
Assignment 2

Due date: Feb 28, 2013

General instructions:

• Submit your solutions by typesetting in LATEX.

• Write your solutions by furnishing all relevant details (you may assume the results already
covered in the class or previous homework problems).

• You are strongly urged to solve the problems by yourself.

• If you discuss with someone else or refer to any material (other than the course notes)
then please put a reference in your answer script stating clearly whom or what you have
consulted with and how it has benifited you. We would appreciate your honesty.

• If you need any clarification, please ask the instructor.

Total: 40 points

In the following problems, N is the set of natural numbers and Fq is the finite field with q
elements.

1. (5 points) A number n is a Carmichael number if n is composite and for every a ∈ N
that is coprime to n, an−1 = 1 mod n. (Recall from class that these are the numbers
that fail Fermat’s primality test).

(a) (3 points) Show that a Carmichael number is square-free (i.e. there is no prime p
such that p2 divides n).

(b) (2 points) Prove that a number n is a Carmichael number if and only if n is square-
free and for every prime factor p of n, p− 1 divides n− 1.

2. (6 points) Suppose n = pq, where p and q are primes and let (Z×n , ·) denote the group
of numbers in {1, . . . , n − 1} that are coprime to n under multiplication modulo n. In
this exercise, you will show that the problem of computing the order of an element in
(Z×n , ·) is polynomial time equivalent to the problem of factoring integers (modulo the use
of randomness). Prove the following claims.

(a) (4 points) Given n, if there is a deterministic algorithm to compute the order of an
element in (Z×n , ·) in (log n)O(1) time, then there is a randomized algorithm to factor
n also in (log n)O(1) time.
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(b) (2 points) If there is a deterministic algorithm to factor integers in polynomial time
then there is a deterministic algorithm to compute the order of an element in (Z×n , ·)
in (log n)O(1) time.

3. (5 points) Let n ∈ N≥1.

(a) (1 point) Prove that the following are equivalent for u ∈ Zn:

• u ∈ Z×n and order of u in Z×n is n− 1.

• un−1 = 1 and u(n−1)/p 6= 1 mod n for all prime divisors p of n− 1.

We will call an u ∈ Zn with these properties a ‘witness’ for the primality of n.

(b) (1 point) Prove that n is a prime if and only if it has a witness.

(c) (3 points) A ‘certificate’ C for the primality of n is defined recursively as follows:

• C = (2, 1) for n = 2.

• C = (n, u; p1, e1, . . . , pr, er;C1, . . . , Cr) if n ≥ 3 such that

– u is a ‘witness’ for n,

– p1 < . . . < pr ∈ N≥2 are primes, e1, . . . , er ∈ N≥0, and n − 1 = pe11 . . . perr is
the prime factorization of n− 1.

– For all i, Ci is a ‘certificate’ for the primality of pi.

Prove that the length of a ‘certificate’ of n is (log n)O(1) and given a certificate of n
we can check its correctness in (log n)O(1) time. Infer that PRIMES ∈ NP.

4. (10 points) In this exercise, we will see how to compute the square root of an arbitrary
element in a prime field Fp in (log p)O(1) time, starting with any quadratic non-residue in
Fp. (Recall that an element x in Fp is a quadratic non-residue if there is no y ∈ Fp such
that y2 = x.) Let a ∈ Fp be an input element whose square root we wish to compute.
Assume that we know η, an arbitrarily fixed quadratic non-residue in Fp.

(a) (1 point) Give a test, running in time (log p)O(1), to confirm that a is actually a
quadratic residue.

(b) (3 points) Suppose p− 1 = 2tw, where w is odd. Show that if we can compute the
square root of aw in time T then we can also compute the square root of a in time
T + (log p)O(1).

(c) (2 points) Let a′ = aw. It follows from (b) that it is sufficient to compute the square
root of a′ efficiently. Notice that the element a′ belongs to Gw = {cw : c ∈ Fp}, the

subgroup of F×p of size 2t. Prove that η′
def
= ηw is a generator of the cyclic group Gw.

(d) (4 points) Infer from (c) that there is an even number e < 2t such that η′e = a′.
Therefore, if we can find e then η′e/2 is a square root of a′. Show that e can be
computed in (log p)O(1) time.

5. (4 points) Let R be a commutative ring (with unity), k ∈ N>0, and f, g ∈ R[x] with
f(0) = 1 and fg = 1 mod xk.

(a) (1 point) Let d ∈ N, e = 1− fg, and h = g · (ed−1 + ed−2 + . . .+ e+ 1). Prove that
fh = 1 mod xdk.

(b) (3 points) State an algorithm for computing inverse of f modulo x`, where ` is a
power of d and analyze its time complexity.
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6. (10 points) Background: In the class, we have discussed a randomized procedure to find
an irreducible polynomial over a finite field. In this exercise, we will see how to find
irreducible polynomials deterministically for a special case. Let Fp be a prime field and
q1, . . . , q` the distinct prime factors of p− 1.

Goal: To find an irreducible polynomial over Fp of degree n = q1q2 · · · q`.
Your task is to prove the following.

(a) (4 points) Let ai be a qi-th power non-residue in Fp. Prove that xqi−ai is irreducible
over Fp.

(For your information: The Extended Riemann Hypothesis (ERH) implies that the
value of the least qi-th power non-residue in Fp is bounded by O((log p)2) - so it is
easy to find.)

(b) (6 points) If we have irreducible polynomials f, g ∈ Fp of degree m and k, respec-
tively, where m is relatively prime to k, then we can find an irreducible polynomial
of degree mk over Fp.

Infer from (a) and (b) that we can find an irreducible polynomial of degree n deter-
ministically (putting our faith in the ERH) in time polynomial in n and log p.

To help you appreciate the usefulness of this process, here’s an example case: Start
with the finite field F7 and construct an irreducible polynomial of degree 7 − 1 =
2 ·3 = 6 over F7. With this construct and work with the extended field F76 = F117649!
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