
Computational Number Theory and Algebra June 11, 2012

Lecture 15
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

Hermann Minkowski introduced the theory of geometry of numbers [Min10], which studies certain math-
ematical objects known as lattices. In the next few lectures, we will show how these objects are elegantly
used to design a deterministic polynomial time algorithm for factoring polynomials over rationals. (Recall
that there is no known deterministic polynomial time factoring algorithm for polynomials over finite fields.)
As another application of lattices, we will discuss the low exponent attack on the RSA cryptosystems. The
topics of discussion for today’s class are:

• Short vectors in lattices.

• The LLL basis reduction algorithm.

1 Short vectors in lattices

A lattice L ⊆ Rm is generated by integer linear combinations of vectors in Rm, where R is the set of real
numbers. Formally,

Definition 1 (Lattice) Let v1, . . . , vn be linearly independent vectors of Rm. A lattice L, generated by
v1, . . . , vn, is defined as L = {

∑n
i=1 aivi | a1, . . . , an ∈ Z}.

The set {v1, . . . , vn} is a basis of the lattice L and n is the dimension of the lattice. Note that dimension
of a lattice is well-defined as two different bases must contain the same number of elements. Let V be the
n ×m matrix with vi as the ith row. When m = n, volume of L is given by vol(L) = |det(V)|, which is
independent of the choice of the basis vectors. This can be argued as follows: Let {u1, . . . , un} be some other
basis of L. Denote by U the n×m matrix with ui as the ith row. Then there are two n×n integer matrices
A and B such that V = A · U and U = B · V , implying that A is an invertible integer matrix. Therefore,
det(A) = ±1 and if m = n then |det(V)| = |det(U)|.

We denote the 2-norm of a vector v by ‖v‖. The following theorem gives an upper bound on the length
of a shortest vector of a lattice (when m = n) with respect to the 2-norm.

Theorem 2 (Minkowski, 1896) The length of a shortest vector of a lattice L ⊆ Rn of dimension n, is at
most

√
n · vol(L)

1
n .

Proof (Sketch) Let λ be the length of any shortest vector of L. Consider the parallelepiped defined by the
vectors v1, . . . , vn. The volume of this parallelepiped is det(V) = vol(L). Place spheres of radii λ

2 centered
at the corners of this parallelepiped. Each sphere intersects with a part of this parallelepiped. The sum of
the volumes of these intersecting spaces for all the spheres must equal the volume of a single sphere in Rn
of radius λ

2 . Since the spheres do not intersect among themselves, this volume must be less than the volume
of the parallelepiped. Volume of a sphere in Rn of radius r is πn/2rn

Γ(n/2+1) , where Γ is the Gamma function.

Therefore, πn/2(λ/2)n

Γ(n/2+1) ≤ vol(L). Simplifying using Stirling’s theorem, λ ≤
√
n · vol(L)

1
n .

The task of computing a short vector in a given lattice is a key step in many algorithms. However, it
is known that finding a vector of length very close to the shortest vector length is a computationally hard
problem.

A brief history of short vector computation - In a series of important developments, Ajtai [Ajt98]
showed that it is NP-hard to compute a shortest vector in a lattice. (In fact, Ajtai showed that the problem

15-1

is as hard on the average as in the worst case.) Following this, Micciancio [Mic00] showed that finding a
vector within

√
2 factor of the shortest vector length is also NP-hard. Haviv and Regev [HR07], building

on an earlier work by Khot [Kho05], showed that under a reasonable complexity theory assumption (NP 6⊆
RTIME(2poly(logn))) there is no polynomial time algorithm that can find a vector to within 2(logn)1−ε factor
of the shortest vector length, for any arbitrarily small ε > 0.

Nevertheless, it is also known that approximating the shortest vector to within a polynomial factor is
probably not a NP-hard problem. Goldreich and Goldwasser [GG98] showed that obtaining a

√
n

logn fac-

tor approximation is in the complexity class AM[2] and hence unlikely to be NP-hard. Furthermore, it
was shown by Aharonov and Regev [AR04] that finding a

√
n factor approximate vector is in the class NP

∩ coNP. For a survey on the theory of lattices, refer to the article by Hendrik W. Lenstra Jr. [Jr.08] in [BS08].

Exponential factor approximation of short vectors - Fortunately, for many algorithms finding a short
vector even within an exponential factor of the shortest vector length is useful enough. In a major break-
through, Lenstra, Lenstra and Lovász [LJL82] gave a polynomial time algorithm (LLL algorithm, for short)
to find a vector of length no more than 2

n−1
2 times the length of a shortest vector. All the hardness results,

mentioned above, followed after this work in an attempt to bridge the gap between the approximation factors
for which either an efficient algorithm or a hardness result is known.

In order to understand the LLL algorithm, let us briefly refresh the Gram-Schmidt orthogonalization
process.

2 Gram-Schmidt orthogonalization

Let v1, . . . , vn be linearly independent vectors in Rm and V be the space spanned by them. Gram-Schmidt
orthogonalization is a technique to find orthogonal vectors v∗1 , . . . , v

∗
n such that the space spanned by them

is V. We denote the dot product of two vectors u and w by u.w and ‖u‖ =
√
u.u is the 2-norm of u. The

construction of the orthogonal vectors proceeds as follows,

v∗1 = v1 and

v∗i = vi −
∑
j<i

µijv
∗
j for 2 ≤ i ≤ n where, µij =

vi.v∗j
v∗j .v∗j for 1 ≤ j < i.

Define the projection matrix as M = (µij)1≤i,j≤n where µii = 1 for all i, µij = 0 for j > i and µij = vi.v∗j
v∗j.v∗j

for j < i. Let V be the n ×m matrix with v1, . . . , vn as the rows and V ∗ be the matrix with v∗1 , . . . , v
∗
n as

the rows. The following facts are easy to verify and are left as exercise.

Lemma 3 1. The vectors v∗1 , . . . , v
∗
n are mutually orthogonal and the space spanned by them is V.

2. v∗i is the projection of vi on the orthogonal complement of Vi−1, the space spanned by v1, . . . , vi−1 which
is also the space spanned by v∗1 , . . . , v

∗
i−1. Hence ‖v∗i ‖ ≤ ‖vi‖ for all i.

3. V = M · V ∗.

4. det(M) = 1 and so if m = n then det(V) = det(V ∗).

3 Reduced basis

The main idea behind the LLL algorithm is to compute a reduced basis, from a given basis of the lattice,
by closely following the Gram-Schmidt orthogonal basis computation. This reduced basis is guaranteed to
contain a ‘short’ vector. The following lemma explains why Gram-Schmidt orthogonalization (GSO) plays a

15-2

role in short vector computation. Given a basis {v1, . . . , vn} of L, let {v∗1 , . . . , v∗n} be the orthogonal basis
computed by the GSO. Then,

Lemma 4 For any non-zero v ∈ L, ‖v‖ ≥ min{‖v∗1‖, . . . , ‖v∗n‖}.
Proof Let v =

∑n
i=1 aivi, where each ai ∈ Z, and k be the largest index for which ak 6= 0. The GSO

computes each v∗i as v∗i = vi −
∑
j<i µijv

∗
j , where µij ∈ R. Therefore, v = akv

∗
k +

∑
j<k µ

′
jv
∗
j , for some

µ′j ∈ R. Now, ‖v‖2 = a2
k‖v∗k‖2 +

∑
j<k µ

′
j
2‖v∗j ‖2 ≥ ‖v∗k‖2, since ak is an integer. Hence, ‖v‖ ≥ ‖v∗k‖ ≥

min{‖v∗1‖, . . . , ‖v∗n‖}.

Thus, if the vectors v∗1 , . . . , v
∗
n belong to the lattice L then a v∗i with the minimum norm is a shortest vector

of L. But, the basis vectors computed by the GSO need not always belong to the lattice. This gives rise to
the notion of a reduced basis.

Definition 5 (Reduced basis) A basis {u1, . . . , un} of L is called a reduced basis, if the orthogonal basis
vectors {u∗1, . . . , u∗n}, computed by the GSO, satisfy the property ‖u∗i ‖2 ≤ 2‖u∗i+1‖2 for all 1 ≤ i < n.

Suppose we succeed in efficiently computing a reduced basis {u1, . . . , un} from a given basis of the lattice
L. From Lemma 4, any vector u ∈ L satisfies ‖u‖ ≥ min{‖u∗1‖, . . . , ‖u∗n‖}, and by the above definition any
‖u∗i ‖ ≥ 2−

n−1
2 ‖u∗1‖. Therefore, ‖u‖ ≥ 2−

n−1
2 ‖u1‖, as ‖u∗1‖ = ‖u1‖. This means, the length of the vector u1

is at most 2
n−1

2 times the length of a shortest vector in L.

4 The LLL basis reduction algorithm

The LLL algorithm computes a reduced basis {u1, . . . , un} from a given basis {v1, . . . , vn}, where vi ∈ Zm
and ‖vi‖ ≤ A ∈ Z+ for every i, in time polynomial in m and logA. This implies the following theorem.

Theorem 6 (Lenstra-Lenstra-Lovász, 1982) Given n vectors v1, . . . , vn ∈ Zm that are linearly independent
over Q and ‖vi‖ ≤ A ∈ Z+ for every i, a vector v ∈ L =

∑n
i=1 Zvi can be computed in time poly(m, logA)

such that ‖v‖ is at most 2
n−1

2 times the length of a shortest vector in the lattice L.

Remark - The condition that v1, . . . , vn are linearly independent is a bit superfluous because one can easily
compute a set of linearly independent vectors v′1, . . . , v

′
n′ ∈ Zm from v1, . . . , vn such that L =

∑
i≤n Zvi =∑

j≤n′ Zv′j . See exercise 1.

Notations - Before we describe the LLL algorithm, let us fix a few notations and conventions. Let V be an
n×m matrix with rows {v1, . . . , vn} and U the matrix with rows {u1, . . . , un}. V ∗ and U∗ are n×m matrices
with v∗i and u∗i as the ith rows, respectively, where {v∗1 , . . . , v∗n} is the orthogonal basis computed by GSO from
{v1, . . . , vn}, and similarly {u∗1, . . . , u∗n} is the orthogonal basis computed by GSO from {u1, . . . , un}. As de-
fined in section 2, the projection matrix M , in a GSO computation from U to U∗, is given by M = (µij)1≤i,j≤n

where µii = 1 for all i, µij = 0 if j > i, and ui = u∗i +
∑
j<i µiju

∗
j with µij = ui.u∗j

‖u∗j ‖2
for j < i. Surely,

U = M ·U∗. For brevity, we say ‘GSO of U ’ to refer to the matrices M and U∗. The notation dµijc is used to
mean the integer closest to µij . The space generated by the vectors u1, . . . , uk over rationals is denoted by Uk.

High-level idea - The LLL algorithm is presented in the next page. The high level idea is the following:
Given a basis V , compute a basis of L that is ‘close’ to the orthogonal basis of V , and which also has the
property of a reduced basis. By computing a basis that is close to the orthogonal basis, we hope to find a
short vector in the computed basis (by Lemma 4) - the notion of reduced basis actually helps in proving
this. (You may find more details on the algorithm and its analysis in chapter 16 of [GG03].)

Correctness and time complexity - Because of the check, ‖u∗i−1‖2 > 2‖u∗i ‖2, in step 5 of the algorithm,
it is easy to see that the algorithm outputs a reduced basis whenever (and if) it halts. However, it is not
clear as such, whether the algorithm halts in polynomial time. The following lemma proves this.

15-3

Algorithm 1 LLL basis reduction
1. Initialize U = V and compute GSO of U. Set i = 2.
2. while i ≤ n do
3. for j = i− 1 to 1 do
4. Set ui = ui − dµijcuj and update GSO of U.
5. if i > 1 and ‖u∗i−1‖2 > 2‖u∗i ‖2 then
6. Swap ui and ui−1 and update GSO of U. Set i = i− 1.
7. else, set i = i+ 1.
8. Return U.

Lemma 7 The LLL algorithm halts and finds a reduced basis in polynomial time.

Proof We need to show that the outer while-loop of the algorithm executes only polynomially many
times. Moreover, we also need to show that the size of the numerator and denominator of any rational
number involved in the computation is polynomially bounded.

The matrix U and its GSO are updated in step 4 and step 6. Right before an update, let U be the matrix
with GSO data M and U∗. After an update, suppose U , M and U∗ get altered to Ũ , M̃ and Ũ∗ respectively,
with the corresponding entries as ũk, µ̃k` and ũ∗k for 1 ≤ k, ` ≤ n. Ũk be the space generated by ũ1, . . . , ũk.

First, let us focus on step 4. Indices i and j are fixed as in step 4. Let N be the n× n matrix with ones
on the diagonal and −dµijc as the (i, j)th entry. The remaining entries of N are zeroes. Then, Ũ = N · U .
Notice that, Ũk = Uk for all k. Since ũ∗k+1 is the projection of ũk+1 on the orthogonal complement of
Ũk, we can infer that Ũ∗ = U∗. It is also not hard to verify that M̃ = N ·M . Since µ̃ij = µij − dµijc,
|µ̃ij | ≤ 1

2 . Also, µ̃i` = µi` for any ` > j. Therefore, by induction on j, |µ̃i`| ≤ 1
2 for all j ≤ ` < i

and |µ̃k`| ≤ 1
2 for all 1 ≤ ` < k < i. To summarize, after an update in step 4, the (k.`)th entry of the pro-

jection matrix has absolute value at most 1
2 for all 1 ≤ ` < k ≤ i, and the orthogonal basis remains unaltered.

Let us see what happens after an update in step 6. Index i is as in step 6. This time Ũ is simply
a permutation matrix times U . The permutation matrix has the effect of swapping the (i − 1)th and the
ith rows of U . Since Ũk = Uk for all k 6= i − 1, hence ũ∗k = u∗k for all k 6∈ {i − 1, i}. Now notice that
ũ∗i−1 = u∗i + µii−1u

∗
i−1, implying ‖ũ∗i−1‖2 ≤ ‖u∗i ‖2 + |µii−1|2 · ‖u∗i−1‖2. In step 6, ‖u∗i ‖2 < 1

2‖u
∗
i−1‖2 and

µii−1 ≤ 1
2 , as argued in the previous paragraph. Therefore, ‖ũ∗i−1‖2 < 3

4‖u
∗
i−1‖2. Also, since ũ∗i is the

projection of ui−1 on the orthogonal complement of Ũi−1 ⊇ Ui−2, it is also the projection of u∗i−1 on the
orthogonal complement of Ũi−1, implying that ‖ũ∗i ‖ ≤ ‖u∗i−1‖. To summarize, after an update in step 6,
ũ∗k = u∗k for all k 6∈ {i− 1, i}, ‖ũ∗i−1‖2 < 3

4‖u
∗
i−1‖2 and ‖ũ∗i ‖ ≤ ‖u∗i−1‖, i.e. maxk{‖ũ∗k‖} ≤ maxk{‖u∗k‖}.

Let Uk be a k ×m matrix with rows u1, . . . , uk. Define dk = det(Uk · UTk) ∈ Z+. Surely, Uk = Mk · U∗k ,
where Mk is the Gram-Schmidt projection matrix and U∗k is the orthogonal basis matrix with u∗1, . . . , u

∗
k as

the rows. Since det(Mk) = 1 and u∗1, . . . , u
∗
k are mutually orthogonal, dk =

∏k
`=1 ‖u∗`‖2. Thus, in step 4, dk

remains unchanged for every k. In step 6, dk remains unchanged for every k 6= i− 1 and di−1 reduces by a
factor of at least 3

4 . The reason dk remains the same for k 6= i − 1 is because in step 6, Ui only changes to
P ·Ui for some permutation matrix P . Define D =

∏n
k=1 dk. Therefore, D remains unchanged in step 4 but

decreases by a factor of at least 3
4 each time step 6 is executed. At the start of the algorithm the value of D is

at most
∏n
k=1A

2k ≤ An2
(as ‖v∗i ‖ ≤ ‖vi‖ ≤ A, for all i). Hence, step 6 can be executed at most O(n2 logA)

times. This proves that the algorithm halts after polynomially many executions of the while-loop as the
index i can decrease for at most O(n2 logA) times. (to be continued in the next class...)

Exercises:
1. Suppose v1, . . . , vn are vectors in Zm such that ‖vi‖ ≤ A ∈ Z+ for all 1 ≤ i ≤ n. Design an algorithm

15-4

that finds linearly independent vectors v′1, . . . , v
′
n′ ∈ Zm in time polynomial in m and logA, such that

L =
∑n
i=1 Zvi =

∑n′

i=1 Zv′i.
2. Fill in the missing details in the proof of Lemma 7.

References

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized Reductions (Extended
Abstract). In STOC, pages 10–19, 1998.

[AR04] Dorit Aharonov and Oded Regev. Lattice Problems in NP ∩ coNP. In FOCS, pages 362–371, 2004.

[BS08] Joseph P. Buhler and Peter Stevenhagen, editors. Algorithmic Number Theory: Lattices, Number
Fields, Curves and Cryptography, volume 44 of Mathematical Sciences Research Institute Publica-
tions. Cambridge University Press, 2008.

[GG98] Oded Goldreich and Shafi Goldwasser. On the Limits of Non-Approximability of Lattice Problems.
In STOC, pages 1–9, 1998.

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2003.

[HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In STOC, pages 469–477, 2007.

[Jr.08] Hendrik W. Lenstra Jr. Lattices. Algorithmic Number Theory: Lattices, Number Fields, Curves
and Cryptography, MSRI Publications, 44:127–181, 2008.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005.

[LJL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[Mic00] Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within some
constant. SIAM Journal on Computing, 30(6):2008–2035, 2000.

[Min10] Hermann Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig, 1910.

15-5

