
Computational Number Theory and Algebra June 25, 2012

Lecture 19
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In today’s class, we will discuss a randomized subexponential time algorithm for integer factoring, namely:

• Dixon’s random square method.

1 Dixon’s random square method

Let N be an odd composite with ` distinct prime factors, where ` > 1 i.e. N is not a perfect power. Choose
an integer α randomly in the range [1, N − 1] and compute γ = α2 mod N . We will show later (in Lemma
1) that with reasonable probability γ is y-smooth for a suitable choice of y. Further, if we are lucky then the
prime factorization of γ = pe11 . . . pek

k could be such that each ei is even. Here, p1, . . . , pk are the primes less
than y. This means, β = p

e1/2
1 . . . p

ek/2
k is also a root of γ. Notice that, the value of β is uniquely determined

by the factorization of γ and is independent of which random root α (of γ) is chosen initially. Since there
are 2` distinct roots of γ in ZN (assuming gcd(γ,N) = 1) (why?), the probability that α = ±β mod N is
only 1

2`−1 . Therefore, if all goes well, gcd(α+ β,N) is nontrivial. Unfortunately, the chance that all the ei’s
are even is not quite sufficient to ensure good success rate of the algorithm. But there is a neat way around!

Instead of choosing a single α, suppose we choose k + 1 random numbers, α1, . . . , αk+1, in the range
[1, N − 1] such that γj = α2

j mod N is y-smooth for every j, 1 ≤ j ≤ k + 1. Consider the vectors
vj = (ej1 mod 2, . . . , ejk mod 2) corresponding to the prime factorizations of γj = p

ej1
1 . . . p

ejk

k for 1 ≤
j ≤ k + 1. Since there are k + 1 vectors in a k dimensional space over F2, there exists a collection
of vectors, v1, . . . vm (say) such that their sum (over F2) is zero. What this means is that the prime
factorization of γ = γ1 . . . γm = pe11 . . . pek

k has every ei even. Once again, it can be easily argued that
β = p

e1/2
1 . . . p

ek/2
k mod N and α = α1 . . . αm mod N are ‘distinct’ roots of γ mod N with high probability.

We need to fill in one missing piece to formalize the above approach. It is to show that, for a random α,
γ = α2 mod N is y-smooth with high probability. The following lemma proves this fact.

Lemma 1 Let p1, . . . , pk be the primes less than y in increasing order, and S(N, y) be the following set,

S(N, y) = {α : 1 ≤ α ≤ N − 1 and γ = α2 mod N is y-smooth}.

If gcd(pi, N) = 1 for all 1 ≤ i ≤ k and r ∈ Z+ is such that p2r
k ≤ N then |S(N, y)| ≥ k2r

(2r)! .

Proof Let N = qf11 . . . qf`

` be the prime factorization of N . Since N has ` prime factors, every element
α ∈ ZN is naturally associated with an element vα in {1,−1}` that represents its quadratic character. That
is, the ith index of vα is 1 if α is a square modulo qfi

i and −1 otherwise. Moreover, by Chinese Remaindering
Theorem, if two elements in ZN have the same quadratic character then their product is a square modulo
N (why?). Define a set T as,

T = {α : α = pe11 . . . pek

k where
k∑
i=1

ei = r} (1)

Surely, every element of T is less than or equal to
√
N as p2r

k ≤ N . The 2` possible values of the quadratic
character define a partition of the set T . Call the partition corresponding to the quadratic character g ∈
{1,−1}` as Tg, so that Tg = {α ∈ T : vα = g}. Every pair of elements within the same partition can be
multiplied to form a square modulo N that is also a y-smooth number less than N . But there could be

19-1

repetitions as the same square can result from multiplying different pairs of elements. Using the fact that∑k
i=1 ei = r (in equation 1), a simple counting argument shows that there can be at most

(
2r
r

)
repetitions

for each square thus obtained. Therefore,

|S(N, y)| ≥ 2`(
2r
r

) ∑
g∈{1,−1}`

|Tg|2.

The factor 2` in the above expression is because every square in Z×N has exactly 2` roots. Simplifying using
Cauchy-Schwartz inequality, |S(N, y)| ≥ 1

(2r
r) (
∑
g∈{1,−1}` |Tg|)2 = 1

(2r
r) |T |

2. Once again, using the fact that∑k
i=1 ei = r, size of the set T is

(
k+r−1
r

)
≥ kr

r! and hence, |S(N, y)| ≥ k2r

(2r)! .

We are almost done. All we need to do now is fix a value for y. This we will do in the analysis of the
following algorithm and show that the optimum performance is obtained when y = eO(

√
lnN ln lnN).

Algorithm 1 Dixon’s random square method

1. Find all the primes, p1, . . . , pk, less than y = e(2
−1/2+o(1))

√
lnN ln lnN.

2. If pi|N for any 1 ≤ i ≤ k, return pi.
3. Set i = 1.
4. while i ≤ k + 1 do
5. Choose integer αi randomly from [1, N − 1]. If gcd(αi, N) 6= 1 return it.
6. Else, compute γi = α2

i mod N.
7. If γi is y-smooth, let vγi = (ei1 mod 2, . . . , eik mod 2)

where γi = pei1
1 . . . peik

k . Set i = i+ 1.
8. Find I ⊂ {1, . . . , k + 1} such that

∑
i∈I vγi

= 0 over F2.

9. Let γ =
∏
i∈I γi = pe11 . . . pek

k , β = p
e1/2
1 . . . p

ek/2
k mod N and α =

∏
i∈I αi mod N.

10. If gcd(α+ β,N) 6= 1 return the factor. Else, goto step 3.

Time complexity - Using the Sieve of Eratosthenes, we can find the first k primes in step 1 inO(k log2 k log log k)
time. The divisions in step 2 take O(k · MI(n)) time, where n = lnN . Each iteration of the while-loop
in step 4 takes O(MI(n) log n) operations for the gcd computation and modular operations in steps 5 and
6. Whereas, trial divisions in step 7 can be done in O((k + n)MI(n)) time. In step 8, we can use Gaussian
elimination to find the linearly dependent vectors in O(k3) time. Modular computations and gcd finding
can be done in steps 9 and 10 using O(MI(n) log n) operations. Finally, we need to bound the number of
iterations of the while-loop.

By Lemma 1, expected number of iterations to find a y-smooth square is N ·(2r)!
k2r ≤ N · (2r ln y

y)2r, taking
k ≈ y

ln y . Now, if we choose y such that y2r = N then the expected number of executions of the loop is
bounded by (k + 1) · n2r. One final thing to notice is that the algorithm fails to return a proper factor at
step 10 with only a constant probability (why?), meaning the expected number of times we need to jump to
step 3 and re-run the algorithm is also a constant. Therefore, the expected running time of the algorithm
is Õ(k3 + k2n2r+2) = Õ(e

3n
2r + e

2n
2r n2r+2), as y2r = N (here, Õ hides lower order terms in k and n). This

expression is minimized if 2r ≈
√

2n
lnn . This means, y = e(2

−1/2+o(1))
√

lnN ln lnN and the expected time taken

by Dixon’s random square method is e(
√

9
2+o(1))

√
lnN ln lnN .

The best known running time for Dixon’s algorithm is e(
√

4
3+o(1))

√
lnN ln lnN , a result due to Pomerance

[Pom82] and Vallée [Val89]. But this is surpassed by the work of Lenstra and Pomerance [JP92] which has
an expected time complexity of e(1+o(1))

√
lnN ln lnN .

19-2

Despite the theoretical progress, the performance of these randomized algorithms are not very encouraging
in practice. With the widespread use of the RSA cryptosystems in various commercial applications, there
is just too much at stake. One cannot help but wonder if there are variants of these ideas that are more
efficient in practice, which in turn may deem some of the RSA public keys as unsafe. The Quadratic Sieve
method is one such practical improvement. We will discuss this in the next class.

References

[JP92] Hendrik W. Lenstra Jr. and Carl Pomerance. A Rigorous Time Bound for Factoring Integers.
Journal of the American Mathematical Society, 5:483–516, 1992.

[Pom82] Carl Pomerance. Analysis and comparison of some integer factoring algorithms. In H.W. Lenstra
Jr. and R. Tijdeman, editors, Computational Methods in Number Theory, volume 154 of Math.
Centrum Tract, pages 89–139, 1982.

[Val89] B. Vallée. Provably fast integer factoring with quasi-uniform small quadratic residues. In STOC
’89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 98–106,
1989.

19-3

