
Assignment 4

Due date: April 24, 2012

General instructions:

• Submit your solutions by typesetting in LATEX.

• Write your solutions by furnishing all relevant details (you may assume the results already
covered in the class or previous homework problems).

• You are strongly urged to solve the problems by yourself.

• If you discuss with someone else or refer to any material (other than the course notes)
then please put a reference in your answer script stating clearly whom or what you have
consulted with and how it has benifited you. We would appreciate your honesty.

• If you need any clarification, please ask one of the instructors.

Total: 55 points

1. (5 points) Let F be a field and x
def
= (x1, . . . , xn) be an n-tuple of indeterminates. A set

of nonzero polynomials f1(x), f2(x), . . . , fm(x) ∈ F[x] is said to be F-linearly dependent
if there exist constants a1, . . . , am ∈ F, not all zero, such that

a1 · f1(x) + a2 · f2(x) + . . .+ am · fm(x) = 0.

Suppose that every fi(x) is given in the form of an arithmetic circuit with size bounded by
s. Devise a randomized algorithm that given polynomials f1(x), . . . , fm(x) in the form of
arithmetic circuits, tests whether f1, . . . , fm are F-linearly dependent, in time polynomial
in s.

2. (5 points) In this exercise you will devise an algorithm that given a matrix A computes its
k-th radical, A1/k. More precisely, the task is to devise an efficient randomized algorithm
that given a prime p, an integer k ≥ 2 and an (n×n)-matrix A ∈ Fn×n

p , computes a matrix

B ∈ Fn×n
p such that Bk = A, if such a matrix B exists. The running time of the algorithm

should polynomial in log p, n and k. You can assume that all the eigenvalues of A are in Fp

and p > max{k, n}. [Hint: If it helps, you can also assume that the Jordan normal form
of A can be computed in randomized polynomial time i.e. an invertible matrix C ∈ Fn×n

p

can be computed in (randomized) time polynomial in n and log p such that CAC−1 is in
Jordan normal form.]

1

3. (5 points) The discrete logarithm problem for matrices is the following: given a prime p
and two (n×n) matrices A,B ∈ Fn×n

p , find the smallest integer m ≥ 0 such that Am = B,
if such an m exists. (You can assume that we are given the promise that m, if it exists,
is less than p). Your task is to show that the discrete logarithm problem for matrices is
no harder than the usual discrete log problem for field elements (1-dimensional matrices
over Fp). More precisely, devise a randomized polynomial time algorithm for solving the
discrete log problem for matrices assuming that we have an oracle for solving the usual
discrete log problem for Fp elements. Your algorithm should run in time polynomial in n
and log p. [Hint: You may assume the hint given in Problem 2.]

4. (5 points) Consider the following polynomial factorization task: Given as input a prime
p and polynomial f ∈ Fp[x] of degree n that splits completely over Fp, design a determin-
istic algorithm, by adapting the Pollard-Strassen method, that factors f using Õ(n

√
p)

operations in Fp.

5. (15 points) In the class, we have seen how a multivariate polynomial f can be factored
by quering a black-box for evaluations of f followed by sparse polynomial interpolation.
However, for the interpolation algorithm to work, we need the knowledge of the sparsity
of every factor of f . In this exercise, we will see how to efficiently find the sparsity of a
polynomial g from its evaluations at several points.

Let g(x) ∈ Fq[x] be a polynomial in n variables x = (x1, . . . , xn) with total degree bounded

by d. Suppose, g has k monomials i.e. g =
∑k

i=1 aiMi(x), where Mi(x) is a monomial,
and ai ∈ Fq\{0} for every 1 ≤ i ≤ k. Consider the following sparsity test which checks if
k ≤ m. Define, xi = (xi1, . . . , x

i
n).

1 Sparsity test

1. Pick x = (x1, . . . , xn) ∈ Fn
q uniformly at random.

2. Let

Hm+1(x) =

g(x0) g(x1) ... g(xm)
g(x1) g(x2) ... g(xm+1)
...

... ...
...

g(xm) g(xm+1) ... g(x2m)

(m+1)×(m+1)

.

Compute det(Hm+1(x)).
3. If det(Hm+1(x)) = 0, output ‘g is m-sparse’.

4. Else, output ‘g is not m-sparse’.

We would like to prove the following theorem.

Theorem 0.1 Let q ≥ m(m+1)d
ϵ . Then the above algorithm outputs ‘g is m-sparse’ if

k ≤ m, and outputs ‘g is not m-sparse’ with probability at least 1− ϵ if k > m.

(a) (2 points) Show that Hm+1(x) equals the following product for any m ∈ N.
1 1 ... 1

M1(x) M2(x) ... Mk(x)
M1(x

2) M2(x
2) ... Mk(x

2)
...

... ...
...

M1(x
m) M2(x

m) ... Mk(x
m)

×

a1 0 ... 0
0 a2 ... 0
0 0 ... 0
...

... ...
...

0 0 ... ak

×

1 M1(x) ... M1(x

m)
1 M2(x) ... M2(x

m)
1 M3(x) ... M3(x

m)
...

... ...
...

1 Mk(x) ... Mk(x
m)

2

(b) (3 points) Use (a) to infer that, if k ≤ m then det(Hm+1(x)) = 0 as a polynomial
in x1, . . . , xn.

(c) (5 points) Use (a) to show that, if k > m then the following expression holds:

det(Hm+1(x)) =
∑

S⊂[k],|S|=m+1

∏
i∈S

ai ·
∏

i<j,j∈S
(Mi(x)−Mj(x))

2

(d) (3 points) Show that the RHS of the above equation in (c) is a non-zero polynomial
in x1, . . . , xn with total degree bounded by m(m+ 1)d.

(e) (2 points) Infer that in the above algorithm det(Hm+1(x)) ̸= 0 with probability at

least 1− ϵ if k > m and q > m(m+1)d
ϵ .

You can infer from here that by doing a ‘binary search’ on m, we can find the value of k.

6. (10 points) The discrete logarithm problem over a prime field Fp is the following: Given
a, b ∈ F×

p , compute an x such that ax = b mod p if such an x exists. Show that, if
p − 1 is an ℓ-smooth number then the discrete logarithm problem over Fp can be solved
deterministically in time polynomial in ℓ and log p.

7. (10 points) The Chevalley-Warning-Ax theorem states the following: The number of
roots of a degree d polynomial f(x1, . . . , xn) ∈ Fp[x] is either 0 or it is at least pn−d,
provided n > d. Here, by roots we mean points in Fn

p at which f vanish modulo p. (p is
a prime.)

Use the above theorem to show that the number of boolean roots of f(x1, . . . , xn) is either
0 or it is at least 2n−d(p−1) log p, assuming n > d(p− 1). Here, by a boolean root we mean
a point (a1, . . . , an) ∈ {0, 1}n such that f(a1, . . . , an) = 0 mod p.

[Hint: Use probabilistic method. For a “random” vector r = (r1, . . . , rn) ∈ {0, 1}n, how
can you connect the roots of fr(x1, . . . , xn) defined as,

fr(x1, . . . , xn) = f(r1x
p−1
1 + (1− r1)(1− xp−1

1), . . . , rnx
p−1
n + (1− rn)(1− xp−1

n))

with boolean roots of f?]

3

