
Computational Number Theory and Algebra June 20, 2012

Lecture 18
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the last class, we have discussed the Pollard-Strassen’s integer factoring algorithm that has a run-
ning time of Õ(s(N)1/2) bit operations, where s(N) is the smallest prime factor of the input (composite)
number N . This algorithm has a space complexity of Õ(s(N)1/2) bits. In today’s class, we will discuss a
heuristic, randomized algorithm - namely, Pollard’s rho method, whose ‘believed’ expected time complexity
is Õ(s(N)1/2) bit operations, and which uses only Õ(1) space! Although, a rigorous analysis of Pollard’s
rho method is still open, in practice it is observed that Pollard’s rho method is more efficient than Pollard-
Strassen factoring algorithm (partly because of the low memory usage of the former). Today, we will cover
the following topics:

• Pollard’s rho method, and

• Introduction to smooth numbers.

1 Pollard’s rho method

Let N be a number that is neither a prime nor a perfect power, and p the smallest prime factor of N . If
we pick numbers x0, x1, x2, . . . from ZN uniformly, independently at random then after at most p + 1 such
pickings we have (for the first time) two numbers xi, xs with i < s such that xi = xs mod p. Since N is
not a perfect power, there is another prime factor q > p of N . Since the numbers xi and xs are randomly
chosen from ZN , by the Chinese remaindering theorem, xi 6= xs mod q with probability 1− 1/q even under
the condition that xi = xs mod p. Therefore, gcd(xi − xs, N) is a nontrivial factor of N with probability
at least 1 − 1/q. We refer to the fact that xi = xs mod p for some i < s as a collision. What can we say
about the value of s, i.e. the length of the sequence x0, x1, x2, . . . till we encounter a collision? It is obvious
that we can upper bound this length by p+ 1. But, we can do better - it turns out that on expectation, this
length is only O(

√
p).

Since we are only bothered about collisions modulo p, we can assume for the moment that the numbers
x0, x1, x2, . . . are chosen randomly from Zp.

Lemma 1 (Birthday problem) Let x0, x1, x2, . . . be a sequence where xi is uniformly randomly (and inde-
pendently) chosen from {0, 1, . . . , p− 1}, and s be the smallest index such that xs = xi for some i < s. Then
the expected value of s is O(

√
p).

Proof Clearly, for any j ≥ 1, Pr [s ≥ j] =
∏j−1
i=0 (1− i/p) ≤

∏j−1
i=0 e

−i/p ≤ e−(j−1)2/2p. Therefore,
expectation of s, E[s] =

∑∞
j=0 Pr [s ≥ j] = 1 +

∑∞
j=1 Pr [s ≥ j]. Hence,

E[s] ≤ 1 +
∞∑
j=1

e−(j−1)2/2p ≤ 2 +
√

2p
∫ ∞

0

e−x
2
dx ≤ 2 +

√
2p
∫ ∞

0

e−xdx = 2 +
√

2p

Hence, E[s] = O(
√
p). (Exercise 1 shows how to get a slightly better bound.)

The above discussion immediately gives a randomized integer factoring algorithm: Choose x0, x1, x2, . . .
uniformly at random from ZN until we pick a xs such that gcd(xi − xs, N) yields a proper factor of N .
Lemma 1 implies that this algorithm has expected time complexity Õ(

√
p) bit operations (which is the same

as the Pollard-Strassen’s algorithm). But, if we store the numbers in the sequence x0, x1, x2, . . . until a
collision happens then the expected space complexity will also be Õ(

√
p) bits which is not an asymptotic

improvement on the Pollard-Strassen’s algorithm. Reduction in space usage is achieved using Floyd’s cycle
detection trick.

18-1

1.1 Floyd’s cycle detection trick

Suppose, we have a sequence x0, x1, x2, . . . such that xi = f(xi−1), where f is a function from {0, . . . , p− 1}
to itself. Let t be the minimum index for which xt = xt+`, where ` is also minimal (meaning, ` is the length
of the cycle on top of the ‘rho’ that is ‘sketched out’ by the sequence). Given x0, Floyd’s algorithm outputs
an index i such that xi = x2i and i ≤ t+ `.

Algorithm 1 Floyd’s cycle detection algorithm
Input: A number x0 ∈ {0, . . . , p− 1}.
Output: An index i such that xi = x2i, where xj = f(xj−1) for all j ≥ 1.
1. Set i = 1 and y0 = x0.
2. repeat
3. xi = f(xi−1) and yi = f(f(yi−1)),
4. if xi = yi, output i and stop.
5. else set i← i+ 1.

Lemma 2 The above algorithm outputs an i ≤ t+ `, where t and ` are as defined above.

Proof It is clear that at all stages of the algorithm, yi = x2i. Now let’s see what happens for i = t+ `− (t
mod `). Since, i ≥ t and `|(2i − i) = i, it must be the case that xi = x2i. Therefore, the output of the
algorithm is less than or equal to t+ `.

In other words, Floyd’s algorithm detects a cycle in at most t+ ` iterations by storing only two values of the
sequence in every iteration.

In the randomized factoring algorithm discussed earlier, the function f returns a value uniformly at
random from {0, . . . , p− 1} irrespective of the function argument. In Pollard’s rho algorithm, f is chosen to
be the ‘magic’ function f(x) = (x2 + 1) mod N , where x ∈ ZN . Apparently, this choice of f behaves like
a ‘random’ function for all practical purposes. As to why it behaves like a random function no one really
knows - indeed, a rigorous analysis of Pollard’s rho algorithm is an open problem.

Algorithm 2 Pollard’s rho method for integer factoring
1. Choose x0 uniformly at random from {0, . . . , N − 1}. Set i = 1 and y0 = x0.
2. repeat
3. xi = (x2

i−1 + 1) mod N and yi = (y2
i−1 + 1)2 + 1 mod N,

4. if m = gcd(xi − yi, N) is nontrivial, output m and stop.
5. else set i← i+ 1.

Theorem 3 Under the assumption that the sequence {xi|xi = x2
i−1 + 1 mod p}i≥1 behaves like a random

sequence, for a uniformly random value of x0 ∈ {0, . . . , p − 1}, Pollard’s rho method outputs the smallest
prime factor of N , namely p = s(N), in expected Õ(s(N)1/2) bit operations and using only Õ(1) bits of
space.

The proof of the theorem follows easily from the above discussion. We leave the details as an exercise.

2 Introduction to Smooth numbers

Smooth numbers are integers with small prime factors. So, by definition, they are easy to factor. Study on
the density of these numbers dates back to the work of Dickman [Dic30]. It is easy to see that most integers

18-2

have at least one small prime factor. For example, every second integer has 2 as its factor, every third has 3
as factor and so on. After we divide an integer by its small factors we are left with another integer with large
prime factors. Factoring an integer with large prime factors is potentially a difficult task. Quite intriguingly,
many such hard factoring instances can be reduced to factoring few smooth numbers. We will see the details
of such reductions, in subsequent lectures, in Dixon’s random squares algorithm and the Quadratic Sieve
algorithm.

Smooth numbers find important applications in other factoring algorithms, like the Number Field Sieve
[LJMP90] and Lenstra’s elliptic curve method [Jr.87]. As another application, we will discuss the index-
calculus method for computing discrete logarithms in a later lecture. Smooth numbers also play a crucial
role in proving many analytic number theoretic results. To cite an example, the result on infinitude of
Carmichael numbers [AGP94] depends on the density of smooth primes, that is prime p such that p − 1 is
smooth.

We now state the result by Dickman on the density of smooth numbers. In fact, this particular estimate
is due to Canfield, Erdös and Pomerance [CEP83]. An integer is called y-smooth if all its prime factors are
less than y. Let ψ(x, y) be the total number of y-smooth integers between 1 and x.

Lemma 4 If u = O(log x
log log x) then ψ(x,x

1
u)

x = u−u(1+o(1)), where o(1)→ 0 as u→∞.

We would use this estimate in the Quadratic Sieve algorithm. But before we move on to the applications,
let us get a feel of how to find ψ(x, y). Let yu = x and p1, . . . , pk be the primes less than y. Then, by the
Prime Number Theorem, k ≈ y

ln y . Since, puk ≤ x, all numbers of the form pe11 . . . pek

k , with
∑k
i=1 ei ≤ u, are

y-smooth and less than x. Hence, ψ(x, y) ≥
(
k+u
u

)
≥ (ku)u ≈ x

(u ln y)u (taking u to be an integer). Therefore,
ψ(x,x

1
u)

x ≥ (u ln y)−u. The purpose of presenting this coarse estimate is not merely to show a similarity with
the expression in Lemma 4. A sophisticated version of this argument would be used in Dixon’s algorithm.

For further details on the density of smooth numbers, the reader may refer to the article by Andrew
Granville [Gra08] in [BS08]. An exposition to smooth numbers and their various applications can also be
found in the article by Carl Pomerance [Pom94].

2.1 Smooth numbers in integer factoring

The two factoring algorithms, we are going to discuss in this course, are based on one simple idea. Let
N be the given odd integer that we want to factor and α, β be two other integers less than N such that
α2 = β2 mod N . If it happens that neither α = β mod N nor α = −β mod N then gcd(α + β,N) (as well
as, gcd(α − β,N)) yields a nontrivial factor of N . This basic idea is the cornerstone of many modern day
factoring algorithms and was first introduced as a general scheme by Kraitchik [Kra26, Kra29]. To make the
scheme work, we are faced with two immediate questions.

• How to find a square modulo N?

• How to find two ‘distinct’ roots of the square modulo N?

By ‘distinct’ we mean the condition, α 6= ±β mod N . The first question is rather easy to answer. A random
integer is a square modulo N with high probability if N has few prime factors. Besides, one can always take
an integer and simply square it modulo N . However, it is the second question that demands more attention.
Much of the effort in both Dixon’s algorithm and the Quadratic Sieve is centered around efficiently finding
‘distinct’ roots of a square and it is here that smooth numbers enter the scene. The idea of involving smooth
numbers is based on an earlier work by Morrison and Brillhart [MB75].

Exercises:
1. Show that

∫∞
0
e−x

2
dx =

√
π/2. This gives a slightly better bound on E[s] in Lemma 1.

18-3

References

[AGP94] W. R. Alford, A. Granville, and C. Pomerance. There are Infinitely Many Carmichael Numbers.
Annals of Mathematics, 139:703–722, 1994.

[BS08] Joseph P. Buhler and Peter Stevenhagen, editors. Algorithmic Number Theory: Lattices, Number
Fields, Curves and Cryptography, volume 44 of Mathematical Sciences Research Institute Publi-
cations. Cambridge University Press, 2008.

[CEP83] Earl Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of Oppenheim concerning
“factorisatio numerorum”. Journal of Number Theory, 17:1–28, 1983.

[Dic30] Karl Dickman. On the frequency of numbers containing prime factors of a certain relative mag-
nitude. Arkiv för Mathematik, Fysik, 22:1–14, 1930.

[Gra08] Andrew Granville. Smooth numbers: computational number theory and beyond. Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography, MSRI Publications, 44:267–
323, 2008.

[Jr.87] Hendrik W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649–
673, 1987.

[Kra26] M. Kraitchik. Théorie des Nombres, Tome II. 1926.

[Kra29] M. Kraitchik. Recherches sur la Théorie des Nombres, Tome II. 1929.

[LJMP90] Arjen K. Lenstra, Hendrik W. Lenstra Jr., Mark S. Manasse, and John M. Pollard. The Number
Field Sieve. In STOC, pages 564–572, 1990.

[MB75] M. Morrison and J. Brillhart. A method of factoring and the factorization of F7. Mathematics of
Computation, 29:183–205, 1975.

[Pom94] Carl Pomerance. The Role of Smooth Numbers in Number Theoretic Algorithms. In Proceedings
of the International Congress of Mathematicians, 1994.

18-4

