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In today’s class, we will see an interesting application of the LLL algorithm in breaking the RSA cryp-
tosystem. The method, due to Coppersmith [Cop97], shows the vulnerability of the RSA when the exponent
of the public key is small and a significant fraction of the message is already known to all as a header. The
key step is the use of lattice basis reduction in finding a root of a modular equation, when the root is much
smaller than the modulus in absolute value. Today, we will discuss the following topics:

• Breaking Low Exponent RSA,

• Brief account of the complexity of existing integer factoring and discrete logarithm algorithms, and

• Pollard-Strassen integer factoring algorithm.

1 Breaking Low Exponent RSA

Following the notations introduced in Lecture 1, let m be the message string and (n, e) be the public key,
where e is the exponent and n is the modulus. The encrypted message is c = me mod n. Suppose that the
first ` bits of the message m is a secret string x, and the remaining bits of m form a header b that is known
to all. In other words, m = b · 2` + x, where b is known and x in unknown. Since, (b · 2` + x)e = c mod n,
we get an equation g(x) = xe +

∑e−1
i=0 aix

i = 0 mod n, where a0, . . . , ae−1 are known and are all less than n.
Decryption of c is equivalent to finding a root of g modulo n. We intend to solve this modular root finding
problem using lattice basis reduction.

The idea is to transform the modular root finding problem into a root finding problem over integers. The
latter problem can then be solved using the LLL algorithm. To achieve this, we are going to do something
very similar to what has been done in Algorithm 2 (in Lecture 16) for polynomial factorization. Solve for a
nonzero f ∈ Z[x] of degree less than k > e, such that f = gh mod n for some h ∈ Z[x] and ‖f‖ is ‘small’.
Treat k as a parameter. (We will see an example case where k = 2e.)

Consider the polynomials xk−e−1g, . . . , xg, g and nxe−1, . . . , n, and v1, . . . , vk be the coefficient vectors in
Zk associated with these k polynomials. Notice that, the vectors v1, . . . , vk are linearly independent and the
volume of the lattice L =

∑k
i=1 Zvi is vol(L) = ne. By Minkowski’s theorem (see Lecture 15), the length of

the shortest vector in L is at most
√

kn
e
k . It is easy to observe that the coefficient vector vf of any solution

f is in the lattice L. Using LLL algorithm, we can find a short vector v ∈ Zk in L, in time poly(k, log n),
such that ‖v‖ ≤ 2

k−1
2 ·
√

kn
e
k . Let f be the polynomial with v as its coefficient vector. Surely, f = gh mod n

and deg(f) < k.

We know that the secret string x has absolute value at most 2`. Let x = a < 2` be a root of g modulo
n. Therefore, a is also a root of f modulo n. The absolute value of f(a) is bounded by,

|f(a)| ≤ k · ‖v‖ · 2`(k−1) ≤ k · 2
k−1
2 ·
√

kn
e
k · 2`(k−1) = A (say).

Now, if it happens that A < n then f(a) = 0 over Z. This means, we can apply Algorithm 2 (in Lecture 16)
to factor f and thereby find the secret string x.

Let us fix some parameters to get a feel of how this argument works in practice. Let e = 3 and k = 6,
then all we need to find x is,

6
√

6 · 2 5
2 ·
√

n · 25` < n ⇒ ` <
1
10
· log n− 1

5
· log(48

√
3).
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Therefore, if roughly 9
10 -th of the message is known then the remaining secret 1

10 -th part of the message can
be recovered in polynomial time. Since the approach works in time polynomial in k and log n, it is efficient
only if k is small. This means, from the relation A < n, that e has to be small. This shows that a low
exponent e along with a small fraction of the secret part of the message make RSA vulnerable to lattice
based attacks.

2 Brief history of integer factoring and discrete logarithm

2.1 Integer factoring

Factoring an integer N is closely related to primality testing. However, this is a long standing open problem
and as yet no randomized polynomial time algorithm is known. The current best randomized algorithm,
due to Lenstra and Pomerance [JP92], has an expected running time of e(1+o(1))

√
ln N ln ln N bit operations.

This bound is an improvement on the complexity of Dixon’s algorithm [Dix81], which also has an expected
subexponential running time of the form eO(

√
ln N ln ln N). We will discuss Dixon’s algorithm in a later lecture.

The best deterministic factoring algorithm, known as Pollard-Strassen method, runs in Õ(N
1
4 ) time.

In practice, two important (heuristic) techniques are used to factor integers more efficiently than the
theoretical bounds mentioned above. They are the Quadratic Sieve [Pom84] and the Number Field Sieve
[LJMP90]. A heuristic analysis of the Quadratic Sieve (QS) yields a time bound of e(1+o(1))

√
ln N ln ln N

operations. We will have a discussion on QS in a later class. The Number Field Sieve (NFS) has a heuristic

time complexity of e(c+o(1))((ln N)
1
3 (ln ln N)

2
3 ) bit operations, for a constant c > 0. The best known value for c

is 1.902, due to Coppersmith [Cop93]. For an exposition to NFS and some other related factoring algorithms
refer to the survey by Lenstra [Len00] and the article by Stevenhagen [Ste08] in [BS08]. Although, the NFS
is asymptotically faster than the QS, it has been noticed that the latter performs better in practice for
numbers up to 100 digits (see [Pom96]).

2.2 Discrete logarithm

The discrete logarithm problem is the following - Given a finite group (G, ·) (in ‘some form’, say as a list
of generators) and two elements a and b in G find an x ∈ N such that ax = b, if such an x exists. We
have already seen an application of the conjectured hardness of this problem in the Diffie-Hellman protocol
(Lecture 1). Like the order finding problem, the hardness of computing discrete log depends on the choice
of the underlying group. For instance, if the underlying group is (Zn, +) then the value of x is precisely
ba−1 mod n, assuming gcd(a, n) = 1. On the other hand, a polynomial time algorithm for solving discrete
log over (Z×n , ·) for a composite n, yields a randomized polynomial time algorithm for factoring n (this is left
as an exercise).

In the cryptanalysis of the Diffie-Hellman protocol, we are interested in the hardness of the discrete log
problem for the group F×p . For certain choices of p, this problem turns out to be easy. Pohlig and Hellman
[PH78] showed that if all the factors of p−1 have values bounded by logc p for a constant c, then the problem
can be solved in polynomial time. Therefore, such choices of p should be avoided for the security of the
protocol.

The current best randomized algorithm for the discrete log problem over F×p is due to Pomerance [Pom87].
It has an expected running time of e(

√
2+o(1))

√
ln p ln ln p bit operations. The technique used in [Pom87] is

more generally known as the index calculus method and was used earlier by Adleman [Adl79] to obtain a
subexponential discrete log algorithm having similar complexity. In a later lecture, we will discuss the index
calculus method. Using an adaptation of the Number Field Sieve, Gordon [Gor93] proposed a heuristic

algorithm showing a running time of e(c+o(1))(ln p)
1
3 (ln ln p)

2
3 operations, where c > 0 is a constant. The best

known value of c is 1.92. So far the best deterministic algorithms have Õ(
√

p) complexity (see [Pol78]).
Despite the resemblance between the time complexity of integer factorization and discrete logarithm over
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F×p , so far no reduction is known from one problem to the other. In fact, it was asked by Bach [Bac84]
whether factoring p− 1 reduces to finding discrete logarithm in F×p .

There are certain groups for which computing discrete logarithm is even harder, in the sense that no
randomized subexponential time algorithm is known. Such an example is the group of points on an elliptic
curve. In this case the precise question is the following - Given an elliptic curve Ep,a,b = {(x, y) | x, y ∈
Fp and y2 = x3 + ax + b (mod p)} ∪ {0}, with gcd(p, 4a3 + 27b2) = 1 and two points P and Q on Ep,a,b,
find an n such that P = nQ. Here, nQ , Q + Q + . . . n times, where + is the operation that endows
Ep,a,b with a group structure. The hardness of this problem has also been exploited in designing public key
cryptosystems and digital signature schemes (refer to [Kob87]). For further details on discrete logarithm
refer to the surveys by Odlyzko [Odl00] and McCurley [McC90], or the articles by Pomerance [Pom08] and
Schirokauer [Sch08] in [BS08].

3 Pollard-Strassen integer factoring

Let N be a given composite number. Then there is a factor of N whose value is less than M = dN 1
2 e. Let

b = dM 1
2 e and consider the polynomial f(x) = (x + 1)(x + 2) . . . (x + b). It is clear that at least one of the

numbers ai = f(ib) mod N , for 1 ≤ i < b, shares a non-trivial gcd with N . Let this number be ak. This
implies that one of the numbers kb + 1, kb + 2, . . . , kb + b divides N , and therefore it yields a proper factor
of N . This is the idea behind Pollard-Strassen’s integer factoring algorithm.

Algorithm 1 Pollard-Strassen integer factoring

1. Let M = d
√

Ne and b = d
√

Me.
2. Compute f =

∏b
j=1 (x + j) mod N, recursively, using polynomial multiplication in ZN.

3. Use multipoint evaluations in ZN to compute ai = f(ib) mod N for all 0 ≤ i < b.
4. Let k = min{i| gcd(ai, N) 6= 1}. If no such k exists, declare ‘N is prime’.
5. Otherwise, go over kb + 1, . . . , kb + b and output the minimum kb + j that divides N.

Time and space complexity - It follows from the above discussion that the algorithm is correct. We leave
it as an exercise to show that the time complexity of the algorithm is Õ(N

1
4 ) bit operations, where the Õ

notation hides some poly(log N) factor. Since we are using multipoint evaluation in step 3, we need to store
the numbers {ai}1≤i<b, which makes the space complexity of the algorithm, Õ(N1/4) bits.

Remark - Both the time and space complexity of the above algorithm can be brought down to Õ(s(N)1/2),
where s(N) is the smallest prime factor of the composite number N . This is done by a slight modification
of Algorithm 1: Instead of setting b = d

√
Me, run the algorithm with b = 1, 2, 22, 23, . . . and so on. It

is an exercise to observe that the running time of this modified version of Algorithm 1 is Õ(s(N)1/2) bit
operations, while the space complexity is Õ(s(N)1/2) bits.

Exercises:
1. Show that a deterministic polynomial time algorithm for solving the discrete log problem over (Z×n , ·) for
a composite n, yields a randomized polynomial time algorithm for factoring n.
2. Show that the time and space complexity of (the modified version of) Algorithm 1 are indeed Õ(s(N)1/2),
where s(N) is the smallest prime factor of N .
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