
Computational Number Theory and Algebra June 13, 2012

Lecture 16
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In today’s class, we will complete the analysis of the LLL basis reduction algorithm, and then move on
to show how short vector computation is used to factor polynomials over rationals. The topics of discussion
for today’s class are:

• Analysis of the LLL basis reduction algorithm (continued from previous class), and

• Factoring polynomials over rationals.

1 The LLL basis reduction algorithm (contd.)

We will continue to use the notations introduced in the previous class.

Algorithm 1 LLL basis reduction
1. Initialize U = V and compute GSO of U. Set i = 2.
2. while i ≤ n do
3. for j = i− 1 to 1 do
4. Set ui = ui − dµijcuj and update GSO of U.
5. if i > 1 and ‖u∗i−1‖2 > 2‖u∗i ‖2 then
6. Swap ui and ui−1 and update GSO of U. Set i = i− 1.
7. else, set i = i+ 1.
8. Return U.

Lemma 1 The LLL algorithm halts and finds a reduced basis in polynomial time.

Proof (Continued from the previous class) We have already shown in the previous class that the algo-
rithm halts after polynomially many executions of the while-loop as the index i can decrease for at most
O(n2 logA) times in step 6. In order to complete the proof, we also need to show that the size of the
numerator and denominator of any rational number involved in the computation is polynomially bounded.

We recall the following facts from the previous class. Indices i and j are fixed as in step 4. After an update
in step 4, the (k, `)th entry of the projection matrix M has absolute value at most 1

2 for all 1 ≤ ` < k < i and
for all j ≤ ` < k = i. Further, the orthogonal basis of U (i.e. U∗) remains unaltered. After an update in step
6, ũ∗k = u∗k for all k 6∈ {i − 1, i}, ‖ũ∗i−1‖2 < 3

4‖u
∗
i−1‖2 and ‖ũ∗i ‖ ≤ ‖u∗i−1‖, i.e. maxk{‖ũ∗k‖} ≤ maxk{‖u∗k‖}.

Also, recall the definition of dk = det(Uk · UT
k) ∈ Z+, where Uk be a k ×m matrix with rows u1, . . . , uk. It

follows that dk =
∏k

`=1 ‖u∗`‖2.

We are now left with the task of showing that all the rational numbers in U , U∗ and M have small
numerators and denominators at any stage of the algorithm. We begin with the row vectors in U . Since,
every uk ∈ Zm, it is sufficient to bound the value of ‖uk‖. To start with, ‖uk‖ ≤ A for every k. Since
‖u∗k‖ ≤ ‖uk‖ and maxk{‖u∗k‖} never increases after an update in step 4 or step 6, hence ‖u∗k‖ ≤ A for every
k at all times of the algorithm.

First, we claim that ‖uk‖ ≤
√
n · A for every k at all times of the algorithm, except in step 4 when

k = i. Since, step 6 does only a swap between ui−1 and ui, we only need to show that the claim holds
for ‖ui‖ at the end of the for-loop, just before step 5. As ui = u∗i +

∑
j<i µiju

∗
j , ‖ui‖2 ≤ nm2

iA
2 where

16-1

mi = max1≤j≤i{|µij |}. Notice that, at the end of the for-loop |µij | ≤ 1
2 for every j < i. Hence, by taking

into account that µii = 1, we have ‖ui‖ ≤
√
nA.

Let us see how ‖ui‖ changes within the for-loop. For this, we first need the following bound on the value
of µk` for any ` < k.

|µk`| =
|uk.u∗` |
‖u∗`‖2

≤ ‖uk‖ · ‖u∗`‖
‖u∗`‖2

=
‖uk‖
‖u∗`‖

≤
√
d`−1 · ‖uk‖. (1)

The last inequality holds because ‖u∗`‖2 = d`

d`−1
≥ 1

d`−1
as d` ∈ Z+. Now notice that, after an update in step

4, µi` changes to µi` − dµijcµj` for every ` ≤ j. Since |µj`| ≤ 1
2 for ` < j,

|µi` − dµijcµj`| ≤ |µi`|+ |dµijc| · |µj`| ≤ mi + (mi +
1
2

) · 1
2
≤ 2mi.

The last inequality holds because mi ≥ 1. Also, for ` = j, µi` − dµijcµj` ≤ 1
2 . Therefore, the value of mi

is at most doubled after an update in step 4. We have already shown that, at the start of the for-loop,
‖uk‖ ≤

√
nA for every k. Hence, from equation (1), mi ≤

√
nAn−1 at the start of the for-loop. Together

with the facts that mi can doubled for n times and ‖ui‖ ≤
√
nmiA, we get ‖ui‖ ≤ n · (2A)n. This shows

that the size of any entry in uk is at most O(n logA) bits at any time of the algorithm.

We now need to bound the numerator and denominator of µk` and the rational entries in u∗k. We
claim that, dk−1u

∗
k ∈ Zm for every k. This can be argued as follows. It is easy to see that, every u∗k

can be expressed as u∗k = uk −
∑

`<k λk`u` for some λk` ∈ Q. Since uj .u∗k = 0 for any j < k, we
get

∑
`<k λk`(uj .u`) = (uj .uk) for every 1 ≤ j < k. This gives a system of k − 1 linear equations in

the λk`, 1 ≤ ` < k. The determinant of the coefficient matrix (uj .u`)1≤j,`≤k is exactly dk−1. Hence,
by Cramer’s rule, dk−1λk` ∈ Z. Therefore, dk−1u

∗
k = dk−1uk −

∑
`<k dk−1λk`u` ∈ Zm. This means,

the denominator of every entry in u∗k is at most dk−1 ≤ A2n and the numerator is surely bounded by
dk−1‖u∗k‖ ≤ A2(n−1) ·A ≤ A2n.

Our last claim is that, d` · µk` ∈ Z. This is because, d`µk` = d` · uk.u∗`
‖u∗`‖2

= uk.(d`−1u
∗
`). We have already

shown that d`−1u
∗
` ∈ Zm and so d`µk` ∈ Z. Therefore, the denominator of µk` can be at most d` ≤ A2n and

the numerator is bounded by d`|µk`|. From equation (1),

d` · |µk`| ≤ d` ·
√
d`−1 · ‖uk‖ ≤ A2(n−1) ·An−2 · n(2A)n ≤ n · (2A4)n.

Thus, the size of the numerator and denominator of any rational number involved in the computation is at
most O(n logA) bits. This completes our proof.

The main result of this section is summarized in the following theorem.

Theorem 2 (Lenstra-Lenstra-Lovász, 1982) Given n vectors v1, . . . , vn ∈ Zm that are linearly independent
over Q and ‖vi‖ ≤ A ∈ Z+ for every i, a vector v ∈ Zm can be computed in time poly(m, logA) such that
‖v‖ is at most 2

n−1
2 times the length of a shortest vector in the lattice L =

∑n
i=1 Zvi.

We will now see an application of this theorem in factoring polynomials over rationals.

2 Factoring polynomials over rationals

Much of this polynomial factoring algorithm, due to Lenstra, Lenstra and Lovász [LJL82], resembles the
bivariate factoring algorithm discussed in lectures 12 and 13, but they differ at one crucial step. This will
be clear from the following discussion.

Given a polynomial f ∈ Q[x], we can multiply f with the lcm of the denominators of its coefficients to
get a polynomial in Z[x]. So, without loss of generality assume that f ∈ Z[x]. Before we get down to the

16-2

details of factoring f , we need to address one basic question. How large can a coefficient of a factor of f be?
If a factor of f has very large coefficients, it might not be possible to even output the factor in polynomial
time. Fortunately, this is not the case.

With every polynomial f =
∑n

i=1 cnx
i ∈ Z[x] associate a coefficient vector vf = (cn, . . . , c0) ∈ Zn+1.

Norm of f , denoted by ‖f‖, is defined as ‖f‖ = ‖vf‖. Let ‖f‖ ≤ A ∈ Z+ and α be a root of f in C. Since,
f(α) = 0, |cnαn| = |

∑n−1
i=0 ciα

i| ≤
∑n−1

i=0 |ci||α|i. If |α| > 1 then |cnαn| ≤ nA|α|n−1, implying that |α| ≤ nA.
Any factor f1 ∈ Z[x] of f is a product of at most n−1 linear factors over C and an integer with absolute value
at most |cn| ≤ A. Therefore, absolute value of any coefficient of f1 is bounded by A·

(
n

n/2

)
·(nA)n−1 ≤ (2nA)n

and hence ‖f1‖ ≤
√
n(2nA)n. Although, this bound is sufficient for our purpose, a sharper bound on ‖f1‖

is provided by Mignotte [Mig74] (also known as the Landau-Mignotte bound).

Lemma 3 (Landau-Mignotte bound) If f1 ∈ Z[x] is a proper factor of a polynomial f ∈ Z[x] of degree n,
then ‖f1‖ ≤ 2n−1‖f‖.

Therefore, ‖f1‖ ≤ 2n−1A and size of any coefficient of f1 is at most O(n+logA) bits. We refer to this bound
on ‖f1‖ as B.

For simplicity, assume that f is monic and squarefree. Since the absolute value of any entry in the
Sylvester matrix S(f, df

dx) is at most nA, by Hadamard’s inequality |Resx(f, df
dx)| ≤ (2n)n(nA)2n = (2n3A2)n.

Searching the first O(n log(nA)) primes we can find a prime p such that f mod p is monic and squarefree.
Suppose f = gh mod p, where g is monic and irreducible in Fp[x]. We can lift this factorization using Hensel
lifting for ` steps to obtain f = g′h′ mod p2`

, where g′ = g mod p and h′ = h mod p. Arguing along the
same line as in the bivariate factoring case, we can show that there is an irreducible factor f1 ∈ Z[x] of f
such that g′ divides f1 modulo p2`

. In bivariate factoring we could find f1 by solving a system of linear
equations over the underlying field. But this approach does not apply here straightaway.

Suppose f ′1 ∈ Z[x]\{0} with deg(f ′1) < n and ‖f ′1‖ = C ∈ Z, such that f ′1 = g′h′′1 mod p2`

for some
h′′1 ∈ Z[x]. As argued in the proof of the Hadamard inequality (see Lecture 3), the absolute value of
the determinant of an integer matrix with row vectors r1, . . . , rk is bounded by

∏k
i=1 ‖ri‖. Therefore,

|Resx(f, f ′1)| ≤ An−1Cn. Surely, there exists s and t in Z[x] such that sf + tf ′1 = Resx(f, f ′1). Since f and
f ′1 share a common factor g′ modulo p2`

, if |Resx(f, f ′1)| < p2`

then gcd(f, f ′1) is nontrivial. Therefore, all
we want is p2`

> An−1Cn. This means, ‖f ′1‖ = C has to be small in order to ensure that ` is small. This is
the reason why just solving a f ′1 with f ′1 = g′h′′1 mod p2`

does not help. We also need to ensure that ‖f ′1‖ is
small. Putting the conditions together, we want a nonzero f ′1 ∈ Z[x] of degree less than n, such that ‖f ′1‖ is
‘small’ and f ′1 = g′h′′1 mod p2`

for some h′′1 ∈ Z[x]. It is this step which is solved by finding a short vector in
a lattice.

Let deg(g′) = k < n. Consider the polynomials xn−k−1g′, xn−k−2g′, . . . , xg′, g′ and the polynomials
p2`

xk−1, p2`

xk−2, . . . , p2`

. Let v1, . . . , vn ∈ Zn be the n coefficient vectors corresponding to these n polyno-
mials. It is not hard to see that the coefficient vector vf ′1

of any solution f ′1, satisfying f ′1 = g′h′′1 mod p2`

for some h′′1 ∈ Z[x], belongs to the lattice L =
∑n

i=1 Zvi. Also, the vectors v1, . . . , vn are linearly indepen-
dent. Since f1 is a solution for f ′1, vf1 ∈ L and hence the length of the shortest vector in L is at most
‖vf1‖ = ‖f1‖ ≤ B = 2n−1A. Applying Theorem 2, we can find a short vector v such that ‖v‖ ≤ 2

3(n−1)
2 ·A.

Let f ′1 be the polynomial corresponding to the coefficient vector v. Surely, f ′1 = g′h′′1 mod p2`

for some
h′′1 ∈ Z[x], deg(f ′1) < n and ‖f ′1‖ = ‖v‖ = C ≤ 2

3(n−1)
2 ·A. Since, |Resx(f, f ′1)| ≤ An−1Cn ≤ 2

3n(n−1)
2 ·A2n−1,

we only need to choose an ` such that p2`

> 2
3n(n−1)

2 · A2n−1. Therefore, all the integers involved in Hensel
lifting have size at most O(n2 + n logA) bits, implying that the lifting takes only polynomial time.

The following algorithm summarizes the above discussion. It assumes that f ∈ Z[x] is a monic, squarefree
polynomial of degree n, and ‖f‖ ≤ A.

16-3

Algorithm 2 Polynomial factoring over rationals
1. Find a prime p such that f mod p is squarefree.

2. Let D = 2
3(n−1)

2 ·A and E = 2
3n(n−1)

2 ·A2n−1.
3. Factor f = gh mod p where g is monic and irreducible in Fp[x].
4. Let deg(g) = k. If k = n, declare ‘f is irreducible’.

5. Use Hensel lifting to compute f = g′h′ mod p2`

such that E2 ≥ p2`

> E.
6. Let v1, . . . , vn be the coefficient vectors in Zn corresponding to the

polynomials xn−k−1g′, xn−k−2g′, . . . , xg′, g′ and p2`

xk−1, p2`

xk−2, . . . , p2`

.
7. Use LLL algorithm to find a short vector v in the lattice L =

∑n
i=1 Zvi.

8. If ‖v‖ > D declare ‘f is irreducible’.
9. Else let f ′1 be the polynomial with coefficient vector v.
10. Return gcd(f, f ′1).

Correctness and time complexity - Correctness of the algorithm follows immediately from the prior dis-
cussion. In step 1, the value of prime p is O(n log(nA)) and so using Algorithm 1 and 2 from Lecture 8, we can
factor f over Fp (in step 3) in polynomial time. Since p2` ≤ E2, Hensel lifting in step 5 also takes polynomial
time. Norm of g′, ‖g′‖ ≤

√
nE2. So the LLL algorithm in step 7 takes time poly(n, logE) = poly(n, logA).

Lastly, in step 10, gcd of two integer polynomials can be computed in polynomial time (using Chinese Re-
maindering). Therefore, the algorithm has an overall polynomial running time.

Exercises:
1. How can we remove the assumption, f ∈ Z[x] is monic and sqaure-free, from Algorithm 2? (Refer to
Chapter 15 & 16 in von zur Gathen-Gerhard’s book.)

References

[LJL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[Mig74] Maurice Mignotte. An Inequality About Factors of Polynomials. Mathematics of Computation,
28(128):1153–1157, 1974.

16-4

