
Computational Number Theory and Algebra June 27, 2012

Lecture 20
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

Today, we will discuss another application of smooth numbers, namely:

• The Quadratic Sieve method for factoring integers.

1 The Quadratic Sieve method

The Quadratic Sieve (QS), which was first proposed by Pomerance [Pom82, Pom84], is also based on
Kraitchik’s scheme of finding ‘distinct’ roots of a square modulo N . But unlike Dixon’s algorithm, this
method is deterministic with a heuristic analysis showing a time bound of e(1+o(1))

√
lnN ln lnN operations.

Although it has the same asymptotic complexity as the best (rigorous) randomized algorithm, the QS is
much more efficient in practice. As for the assumptions made in the analysis of the QS, in Pomerance’s
[Pom08] own words “...perhaps we should be more concerned with what is true rather than what is provable,
at least for the design of a practical algorithm.”.

The Quadratic Sieve method generates a sequence of squares modulo N using the polynomial x2 − N ,
by varying integer x from

√
N to

√
N + No(1). We could say x2 mod N instead of x2 − N , they being

the same as x ≤
√
N +No(1). This step of deterministically generating squares modulo N is in contrast to

Dixon’s algorithm where x is chosen randomly and then x2 mod N is computed. As before, we are interested
in those numbers in the sequence that are y-smooth (for some fixed y). Understanding the distribution of
smooth numbers in this sequence is a difficult number theoretic problem. Instead, to make the analysis go
through we assume that the sequence generates y-smooth numbers in the same frequency as numbers picked
randomly from the range [0, 2N

1
2+o(1)]. Since

√
N ≤ x ≤

√
N + No(1), x2 − N is between 0 and roughly

X = 2N
1
2+o(1). In other words, we assume that a y-smooth number is encountered after about X

ψ(X,y)

numbers of the sequence {x2 − N} as x is varied from
√
N to

√
N + No(1). This is where the Quadratic

Sieve becomes heuristic in nature. Although there is no rigorous theory to back this assumption, years of
experimental analysis have strongly supported it. So let us proceed with it and see the step to which the QS
owes both its name and its efficiency.

Recall that, in Dixon’s algorithm, we test for y-smoothness of x2 mod N by trial division with all the
k primes less than y. This takes O((k + n)MI(n)) time per number, where n = lnN . We cannot do better
than this if we test for smoothness, one number at a time. But in our case the numbers originate from a
well-defined sequence. One can hope to spend much less overall time by testing smoothness of a collection
of numbers together. To draw the analogy, let us briefly visit the Sieve of Eratosthenes method.

Suppose we want to find all the primes less than B. If we sequentially test for primality of all the B
numbers, we end up spending Õ(B log2B) time (using Miller-Rabin primality test). Instead, the Sieve of
Eratosthenes starts with an array of size B with all entries initialized as ‘unmarked’. At each step, the
process finds the next ‘unmarked’ index p > 1 and ‘marks’ those entries that are higher multiples of p. In
the end, only the prime indices remain ‘unmarked’. The total time spent is

∑
prime p < B

B
p logB, where the

logB factor is due to the increment of the counter by p for each subsequent ‘marking’. Using the analytic
bound

∑
prime p < B

1
p = O(log logB), the time complexity comes out to be O(B logB log logB). By finding

the primes together, the Sieve spends O(logB log logB) operations per number on average, as opposed to
Õ(log2B) operations for primality testing. Pomerance made the observation that this idea of sieving primes
can be adapted to sieve smooth numbers from the sequence {x2 −N}.

20-1



Let p be a prime less than y and p - N . Then p divides x2 −N if x is ±c modulo p where c is a square
root of N modulo p. Since x2−N is also an element of the sequence {x2−N}, x = b

√
Nc+ i for some index

0 ≤ i ≤ No(1), hence there are two fixed values a, b < p such that x2−N is divisible by p if and only if i = a
or b mod p. This means, if the sequence {x2 − N} is presented as an array with the ith index containing
(b
√
Nc+ i)2−N , then the numbers that are divisible by p are exactly placed at the indices {a+kp}k≥0 and

{b+ kp}k≥0.
A sieving process can start from index a (similarly, b) and increment the counter by p, iteratively, to get

to the numbers in the sequence that are divisible by p. A number that is divisible by p is then replaced by the
quotient obtained by dividing it by the highest power of p. After this sieving is done for every prime p < y,
all those numbers that have changed to 1 are y-smooth. If B is the size of the array then the total sieving
time is, O(

∑
prime p < y

B
p · n ·MI(n)) = O(B · log log y ·n ·MI(n)), where n = logN . How large should B be?

Since there are k primes below y, just like Dixon’s algorithm, we need k + 1 y-smooth numbers. We have
assumed before that one y-smooth number is present in (roughly) every X

ψ(X,y) numbers of the sequence,

where X = 2N
1
2+o(1). Therefore, it is sufficient if we take B ≈ (k+ 1) · X

ψ(X,y) for the analysis. The value of
y is fixed in the analysis of the following algorithm.

Algorithm 1 Quadratic Sieve method
1. Find all primes, p1, . . . , pk ≤ y. If pi|N for any 1 ≤ i ≤ k, return pi.
2. Sieve the sequence (b

√
Nc+ j)2 −N, 0 ≤ j ≤ B, for (k + 1) y-smooth numbers,

γi = α2
i −N = pei1

1 . . . peik

k , 1 ≤ i ≤ k + 1. Let vγi
= (ei1 mod 2, . . . , eik mod 2).

3. Find I ⊂ {1, . . . , k + 1} such that
∑
i∈I vγi

= 0 over F2.

4. Let γ =
∏
i∈I γi = pe11 . . . pek

k , β = p
e1/2
1 . . . p

ek/2
k mod N and α =

∏
i∈I αi mod N.

5. If gcd(α+ β,N) 6= 1 return the factor.

Heuristic time complexity - As with Dixon’s algorithm, the time complexity of the Quadratic Sieve is
mainly contributed by step 2 and step 3. If y = X

1
u then by Lemma 4 in lecture 18, X

ψ(X,y) ≈ u
u. So the total

time spent in step 2 is heuristically, O(B · log log y ·n ·MI(n)) = Õ(B) = Õ(k ·uu) = Õ(X
1
uuu), ignoring lower

order terms inN . This expression is minimized when u ≈
√

2 lnX
ln lnX , implying that y = e(2

−1/2+o(1))
√

lnX ln lnX .

Taking X = 2N
1
2+o(1), the time complexity of step 2 comes out to be O(X

1
uuu) = e(1+o(1))

√
lnN ln lnN . Notice

that the vector vγi
(in step 2) is fairly sparse, it has at most logN nonzero entries. So the matrix formed by

the k + 1 vectors, vγ1 , . . . , vγk+1 , contains at most (k + 1) logN nonzero entries. Using Wiedemann’s sparse
matrix method [Wie86], step 3 can be implemented in O((k+ 1) · (k+ 1) logN)) = e(1+o(1))

√
lnN ln lnN time.

Note that in step 5, gcd(α+ β,N) can possibly be 1, but since α and β are computed ‘differently’, it is
‘likely’ that α 6= ±β mod N , in which case we indeed get a non-trivial factor. This is yet another reason
why the analysis of the algorithm is heuristic in nature.

For an excellent survey on the Quadratic Sieve and how it evolved from earlier factoring methods, refer
to the articles [Pom08], [Pom96] and [Pom84] by Carl Pomerance. Several enhancements of the QS are
described in chapter 6 of [CP05].

References

[CP05] Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer,
USA, 2005.

[Pom82] Carl Pomerance. Analysis and comparison of some integer factoring algorithms. In H.W. Lenstra
Jr. and R. Tijdeman, editors, Computational Methods in Number Theory, volume 154 of Math.
Centrum Tract, pages 89–139, 1982.

20-2



[Pom84] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. In EUROCRYPT, pages 169–182,
1984.

[Pom96] Carl Pomerance. A Tale of Two Sieves. Notices of the American Mathematical Society, 43:1473–
1485, 1996.

[Pom08] Carl Pomerance. Smooth numbers and the quadratic sieve. Algorithmic Number Theory: Lattices,
Number Fields, Curves and Cryptography, MSRI Publications, 44:69–81, 2008.

[Wie86] Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions on
Information Theory, 32(1):54–62, 1986.

20-3


