
Assignment 3

Due date: April 3, 2013

General instructions:

• Submit your solutions by typesetting in LATEX.

• Write your solutions by furnishing all relevant details (you may assume the results already
covered in the class or previous homework problems).

• You are strongly urged to solve the problems by yourself.

• If you discuss with someone else or refer to any material (other than the course notes)
then please put a reference in your answer script stating clearly whom or what you have
consulted with and how it has benifited you. We would appreciate your honesty.

• If you need any clarification, please ask one of the instructors.

Total: 50 points

In the following problems, N is the set of natural numbers, R is the set of real numbers, Q is
the set of rational numbers and Z is the set of integers.

1. (4 points) Let g1, . . . , gn ∈ Rn be linearly independent and L =
∑n

i=1 Zgi the lattice that
they generate. Prove that for each vector x ∈ Rn there is a vector g ∈ L such that

‖x− g‖2 ≤ 1

4
(‖g1‖2 + . . .+ ‖gn‖2).

2. (5 points) Give an example of a polynomial f(x) ∈ Z[x] that has a root modulo every
prime, but still there exists an n ∈ N such that f does not have a root modulo n.

3. (12 points) A nonsingular matrix W ∈ Zn×n, for a positive integer n, is in Hermite
Normal Form (HNF) 1 if all entries above the diagonal are zero (i.e. W is lower traingular).
The following algorithm takes an arbitrary nonsingular matrix V ∈ Zn×n and computes
Hermite normal form W of V , such that W = UV for a matrix U ∈ Zn×n, which is
unimodular (meaning det(U) = ±1).

Algorithm: Hermite Normal Form

Input: A matrix V ∈ Zn×n with det(V ) 6= 0.

Output: A matrix W ∈ Zn×n in HNF such that W = UV for a unimodular U ∈ Zn×n.

1Conventionally, HNF is defined by imposing one more condition to ensure uniqueness - we won’t need it.
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1. W ← V , m← n.

2. If m = 1 then goto step 8.

3. Choose a row index k with 1 ≤ k ≤ m such that |wkm| = min{|wim| : 1 ≤ i ≤
m and wim 6= 0}. Exchange rows k and m of W .

4. If wmm|w`m for 1 ≤ ` ≤ m then goto step 7.

5. Choose a column index ` with 1 ≤ ` ≤ m and wmm - w`m. Compute q ∈ Z with
|w`m − qwmm| ≤ |wmm|/2 by division with remainder.

6. Subtract q times row m from row ` of W . Goto step 3.

7. For ` = 1, . . .m − 1 subtract w`m/wmm times row m from row ` in W . m ← m − 1,
goto step 2.

8. Return W .

(a) (3 points) Prove that the algorithm works correctly, using the invariant that before
each execution of step 2, W = UV for some unimodular matrix U and wij = 0 and
wjj 6= 0 for m < j ≤ n and 1 ≤ i < j. Infer that the minimum in step 3 always
exists.

(b) (3 points) Show that at most log2 u executions of steps 3 through 6 lie between two
executions of step 2, where u = min{|wim| : 1 ≤ i ≤ m and wim 6= 0} at the previous
execution of step 2. Conclude that the algorithm terminates.

(c) (3 points) Let a1, . . . an ∈ Qn be linearly independent, L =
∑

1≤i≤n Zai the lattice
that they generate, and b1, . . . , bn ∈ L be linearly independent as well. Then M =∑

1≤i≤n Zbi ⊆ L is a sublattice of L. Prove that there exists a basis c1, . . . , cn of M
which has the form.

c1 = w11a1,

c2 = w21a1 + w22a2,
...

cn = wn1a1 + wn2a2 + . . . wnnan,

with wij ∈ Z and wii 6= 0 for 1 ≤ j ≤ i ≤ n.

(d) (3 points) Suppose that v1, . . . , vm ∈ Qn are not necessarily Q-linearly independent
vectors, and L =

∑
1≤i≤m Zvi. Prove that there exists Q-linearly independent vectors

w1, . . . , wr ∈ L such that L =
∑

1≤j≤r Zwj .

4. (5 points) Design a deterministic polynomial-time algorithm that given a bivariate poly-
nomial f(x, y) ∈ Q[x, y] which is monic with respect to x, determines if it has the property
that for all y ∈ Q, there exists an x ∈ Q such that f(x, y) = 0.

5. (4 points) Let n = p1p2, where p1, p2 ∈ N are distinct odd primes. The n-th cyclotomic
polynomial Φn is irreducible in Z[x]. Prove that it splits modulo any prime p into at least
two factors.

6. (12 points) Background : Let f =
∑n

i=0 aix
i be a polynomial in Z[x] and A = maxi{|ai|}.

In the class, we have seen how to compute all the integer roots of f in time polynomial
in n and log(A + 1). But, suppose that most of the coefficients of f are zero, that is,
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barring some k coefficients ai1 , . . . , aik where k << n, all the remaining ai’s are zero. It
would not be wise then to allow our algorithm to take time polynomial in n which could
be potentially much larger than k. The aim of this exercise is to design an algorithm that
takes time polynomial in the actual input size of the polynomial f .

Definition: Let f =
∑n

i=0 aix
i. Suppose, f is given as a list of pairs (ai, i), where ai 6= 0.

The input size of f is,

size(f) =
∑
i:ai 6=0

(log(|ai|+ 1) + log(i+ 1)).

We would like to design an algorithm to compute all the integer roots of f in time poly-
nomial in size(f). At the heart of the approach is the following theorem (which we won’t
prove here). Define sign of f(b) for any b ∈ Z as follows.

f(b) =


−1 if f(b) < 0
0 if f(b) = 0
1 if f(b) > 0

Theorem 0.1 There is an algorithm which given input b ∈ Z and f ∈ Z[x], computes the
sign of f(b) in time polynomial in log(|b|+ 1) and size(f).

Task: To attain our goal by taking help of the above theorem. Suppose f has only
k monomials (i.e only k of the coefficients ai’s are nonzero). We (re)write f as f =
a1x

d1 + . . .+ akx
dk , where d1 > d2 > . . . > dk ≥ 0, and call k the sparsity of f .

(a) (2 points) Prove that if f ∈ R[x] has sparsity k, then it has at most 2k real roots.

Definition: Let f ∈ Z[x] and M ∈ Z, M > 0. Let C = {[ui, vi]}i=1,...,N be a list of
closed intervals with integer endpoints satisfying ui < ui+1 and vi = ui or vi = ui + 1
for all i. We say that C locates the roots of f in [−M,M ] if for every root r of f in
[−M,M ] there is an i ≤ N such that r ∈ [ui, vi].

Express f as f = xdkg, where g(0) 6= 0. Suppose that C′ = {[ui, vi]}i=1,...,N locates

the roots of dg
dx (the derivative of g with respect to x) in [−M,M ].

(b) (5 points) Show that there is an algorithm which, given input f, g ∈ Z[x], M , N
and C′ as above, computes a list C locating all the roots of f in [−M,M ]. The
list C has at most N + 2k intervals where k is the sparsity of f . The halting time
of the algorithm is polynomial in log(M+1), size(f) and N . [Hint: Use Theorem 0.1]

(c) (5 points) Show that there is an algorithm which given input f ∈ Z[x] outputs all
the integer roots of f in time polynomial in size(f). [Hint: Use (b) and Theorem 0.1.
What would be your choice of M?]

7. (8 points) Let L =
∑n

i=1 Zbi be a lattice generated by Q-linearly independent basis

vectors b1, . . . ,bn ∈ Qm, where m ≥ n. The dual of L is the set L̂ of all Z-linear
functions from L to Z, i.e., the functions φ : L → Z such that

φ(ax + by) = aφ(x) + bφ(y)

for all a, b ∈ Z and x,y ∈ L.
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(a) (3 points) Prove that L̂ is isomorphic to L as Z-modules.

For any x ∈ Qm, denote by φx the map φx(y) = (x,y), where (x,y) is the inner
product of x and y. Observe that φx ∈ L̂ if and only if (x,y) ∈ Z for every y ∈ L.
We would like to know which x ∈ Qm has this property. This will give us a nice
characterization of the elements of L̂.

(b) (3 points) Let B be the m × n matrix (bT
1 bT

2 . . .b
T
n ). Taking into account the

correspondence between a vector x and a map φx, show that the row vectors of the
n×m matrix D = (BTB)−1BT generate L̂ as a Z-module. Conclude that L̂ is also
a lattice, called the dual lattice of L, of rank n.

(c) (2 points) Prove that the dual of the dual lattice of L is L itself. Also, by defining,
vol(L) =

√
det(BTB), show that vol(L̂) = vol(L)−1.

For your information, the notion of dual lattices is used to construct public-key lattice-
based cryptographic protocols.
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