no prime p such that p^2 divides n).
 - (b) (2 points) Prove that a number n is a Carmichael number if and only if n is square-free and for every prime factor p of n, p-1 divides n-1.
- 2. (6 points) Suppose n = pq, where p and q are primes and let $(\mathbb{Z}_n^{\times}, \cdot)$ denote the group of numbers in $\{1, \ldots, n-1\}$ that are coprime to n under multiplication modulo n. In this exercise, you will show that the problem of computing the order of an element in $(\mathbb{Z}_n^{\times}, \cdot)$ is polynomial time equivalent to the problem of factoring integers (modulo the use of randomness). Prove the following claims.
 - (a) (4 points) Given n, if there is a deterministic algorithm to compute the order of an element in (Z[×]_n, ·) in (log n)^{O(1)} time, then there is a randomized algorithm to factor n also in (log n)^{O(1)} time.

- (b) (2 points) If there is a deterministic algorithm to factor integers in polynomial time then there is a deterministic algorithm to compute the order of an element in $(\mathbb{Z}_n^{\times}, \cdot)$ in $(\log n)^{O(1)}$ time.
- 3. (5 points) Let $n \in \mathbb{N}_{\geq 1}$.
 - (a) (1 point) Prove that the following are equivalent for $u \in \mathbb{Z}_n$:
 - $u \in \mathbb{Z}_n^{\times}$ and order of u in \mathbb{Z}_n^{\times} is n-1.
 - $u^{n-1} = 1$ and $u^{(n-1)/p} \neq 1 \mod n$ for all prime divisors p of n-1.

We will call an $u \in \mathbb{Z}_n$ with these properties a 'witness' for the primality of n.

- (b) (1 point) Prove that n is a prime if and only if it has a witness.
- (c) (3 points) A 'certificate' C for the primality of n is defined recursively as follows:
 - C = (2, 1) for n = 2.
 - $C = (n, u; p_1, e_1, \dots, p_r, e_r; C_1, \dots, C_r)$ if $n \ge 3$ such that
 - -u is a 'witness' for n,
 - $-p_1 < \ldots < p_r \in \mathbb{N}_{\geq 2}$ are primes, $e_1, \ldots, e_r \in \mathbb{N}_{\geq 0}$, and $n-1 = p_1^{e_1} \ldots p_r^{e_r}$ is the prime factorization of n-1.
 - For all i, C_i is a 'certificate' for the primality of p_i .

Prove that the length of a 'certificate' of n is $(\log n)^{O(1)}$ and given a certificate of n we can check its correctness in $(\log n)^{O(1)}$ time. Infer that PRIMES $\in \mathsf{NP}$.

- 4. (10 points) In this exercise, we will see how to compute the square root of an arbitrary element in a prime field \mathbb{F}_p in $(\log p)^{O(1)}$ time, starting with any quadratic non-residue in \mathbb{F}_p . (Recall that an element x in \mathbb{F}_p is a quadratic non-residue if there is no $y \in \mathbb{F}_p$ such that $y^2 = x$.) Let $a \in \mathbb{F}_p$ be an input element whose square root we wish to compute. Assume that we know η , an arbitrarily fixed quadratic non-residue in \mathbb{F}_p .
 - (a) (1 point) Give a test, running in time $(\log p)^{O(1)}$, to confirm that a is actually a quadratic residue.
 - (b) (3 points) Suppose $p 1 = 2^t w$, where w is odd. Show that if we can compute the square root of a^w in time T then we can also compute the square root of a in time $T + (\log p)^{O(1)}$.
 - (c) (2 points) Let $a' = a^w$. It follows from (b) that it is sufficient to compute the square root of a' efficiently. Notice that the element a' belongs to $G_w = \{c^w : c \in \mathbb{F}_p\}$, the subgroup of \mathbb{F}_p^{\times} of size 2^t . Prove that $\eta' \stackrel{def}{=} \eta^w$ is a generator of the cyclic group G_w .
 - (d) (4 points) Infer from (c) that there is an even number $e < 2^t$ such that $\eta'^e = a'$. Therefore, if we can find e then $\eta'^{e/2}$ is a square root of a'. Show that e can be computed in $(\log p)^{O(1)}$ time.
- 5. (4 points) Let \mathcal{R} be a commutative ring (with unity), $k \in \mathbb{N}_{>0}$, and $f, g \in \mathcal{R}[x]$ with f(0) = 1 and $fg = 1 \mod x^k$.
 - (a) (1 point) Let $d \in \mathbb{N}$, e = 1 fg, and $h = g \cdot (e^{d-1} + e^{d-2} + \ldots + e + 1)$. Prove that $fh = 1 \mod x^{dk}$.
 - (b) (3 points) State an algorithm for computing inverse of f modulo x^{ℓ} , where ℓ is a power of d and analyze its time complexity.

6. (10 points) Background: In the class, we have discussed a randomized procedure to find an irreducible polynomial over a finite field. In this exercise, we will see how to find irreducible polynomials deterministically for a special case. Let \mathbb{F}_p be a prime field and q_1, \ldots, q_ℓ the distinct prime factors of p-1.

Goal: To find an irreducible polynomial over \mathbb{F}_p of degree $n = q_1 q_2 \cdots q_\ell$.

Your task is to prove the following.

(a) (4 points) Let a_i be a q_i -th power non-residue in \mathbb{F}_p . Prove that $x^{q_i} - a_i$ is irreducible over \mathbb{F}_p .

(For your information: The Extended Riemann Hypothesis (ERH) implies that the value of the least q_i -th power non-residue in \mathbb{F}_p is bounded by $O((\log p)^2)$ - so it is easy to find.)

(b) (6 points) If we have irreducible polynomials $f, g \in \mathbb{F}_p$ of degree m and k, respectively, where m is relatively prime to k, then we can find an irreducible polynomial of degree mk over \mathbb{F}_p .

Infer from (a) and (b) that we can find an irreducible polynomial of degree n deterministically (putting our faith in the ERH) in time polynomial in n and $\log p$.

To help you appreciate the usefulness of this process, here's an example case: Start with the finite field \mathbb{F}_7 and construct an irreducible polynomial of degree $7 - 1 = 2 \cdot 3 = 6$ over \mathbb{F}_7 . With this construct and work with the extended field $\mathbb{F}_{7^6} = \mathbb{F}_{117649}!$