
Computational Number Theory and Algebra June 6, 2012

Lecture 14
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the past two lectures, we have introduced Hensel lifting and shown how this tool can be applied to prove
that factoring of bivariate polynomials over a field reduces (in polynomial time) to univariate polynomial
factoring over the same field. A similar reduction holds from n-variate polynomial factoring to univariate
polynomial factoring for any n (but, of course, the reduction time grows exponentially in n). Algorithmically
speaking, Hensel lifting is an efficient procedure - it simply involves multiplication of elements from the
underlying (polynomial) ring (refer to the proofs of lemma 3 & 4 in Lecture 12). But, nevertheless, it would
be nice if we can somehow shift the complexity of ‘Hensel lifting involving n variables’ from the algorithm
to the analysis, and in the process make the algorithm somewhat ‘simpler’. This would be the topic of
discussion today. The primary tool that would help us achieve this is Hilbert’s irreducibility theorem, which
was mentioned in the last class. (Refer to Madhu Sudan’s course lecture note 9 and observe how Hensel
lifting is used in the proof of Hilbert’s irreducibility theorem.) The idea is to use this theorem to design an
algorithm for factoring n-variate polynomials for any n, where the algorithm uses ‘Hensel lifting involving only
3 variables’. This somewhat ‘simplification’ of the factoring algorithm comes at a price - randomization! This
is because, Hilbert’s irreducibility theorem itself involves randomization (see the statement of the theorem
in the previous lecture note).

The overall strategy is to factor the polynomials in a ‘black-box fashion’ using Hilbert’s irreducibility
theorem and then apply polynomial interpolation to retrieve the factors. These are the topics that we will
discuss today:

• Black-box polynomial factoring, and

• Sparse polynomial interpolation.

A few words about the black-box model- Before we proceed to the main part of our discussion, let us
say a few words about the ‘black-box’ model and why we study it. One motivation behind studying this
model comes from the arithmetic circuit model of computation (also known as straight line programs). An
arithmetic circuit is like a boolean circuit with addition and multiplication gates replacing ‘or’ and ‘and’
gates, and the inputs are variables. Naturally, an arithmetic circuit computes a multivariate polynomial.
Arithmetic circuits provide a succinct way of representing polynomials - for instance, the polynomial f =
(x1 + 1)(x2 + 1) . . . (xn+ 1) has 2n monomials, but an arithmetic circuit can ‘compute’ this polynomial using
only n+ 1 gates. This means that the polynomial f can be evaluated at a point (a1, . . . , an) using only O(n)
addition and multiplication operations which is far fewer than the total number of monomials in f . This is
where the ‘black-box’ model enters the scene: We say that a polynomial f is computed by a ‘black-box’ if
f is hidden inside a black box (which is probably hiding an arithmetic circuit computing the polynomial),
and given any point (a1, . . . , an) the black-box returns the value f(a1, . . . , an) very efficiently. This means,
any algorithm is only allowed to query evaluations of f at certain points to the black-box computing f .
The black-box model of computation has profound connections with some of the fundamental problems of
complexity theory, including an algebraic analogue of the famous P

?= NP question.
In the context of polynomial factoring, it is conceivable that there are problems where we are interested

in certain evaluations of the factors and not the factors themselves. In such cases, black-box factorization
is more efficient than n-variate Hensel lifting. Moreover, the ‘black-box’ model is interesting for another
efficiency reason. It might happen that an n-variate polynomial f , whose total degree is bounded by d,
has factors whose sparsity 1 is much less than dn. If so, then the output size would be much less than dn.
However, it might happen than Hensel lifting takes O(dn) time to compute the factors. Ideally, we would
like to output the factors of f in time polynomial in d, n and m, where m is an upper bound on the sparsity

1the number of monomials with nonzero coefficients in a polynomial is called its sparsity.

14-1

of the factors of f and m is potentially much less than dn. This leads us to the topic of sparse polynomial
interpolation.

You may find the discussion on black-box factorization of multivariate polynomials in section 2 of lecture 9
from Madhu Sudan’s course notes. We will just write about sparse polynomial interpolation in this note.

1 Sparse polynomial interpolation

Suppose an n-variate polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn] is given as a black-box with the promise that
the sparsity of f is upper bounded by m and its (total) degree is bounded by d. We want to find f , which
means we want to express f in the sum of monomials form (also known as the sparse representation of f),
in time polynomial in n, d and m by making queries to the black-box at points in Fn (or, Kn where K ⊃ F
is a ‘small’ extension field of F). This problem is known as the sparse polynomial interpolation problem.
The algorithm we will discuss for this problem is due to Klivans and Spielman [KS01] - it works over any
underlying field F.

Let f =
∑m
i=1 cix

di1
1 xdi2

2 . . . xdin
n , where c1, . . . , cm are the coefficients of the m monomials of f . Let p be

a prime whose value will be fixed later. Consider replacing xi by xt
i−1 mod p in f , where the value of t will

also be fixed later.

f(x, xt mod p, xt
2 mod p, . . . , xt

n−1 mod p) =
m∑
i=1

cix
di1+di2(t mod p)+...+din(tn−1 mod p)

=
m∑
i=1

cix
ei(t),

where ei(t) = di1 + di2(t mod p) + . . .+ din(tn−1 mod p). Define pi(t) as,

pi(t)
def= (di1 + di2t+ . . .+ dint

n−1) mod p.

For the moment, pretend that t is a variable. Then, pi(t) can be naturally treated as a polynomial in t over
Fp with deg pi(t) < n. Now suppose p > d, then pi(t) 6= pj(t) for any i 6= j (as distinct indices i and j
correspond to distinct monomials and hence (di1, . . . , din) 6= (dj1, . . . , djn)). This means that the polynomial

qij(t)
def= pi(t) − pj(t) is a non-zero polynomial over Fp (for i 6= j) with degree bounded by n. Moreover,

every (unordered) pair (i, j), with i 6= j, defines a non-zero polynomial qij(t). Since, there are
(
m
2

)
pairs

(i, j), there are
(
m
2

)
such polynomials qij(t). Therefore, if p >

(
m
2

)
· n then there is an α ∈ Fp such that

none of the qij(α) is zero, implying that p1(α), . . . , pm(α) are distinct elements of Fp. Since, ei(α) = pi(α)
mod p, this means that e1(α), . . . , em(α) are also distinct - we say that α ∈ Fp is a ‘good choice’ of t. Now,
let

gα(x) = f(x, xα mod p, xα
2 mod p, . . . , xα

n−1 mod p) =
m∑
i=1

cix
ei(α),

and p be the smallest prime greater than max{d,
(
m
2

)
n}. Then, ei(α) ≤ d · p ≤ 2(mnd)2 implying that,

degree of gα(x) is bounded by 2(mnd)2. Hence, for any fixed choice of α we can interpolate gα(x) by quering
f at points (x, xα mod p, xα

2 mod p, . . . , xα
n−1 mod p) for 2(mnd)2 values of x from the underlying field F. If

|F | < 2(mnd)2, work with a ‘small’ extension field K ⊃ F that has 2(mnd)2 elements.
Once we interpolate gα(x) for a good choice α, we know all the coefficients c1, . . . , cm of f , but we still do

not know the monomials in f . The monomials are recovered in the following way: Since, ei(α)’s are distinct
for 1 ≤ i ≤ m, we can index the monomials of f by ei(α)’s. Suppose we want to know what is the degree of
xj occurring in the monomial of f that is indexed by ei(α). Let a ∈ F be an element whose order is greater
than d, i.e. ae 6= 1 for e < d. (If F does not contain such an element, we work with a small extension field

14-2

K. See exercise 1.). Define the polynomials,

gj,α(x) = f(x, xα mod p, . . . , axα
j−1 mod p, . . . , xα

n−1 mod p) =
m∑
i=1

cia
dijxei(α),

We can interpolate gj,α(x) in a way similar to gα(x). The degree of xj in the monomial of f that is indexed
by ei(α) is dij . We pick the coefficients of xei(α) from gj,α(x) and gα(x) and divide them to obtain adij .
Since we know a and adij , and the order of a is greater than d, we can find dij (by brute force search) using
O(d) operations over F (or, the extension field K).

We need to address one final issue: How do we know that α is a good choice of t? We try out k =
(
m
2

)
·n

distinct values of t from Fp (say, α1, . . . , αk) and construct the polynomial gα`
(x) for every choice t = α`

(1 ≤ ` ≤ k). The one gα(x) having maximum number of non-zero monomials clearly points out a ‘good
choice’ of t.

The above discussion suggests the following algorithm. Here, p is a prime greater than max{d,
(
m
2

)
· n},

and a ∈ F has order greater than d.

Algorithm 1 Sparse polynomial interpolation
1. Pick k =

(
m
2

)
· n distinct elements, α1, . . . , αk from Fp.

2. For each α`, interpolate the polynomial gα`
(x) = f(x, xα` mod p, xα`

2 mod p, . . . , xα`
n−1 mod p).

3. Among gα`
(x) (1 ≤ ` ≤ k), pick gα(x) =

∑m
i=1 cix

ei(α) having maximum number of monomials.

4. For every j ∈ [n], interpolate gj,α(x) = f(x, xα mod p, . . . , axα
j−1 mod p, . . . , xα

n−1 mod p).
Clearly, gj,α(x) =

∑m
i=1 cia

dijxei(α).
6. For every j ∈ [n], i ∈ [m], divide the coeff(xei(α)) in gj,α and gα to obtain adij.

7. Compute dij from adij and a by brute force. Return f =
∑m
i=1 ci

∏n
j=1 x

dij

j

Time complexity - It is clear from the above discussion that the algorithm runs in time polynomial in
m,n and d. We leave the analysis of the exact time complexity as an exercise.

Exercises:
1. Show that if |F| > d2 then F contains an element whose order is greater than d.
2. Work out the precise time complexity of Algorithm 1.

References

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate poly-
nomials. In STOC, pages 216–223, 2001.

14-3

