
Complexity of Bilinear Problems

Markus Bläser, Saarland University

Scribe: Fabian Bendun

Editor: Markus Bläser

October 7, 2009

2

Contents

1 Computations and costs 7

1.1 Karatsuba’s algorithm . 7
1.2 A general model . 8
1.3 Examples . 9

2 Evaluation of polynomials 11

2.1 Multiplications . 12
2.1.1 Further Applications . 14

2.2 Additions . 15

3 Bilinear problems 17

3.1 Vermeidung von Divisionen . 18
3.2 Rank of bilinear problems . 20

4 The exponent of matrix multiplication 23

4.1 Permutations (of tensors) . 24
4.2 Products and sums . 27

5 Border rank 31

6 τ-Theorem 35

7 Strassen’s Laser Method 41

3

4

Introduction

Given two n × n-matrices x = (xik) and y = (ykj) whose entries are indeterminates over
some field K, we want to compute their product xy = (zij). The entries zij are given be the
following well-known bilinear forms:

zij =

n∑

k=1

xikykj; 1 ≤ i, j ≤ n (1)

Each zij is the sum of n products. Thus every zij can be computed with n multiplications and
n−1 additions. This gives an algorithm that altogether uses n3 multiplications and n2(n−1)
additions. This algorithms looks so natural and intuitive that it is very hard to imagine that
there is better way to multiply matrices. In 1969, however, Strassen [Str69] found a way to
multiply 2 × 2 Matrices with only 7 multiplications but 18 additions.

Let zij , 1 ≤ i, j ≤ 2, be given by
(

z11 z12

z21 z22

)

=

(
x11 x12

x21 x22

)(
y11 y12

y21 y22

)

.

We compute the seven products

p1 = (x11 + x22)(y11 + y22)

p2 = (x11 + x22)y11

p3 = x11(y12 − y22)

p4 = x22(−y11 + y12)

p5 = (x11 + x12)y22

p6 = (−x11 + x21)(y11 + y12)

p7 = (x12 − x22)(y21 + y22)

We can express each of the zij as a linear combination of these seven products, namely,
(

z11 z12

z21 z22

)

=

(
p1 + p4 − p5 + p7 p3 + p5

p2 + p4 p1 + p3 − p2 + p6

)

The number of multiplications in this algorithm is optimal (we will see this later), but already
for 3× 3-matrices, the optimal number of multiplication is not known. We know that it is in
the interval [19; 23], cf. [Blä03, Lad76].

But is it really interesting to save one multiplication but have an additional 14 additions
instead?1 The important point is that Strassen’s algorithm does not only work over fields

1There is a variant of Strassen’s algorithm that uses only 15 additions [Win71]. And one can even show that
this is optimal, i.e., every algorithms that uses only seven multiplications needs at least 15 additions [Bsh95].

5

but also over noncommutative rings. In particular, the entries of the 2 × 2-matrices can we
matrices itself and we can apply the algorithm recursively. And for matrices, multiplications—
at least if we use the naive method—are much more expensive than additions, namely O(n3)
compared to n2.

Proposition 0.1. One can multiply n × n-matrices with O(nlog27) arithmetical operations
(and even without using divisions).2

Proof. W.l.o.g. n = 2ℓ, ℓ ∈ N. If this is not the case, then we can embed our matrices into
matrices whose size is the next largest power of two and fill the remaining positions with zeros.
Since the algorithm does not use any divisions, subsituting an indeterminate by a concrete
value will not cause a division by zero.

We will show by induction in ℓ that we can multiply with 7ℓ multiplications and 6·(7ℓ−4ℓ)
additions/subtractions.
Induction start (ℓ = 1): See above.
Induction step (ℓ − 1 → ℓ): We think of our matrices as 2 × 2-matrices whose entries are
2ℓ−1 × 2ℓ−1 matrices, i.e., we have the following block structure:

()

·
()

=

()

.

We can multiply these matrices using Strassen’s algorithm with seven multiplications of 2ℓ−1×
2ℓ−1-matrices and 18 additions of 2ℓ−1 × 2ℓ−1-matrices.

For the seven multiplications of the 2ℓ−1 × 2ℓ−1-matrices, we need 7 · 7ℓ−1 = 7ℓ multiplica-
tions by the induction hypothesis. And we need 7 · 6 · (7ℓ−1 − 4ℓ−1) additions/subtractions for
the seven multiplications. The 18 additions of 2ℓ−1×2ℓ−1-matrices need 18 ·(2ℓ−1)2 additions.
Thus the total number of additions/subtractions is

7 · 6 · (7ℓ−1 − 4ℓ−1) + 18 · (2ℓ−1)2 = 6 · (7ℓ − 7 · 4ℓ−1 + 3 · 4ℓ−1) = 6 · (7ℓ − 4ℓ).

This finishes the induction step. Since 7ℓ = nlog2 t, we are done.

2What is an arithmetical operation? We will make this precise in the next chapter. For the moment, we
compute in the field of rational functions K(xij , yij | 1 ≤ i, j ≤ n). We start with the constants from K

and the indeterminates xij and yij . Then we can take any two of the elements that we computed so far and
compute their product, their quotient (if the second element is not zero), their sum, or their difference. We
are done if we have computed all the zij in (1).

6

Chapter 1

Computations and costs

1.1 Karatsuba’s algorithm

Let us start with a very simple computational problem, the multiplication of univariate poly-
nomials of degree one. We are given two polynomials a0 + a1X and b0 + b1X and we want to
compute the coefficients of their product, which are given by

(a0 + a1 · X) · (b0 + b1 · X) = a0b0
︸︷︷︸

c0

+ (a0b1 + a1b0)
︸ ︷︷ ︸

c1

·X + a1b1
︸︷︷︸

c2

·X2.

We here consider the coefficients of the two polynomials to be indeterminates over some
field K. The coefficients of the product are rational functions (in fact, bilinear forms) in
a0, a1, b0, b1, so the following model of computation seems to fit well. We have a sequence
(w1, w2, . . . , wℓ) of rational functions such that each wi is either a0, a1, b0, or b1 (inputs) or
a constant from K or can be expressed a wi = wj op wk for indices j, k < i and op is one of
the arithmetic operations ·, /, +, or −.

Here is one possible computation that computes the three coefficients c0, c1, and c2.

w1 = a0

w2 = a1

w3 = b0

w4 = b1

c0
Def
= w5 = w1 · w3

c2
Def
= w6 = w2 · w4

w7 = w1 + w2

w8 = w3 + w4

w9 = w7 · w8

w10 = w5 + w6

c1
Def
= w11 = w9 − w10

The above computation only uses three multiplications instead of four, which the naive al-
gorithm needs. This is also called Karatsuba’s algorithm. Like Strassen’s algorithm, it can
be generalized to higher degree polynomials. If we have two polynomials A(X) =

∑n
i=0 aiX

i

and B(X) =
∑n

j=0 bjX
j with n = 2ℓ − 1, then we split the two polynomials into halves,

that is, A(X) = A0(X) + X(n+1)/2A1(X) with A0(X) =
∑(n+1)/2−1

i=0 aiX
i and A1(X) =

7

∑(n+1)/2−1
i=0 a(n+1)/2+iX

i and the same for B. Then we multiply these polynomials using the
above scheme with A0 taking the role of a0 and A1 taking the role of a1 and the same for B.
All multiplications of polynomials of degree (n+1)/2− 1 are then performed recursively. Let
N(n) denote the number of arithmetic operations that the above algorithm needs to multiply
polynomial of degree ≤ n. The algorithm above gives the following recursive equation

N(n) = 3 · N((n + 1)/2 − 1) + O(n) and N(2) = 7.

This yields N(n) = O(nlog2 3). Karatsuba’s algorithm again trades one multiplication for a
bunch of additional additions which is bad for degree one polynomials but good in general,
since polynomial addition only needs n operations but polynomial multiplication—at least
when using the naive method—is much more expensive, namely, O(n2).

1.2 A general model

We provide a framework to define computations and costs that is general enough to cover all
the examples that we will look at. For a set S, let fin(S) denote the set of all finite subsets
of S.

Definition 1.1 (Computation structure). A computation structure is a set M together with
a mapping γ : M × fin(M) → [0;∞] such that

1. im(γ) is well ordered, that is, every subset of im(γ) has a minimum,

2. γ(w,U) = 0, if w ∈ U ,

3. U ⊆ V ⇒ γ(w, V) ≤ γ(w,U) for all w ∈ M , U, V ⊆ fin(M).

M is the set of objects that we are computing with. γ(w,U) is the cost of computing
w from U “in one step”. In the example of the previous section, M is the the set of all
rational functions in a0, a1, b0, b1. If we want to count the number of arithmetic operations
of Karatsuba’s algorithm, then γ(w,U) = 0 if w ∈ U . (“There are no costs if we already
computed w”). We have γ(w,U) = 1 if there are u, v ∈ U such that w = u op v. (“w can be
computed from u and v with one arithmetical operation.”) In all other cases γ(w,U) = ∞.
(“w cannot be computed “in one step” from U .)

Often, we have a set M together with some operations φ : M s → M of some arity s. If
we assign to each such operation a cost, then this induces a computation structure in a very
natural way.

Definition 1.2. A structure (M,φ1, φ2, ...) with (partial) operations φj : M sj → M and a
cost function ¢ : {φ1, φ2, ...} → [0;∞] such that im(¢) is well ordered induces a computation
structure in the following way:

γ(w,U)
Def
= min{¢(φj) | ∃u1, ..., usj

∈ U : w = φj(u1, ..., usj
)}

If the minimum is taken over the empty set, then we set γ(w,U) = ∞. If w ∈ U , then
γ(w,U) = 0.

Remark 1.3. (For programmers) You can always achieve γ(w,U) = 0 by adding the function
φ0 = id to the structure with ¢(φ0) = 0.

8

Definition 1.4 (Computation). 1. A sequence β = (w1, ..., wm) of elements in M is a
computation with input X ⊆ M if:

∀j ≤ m : wj ∈ X ∨ γ(wj , Vj) < ∞ where Vj = {w1, ..., wj−1}

2. β computes a set Y ∈ fin(M) if in addition Y ⊆ {w1, ..., wm}.

3. The costs of β are Γ(β,X)
Def
=

m∑

j=1
γ(wj , Vj).

In a computation, every wi can be computed from elements previously computed, i.e,
elements in Vj or from elements in X (“inputs”).

Definition 1.5 (Complexity). Complexity of Y given X is defined by

C(Y,X)
Def
= min{Γ(β,X) | β computes Y from X}.

The complexity of a set Y is nothing but the cost of a cheapest computation that computes
Y .

Notation. 1. If we compute only one element y, we will write C(y,X) instead of C({y},X)
and so on.

2. If X = ∅ of X is clear from the context, then we will just write C(Y).

1.3 Examples

The following computation structure will appear quite often in this lecture.

Example 1.6 (Ostrowski measure). Our structure is M = K(X1, ...,Xn), the field of
rational functions in indeterminates X1, . . . ,Xn. We have four (or three) operations of arity
2, namely, multiplication, division, addition, and subtraction. Division is a partial operation
which is only defined if the second input is nonzero. If we are only interested in computing
polynomials, we might occasionally disallow divisions. For every λ ∈ K, there is an operation
λ· of aritiy 1, the multiplication with the scalar λ. The costs are given by

Operation Costs

· , / 1
+, − 0
λ· 0

While in nowadays computer chips, multiplication takes about the same number of cycles
as addition, Strassen’s algorithm and also Karatsuba’s algorithm show that this is nevertheless
a meaningful way of charging costs.

The complexity induced by the Ostrowski measure will be denoted by C∗/, if we al-
low divisions, or C∗, if we disallow divisions. In particular, Karatsuba’s algorithm yields
C∗/({c0, c1, c2}, {a0, a1, b0, b1}) = 3. (The lower bound follows from the fact, that c0, c1, c2 are
linearly independent over K.)

9

Example 1.7 (Addition chains). Our structure is M = N with the following operations:

Operation Arity Costs

1 0 0
+ 2 1

C(n) measures how many additions we need to generate n from 1.

Additions chains are motivated by the problem of computing a power Xn from X with
as few multiplications as possible. We have log n ≤ C(n) ≤ 2 log n. The lower bound follows
from the fact that we can at most double the largest number computed so far with one more
additon. The upper bound is the well-known “square and multiply” algorithm. This is an
old problem from the 1930s, which goes back to Scholz [Sch37] and Brauer [Bra39], but quite
some challenging questions still remain open.

Research problem 1.1. Prove the Scholz-Brauer conjecture:

C(2n − 1) ≤ n + C(n) − 1 for all n ∈ N.

Research problem 1.2. Prove Stolarsky’s conjecture:

C(n) ≥ log n + log(q(n)) for all n ∈ N,

where q(n) is the sum of the bits of the binary expansion of n. (Compared to the exercise,
there is a “−O(1)” missing.)

10

Chapter 2

Evaluation of polynomials

Let us start with a simple example, the evaluation of univariate polynomials. Our input are
the coefficients a0, . . . , an of the polynomial and the point x at which we want to evaluate the
polynomial. We model them as indeterminates, so our set M = K0(a0, . . . , an, x). We are
interested in determining C(f, {a0, . . . , an, x}) where

f = a0 + a1x + ... + anxn ∈ K0(a0, ..., an, x).

A well known algorithm to compute f is the Horner scheme. We write f as

f = ((anx + an−1)x + an−2)x + ... + a0.

This representation immediately gives a way to compute f with n multiplications and n
additions. We will show that this is best possible. Even if we can make as many addi-
tions/subtractions as we want, we still need n multiplications/divisions. And even if we are
allowed to perform as many multiplications/divisions as we want, n additions/subtractions
are required. In the former case, we will use the well-known Ostrowski measure. In the latter
case, we will use the so-called additive completity, denoted by C+, which is “the opposite”
of the Ostrowski model. Here multiplications and divisions are for free but additions and
subtractions count.

Operation Costs

C∗/ C+

· , / 1 0
+, − 0 1
λ· 0 0

p ∈ K0(x) 0 0

We will even allow that we can get elements from K := K0(x) for free (operation with
arity zero). So we e.g. can compute arbitrary powers of x at no costs. (This is a special
feature of this chapter. In general, this is neither the case under the Ostrowski measure nor
in the additive measure.)

Theorem 2.1. Let a0, ..., an, x be indeterminates over K0 and f = a0 + a1x + ... + anxn.
Then C∗/(f) ≥ n and C+(f) ≥ n. This is even true if all elements from K0(x) are free of
costs.

11

2.1 Multiplications

The first statement of Theorem 2.1 is implied by the following lower bound.

Theorem 2.2. Let K0 ⊆ K be fields, Z = {z1, ..., zn} be indeterminates and F = {f1, ..., fm}
where fµ =

n∑

ν=1
pµ,νzν + qµ with pµ,ν , qµ ∈ K, 1 ≤ µ ≤ m. Then C∗/(F,Z) ≥ r − m where

r = col-rkK0






p11 . . . p1n 1 . . . 0
...

...
...

. . .
...

pm1 . . . pmn 0 . . . 1




 .

We get the first part of Theorem 2.1 from Theorem 2.2 as follows: We set

K = K0(x),

zν = aν ,

m = 1,

f1 = f,

p1,ν = xν , 1 ≤ ν ≤ n,

q1 = a0.

Then P = (x, x2, ..., xn, 1) and col-rkK0 P = n+1.1 We get C∗/(f1, {a0, ..., an}) ≥ n+1−1 = n
by Theorem 2.2.

Proof. (of Theorem 2.2) The proof is by induction in n.

Induction start (n = 0): We have

P =






1
. . .

1






and therefore, r = m. Thus C∗/(F) ≥ 0 = r − m.

Induction step (n − 1 → n): If r = m, then there is nothing to show. Thus we can assume
that r > m. We claim that in this case, C∗/(F,Z) ≥ 1. This is due to the fact that the set of
all rational function that can be computed with costs zero is

W0 = {w ∈ K(z1, ..., zm) | C(w,Z) = 0} = K + K0z1 + K0z2 + ... + K0zn.

(Cleary, every element in W0 can be computed without any costs. But W0 is also closed under
all operations that are free of costs.) If r > m, then there are µ and i such that pµ,i 6∈ K0

and therefore fµ 6∈ W0.

W.l.o.g. K0 is infinite, because if we replace K0 by K0(t) for some indeterminate t, the
complexity cannot go up, since every computation over K0 is certainly a computation over
K0(t). W.l.o.g. fµ 6= 0 for all 1 ≤ µ ≤ m.

1Remember that we are talking about the rank over K0. And over K0, pairwise distinct powers of x are
linearly independent!

12

Let β = (w1, ..., wℓ) be an optimal computation for F and let each wλ =
pλ

qλ
with pλ, qλ ∈

K0[z1, ..., zn]. Let j be minimal such that γ(wj , Vj) = 1, where Vj = {w1, . . . , wj−1}. Then
there are u, v ∈ W0 such that

wj =

{

u · v or

u/v

By definition of W0, there exist α1, ..., αn ∈ K0, b ∈ K and γ1, ..., γn ∈ K0, d ∈ K such that

u =

n∑

ν=1

ανzν + b,

v =
n∑

ν=1

γνzν + d.

Because b · d, b/d 6∈ W0, there is a ν1 such that αν1 6= 0 or there is a ν2 such that γν2 6= 0.
W.l.o.g. ν1 = n or ν2 = n.

Now the idea is the following. We define a homomorphism S : M ′ → M̄ where M ′ is an
appropriate subset of M and M̄ = K[z1, . . . , zn−1] in such a way that

C(S(f1), . . . , S(fm)) ≤ C(f1, . . . , fm) − 1

Such an S is also called a substitution and the proof technique that we are using is called the
substitution method. Then we apply the induction hypothesis to S(f1), . . . , S(fm).

Case 1: wj = u · v. We can assume that γn 6= 0. Our substitution S is induced by

zn → 1

γn
(λ
︸︷︷︸

∈K0

−
n−1∑

ν=1

γνzν − d)

zν → zν for 1 ≤ ν ≤ n − 1.

The parameter λ will be choosen later. We have S(zn) ∈ W0, so there is a computation
(x1, . . . , xt) computing zn at no costs. In the following, for an element g ∈ K(z1, . . . , zn), we
set ḡ := S(g). We claim that the sequence

β̄ = (x1, . . . , xt
︸ ︷︷ ︸

compute zn for free

, w̄1, ..., w̄ℓ)

is a computation for f̄1, . . . , f̄m−1, since S is a homomorphism. There are two problems that
have to be fixed: First zn (an input) is replaced by something, namely z̄n, that is not an
input. But we compute z̄n in the beginning. Second, the substitution might cause a “division
by zero”, i.e., there might be an i such that q̄i = 0 and then w̄i = p̄i

q̄i
is not defined. But since

qi considered as an element of K(z1, . . . , zn−1)[zn] can only have finitely many zeros, we can
choose the parameter λ in such a way that none of the q̄i is zero. (K0 is infinite!)

By definition of S,
w̄j = ū · v̄

︸︷︷︸

=λ

,

thus
γ(w̄j , V̄j) = 0.

13

This means that
Γ(β,Z) − 1 ≥ Γ̄(β̄, Z̄)

and
C∗/(F,Z) = Γ(β,Z) ≥ Γ̄(β̄, Z̄) + 1 ≥

︸︷︷︸

I.H.

col-rkK0 P̄ − m + 1.

It remains to estimate col-rkK0 P̄ . We have

f̄µ =

n−1∑

ν=1

p̄µ,νzν + q̄µ

p̄µν = pµν − γν

γn
pµn

q̄µ = qµ − pµn

γn
(λ − d)

Thus P̄ is obtained from P by adding a K0-multiple of the nth column to the other ones and
then deleting the nth column. Therefore, col-rkK0 P̄ ≥ r − 1 and C∗/(F,Z) ≥ r − m.

Case 2: wj =
u

v
. If γn 6= 0, then v̄ = λ ∈ K0 and the same substitution as in the first case

works. If γν = 0 for all ν, then v = d and αn 6= 0. Now we substitute

zn 7→ 1

αn
(λd −

n−1∑

ν=1

ανzν − b)

zν 7→ zν for 1 ≤ ν ≤ n − 1

Then ū = λd and w̄j =
ū

v̄
= λ ∈ K0. We can now proceed as in the first case.

2.1.1 Further Applications

Here are two other applications of Theorem 2.2.

Several polynomials

We can also look at the evaluation of several polynomials at one point x, i.e, at the complexity
of

fµ(x) =

nµ∑

ν=0

aµνxν , 1 ≤ µ ≤ m.

Here the matrix P looks like

P =






x x2 . . . xn1 0 . . .
0 x x2 . . . xn2 . . .
...

. . .

∣
∣
∣
∣
∣
∣
∣

1 0
. . .

0 1






and we have col-rkK0 P = n1 + n2 + . . . + nm + m. Thus

C∗/(f1, . . . , fm) ≥ n1 + n2 + . . . + nm,

that is, evaluating each polynomial using the Horner scheme is optimal. On the other hand,
if we want to evaluate one polynomial at several points, this can be done much faster, see
[BCS97].

14

Matrix vector multiplication

Here, we consider the polynomials f1, . . . , fm given by





a11 . . . a1k
...

...
am1 . . . amk











x1
...

xk




 =






f1
...

fm






The matrix P is given by

P =






x1 x2 . . . xk 0 . . .
0 x1 x2 . . . xk
...

. . .

∣
∣
∣
∣
∣
∣
∣

1 0
. . .

0 1




 .

Thus col-rkK0(P) = km + m and

C∗/(f1, . . . , fm) ≥ mk.

This means that here—opposed to general matrix multiplication—the trivial algorithm is
optimal.

2.2 Additions

The second statement of Theorem 2.1 follows from the following theorem. We need the
concept of transcendence degree. If we have two fields K ⊆ L, then the transcendence degree
of L over K, tr-degK(L) is the maximum number t of elements a1, . . . , at ∈ L such that
a1, . . . , at do not fulfill any algebraic relation over K, that is, there is no t-variate polynomial
p with coefficients from K such that p(a1, . . . , at) = 0.2

Theorem 2.3. Let K0 be a field and K = K0(x). Let f = a0 + . . . + anxn. Then C+(f) ≥
tr-degK0

(a0, a1, . . . , an) − 1.

Proof. Let β = (w1, . . . , wℓ) be a computation that computes f . W.l.o.g. wλ 6= 0 for all
1 ≤ λ ≤ ℓ.

We want to characterize the set Wm of all elements that can be computed with m additions.
We claim that there are polynomials gi(x, z1, . . . , zi) and elements ζi ∈ K, 1 ≤ i ≤ m such
that

W0 = {bxt0 | t0 ∈ Z, b ∈ K}
Wm = {bxt0f1(x)t1 . . . fm(x)tm | ti ∈ Z, b ∈ K}

where fi(x) = gi(x, z1, . . . , zi) |z1→ζ1,...,zi→ζi
, 1 ≤ i ≤ m. The proof of this claim is by

induction in m.
Induction start (m = 0): clear by construction
Induction step (m → m+1): Let wi = u±v be the last addition/subtraction in our computa-
tion with m+1 additions/subtractions. u, v can be computed with m addidition/subtractions,
therefore u, v ∈ Wm by the induction hypothesis. This means that

wi = bxt0f1(x)t1 . . . fm(x)tm ± cxs0f1(x)s1 . . . fm(x)sm .

2Note the similarity to dimension of vector spaces. Here the dimension is the maximum number of elements
that do not fulfill any linear relation.

15

W.l.o.g. b 6= 0, othwerwise we would add 0. Therefore,

wi = b(xt0gt1
1 . . . gtm

m ± c

b
xs0gs1

1 . . . gsm
m) |z1→ζ1,...,zm→ζm

We set
gm+1

Def
= (xt0gt1

1 . . . gtm
m ± zm+1x

s0gs1
1 . . . gsm

m).

Then

wi = bgm+1 |z1→ζ1,...,zm+1→ζm+1 with ζm+1 =
c

b
.

This shows the claim.
Since wi was the last addition/substraction in β for every j > i, wj can be computed

using only multiplications and is therefore in Wm+1. Since the gi depend on m + 1 variables
z1, . . . , zm+1, the transcendence degree of the coefficients of f is at most m + 1.

Exercise 2.1. Show that the additive complexity of matrix vector multiplication is m(k−1).
(m × k-matrix with a vector of size k, see the specification in the previous section.)

16

Chapter 3

Bilinear problems

Let K be a field, we will usually call it the field of scalars, and let M = K(x1, ..., xN). We
will use the Ostrowski measure in the following. We will ask questions of the form

C∗/(F) =?

where F = {f1, . . . , fk} is a set of quadratic forms,

fκ =

N∑

µ,ν=1

tκµνxµxν .

Most of the time, we will consider the special case of bilinear forms, that is, our variable
are divided in two disjoint sets and only products of one variable from the first set with one
variable of the second set appear in fκ.

The “three dimensional array” t := (tκµν)κ=1,...,k;µ,ν=1,...,N ∈ Kk×N×N is called the tensor
corresponding to F . Since xµxν = xνxµ, there are several tensors that represent the same set
F . A tensor s is symmetrically equivalent to t if

sκµν + sκνµ = tκµν + tκνµ for all κ, µ, ν.

Two tensors describe the same set of quadratic forms if they are symmetrically equivalent.
The two typical problems that we will deal with in the following are:

Matrix multiplication: We are given two n × n-matrices x = (xi,j) and y = (yi,j) with
indeterminates as entries. The entries of xy are given be the well-known quadratic (in
fact bilinear) forms

fij =

n∑

k=1

xikykj, 1 ≤ i, j ≤ n.

Polynomial multiplication: Here our input consists of two polynomials p(z) =
∑m

i=0 aiz
i

and q(z) =
∑n

j=0 bjz
j . The coefficients are again indeterminates over K. The coeffi-

cients cℓ, 0 ≤ ℓ ≤ m + n of their product pq are given be the bilinear forms

cℓ =
∑

i+j=ℓ

aibj, 0 ≤ ℓ ≤ m + n.

Figure 3.1 shows the tensor of multiplication of degree 3 polynomials. It is an element of
K4×4×7. Figure 3.2 shows the tensor of 2 × 2-matrix multiplication. It lives in K4×4×4.

17

a0 a1 a2 a3

b0 1 2 3 4
b1 2 3 4 5
b2 3 4 5 6
b3 4 5 6 7

Figure 3.1: The tensor of the multiplication of multiplication of polynomials of degree three.
The rows correspond to the entries of the first polynomial, the colums to the entries of the
second. The tensors consist of 7 layers. The entries of the tensor are from {0, 1}. The entry
ℓ in position (i, j) means that ti,j,ℓ = 1, i.e. ai · bj occurs in cℓ.

x1,1 x1,2 x2,1 x2,2

y1,1 (1, 1) (2, 1)
y2,1 (1, 1) (2, 1)
y1,2 (1, 2) (2, 2)
y2,2 (1, 2) (2, 2)

Figure 3.2: The tensor of 2 × 2-matrix multiplication. Again, it is {0, 1}-valued. An entry
(κ, ν) in the row (κ, µ) and column (µ, ν) means that xκ,µyµ,ν appears in fκ,ν.

3.1 Vermeidung von Divisionen

Strassen [Str73] showed that for computing sets of bilinear forms, divisions do not help (pro-
vided that the field of scalars is large enough).

For a polynomial g ∈ K[x1, . . . , xN], Hj(g) denotes the homogenous part of degree j of g,
that is, the sum of all monomials of degree j of g.

Theorem 3.1. Let Fκ =
N∑

µ,ν=1
tκµνxµxν , 1 ≤ κ ≤ k. If #K = ∞ and C∗/(F) = ℓ then there

is an optimal computation consisting of products

Pλ =
(

N∑

i=1

uλixi

)(
N∑

i=1

vλixi

)
, 1 ≤ λ ≤ ℓ

such that F ⊆ linK{P1, . . . , Pℓ}. In particular, C∗(F) = C∗/(F).

Proof. Let β = (w1, . . . , wL) be an optimal computation for F , w.l.o.g 0 6∈ F and wi 6= 0 for

all 1 ≤ i ≤ L. Let wi =
gi

hi
with gi, hi ∈ K[x1, . . . , xN], hi, gi 6= 0.

As a first step, we want to achieve that

H0(gi) 6= 0 6= H0(hi), 1 ≤ i ≤ L.

We substitute

xi → x̄i + αi, 1 ≤ i ≤ N

18

for some αi ∈ K. Let the resulting computation be β̄ = (w̄1, . . . , w̄l) where w̄i =
ḡi

h̄i
,

ḡi(x̄1, . . . , x̄N) = gi(x1 + α1, . . . , xN + αN) and h̄i(x̄1, . . . , x̄N) = hi(x1 + α1, . . . , xN + αN).
Since fκ ∈ {w1, . . . , wL},

f̄κ(x̄1, . . . , x̄N) = fκ(x̄1 + α1, . . . , x̄N + αN) ∈ {w̄1, . . . , w̄l}.

Because

f̄κ(x̄1, . . . , x̄N) =

N∑

µ,ν=1

tκµν x̄µx̄ν =

N∑

µ,ν=1

tκµνxµxν + terms of degree ≤ 1,

we can extend the computation β̄ without increasing the costs such that the new computation
computes fκ(x1, . . . , xN), 1 ≤ κ ≤ k. All we have to do is to compute the terms of degree
one, which is free of costs, and subtract them from the f̄κ(x̄1, . . . , x̄N), which is again free of
costs. We call the resulting computation again β̄.

By the following well-known fact, we can choose the αi in such a way that all H0(ḡi) 6=
0 6= H0(h̄i), since H0(ḡi) = gi(α1, . . . , αN) and H0(h̄i) = hi(α1, . . . , αN).

Fact 3.2. For any finite set of polynomials φ1, . . . , φn, φi 6= 0 for all i, there are α1, . . . , αN ∈
K such that φi(α1, . . . , αN) 6= 0 for all i provided that #K = ∞.

Next, we substitute
x̄i → xiz, 1 ≤ i ≤ N

Let β̃ = (w̃1, . . . , w̃L) be the resulting computation. We view the w̃i as elements of K(x1, . . . , xN)[[z]],
that is, as formal power series in z with rational functions in x1, . . . , xN as coefficients. This

is possible, since every w̄i =
ḡi

h̄i
. The substitution above transforms ḡi and h̄i into the power

series

g̃i = H0(ḡi) + H1(ḡi)z + H2(ḡi)z
2 + · · ·

h̃i = H0(h̄i) + H1(h̄i)z + H2(h̄i)z
2 + · · ·

By the fact below, h̃i has in inverse in K(x1, . . . , xN)[[z]] because H0(h̄i) 6= 0. Thus w̃i =
g̃i

h̃i
is an element of K(x1, . . . , xN)[[z]] and we can write it as

w̃i = ci + c
′

iz + c
′′

i z2 + · · ·

Fact 3.3. A formal power series
∑∞

i=0 aiz
i ∈ L[[z]] is invertible iff a0 6= 0. Its inverse is

given by 1
a0

(1 + q + q2 + · · ·) where q = −∑∞
i=1

ai

a0
zi.

Since in the end, we compute a set of quadratic forms, it is sufficient to compute only w̃i

up to degree two in z. Because ci and c′i can be computed for free in the Ostrowski model,
we only need to compute c′′i in every step.
ith step is a multiplication: We have

w̃i = ũ · ṽ = (u + u
′

z + u
′′

z2 + . . .)(v + v
′

z + v
′′

z2 + . . .).

19

We can compute
c′′i = u

︸︷︷︸

∈K

v′′

︸ ︷︷ ︸

free of costs

+u′v′ + u′′ v
︸︷︷︸

∈K
︸ ︷︷ ︸

free of costs

.

with one bilinear multiplication.
ith step is a division: Here,

w̃i =
ũ

ṽ
=

u + u
′
z + u

′′
z + . . .

1 + v′z + v′′z2 + . . .
= (u+u

′

z+u
′′

z2)(1−(v
′

z+v
′′

z2+. . .)+(v
′

z+. . .)2−(v
′

z+. . .)3).

Thus
c′′i = u

′′ − u
′

v
′ − u(−v

′′

+ (v
′

)2) = u
′′ − (u

′ − uv
′

︸︷︷︸

free of costs

)v
′

+ uv
′′

︸︷︷︸

free of costs

can be computed with one costing operation.

3.2 Rank of bilinear problems

Polynomial multiplication and matrix multiplication are bilinear problems. We can separate
the variables into two sets {x1, . . . , xM} and {y1, . . . , yN} and write the quadratic forms as

fκ =

M∑

µ=1

N∑

ν=1

tκµνxµyν , 1 ≤ κ ≤ k.

The tensor (tκµν) ∈ Kk×M×N is unique and we do not need the notion of symmetric equiva-
lence.

Theorem 3.1 tell us that under the Ostrowski measure, we only have to consider products
of linear forms. When computing bilinear forms, it is a natural to restrict ourselves to products
of the form linear form in {x1, . . . , xM} times a linear form in {y1, . . . , yN}.

Definition 3.4. The minimal number of products

Pλ =
(

M∑

µ=1

uλµxµ

)(
N∑

ν=1

vλνyν

)
, 1 ≤ λ ≤ ℓ

such that F ⊆ lin{P1, . . . , Pl} is called rank of F = {F1, . . . , Fk} or bilinear complexity of F .
We denote it by R(F).

We can define the rank in terms of tensors, too. Let t = (tκ,µ,ν) be the tensor of F as
above. We have

R(F) ≤ ℓ ⇔ there are linear forms u1, . . . , uℓ in x1, . . . , xM

and v1, . . . , vℓ in y1, . . . , yN such that F ⊆ lin{u1v1, . . . , uℓvℓ}
⇔ there are wλκ ∈ K, 1 ≤ λ ≤ ℓ, 1 ≤ κ ≤ k

such that fκ =
l∑

λ=1

wλκuλvλ =
ℓ∑

λ=1

wλκ

(
M∑

µ=1

uλµxµ

)(
N∑

ν=1

vλνyν

)
, 1 ≤ κ ≤ k.

20

Comparing coefficients, we get

tκµν =
l∑

λ=1

wλκuλµvλν , 1 ≤ κ ≤ k, 1 ≤ µ ≤ M, 1 ≤ ν ≤ N.

Definition 3.5. Let w ∈ Kk, u ∈ KM , v ∈ KN . The tensor w ⊗ u ⊗ v ∈ Kk×M×N with
entry wκuµvν in position (κ, µ, ν) is called a triad.

From the calculation above, we get

R(F) ≤ ℓ ⇔ there are w1, . . . wℓ ∈ Kk, u1 . . . uℓ ∈ KM , and v1 . . . vℓ ∈ KN such that

t = (tκµν) =
ℓ∑

λ=1

wλ ⊗ uλ ⊗ vλ
︸ ︷︷ ︸

triad

We define the rank R(t) of a tensor t to be the minimal number of triads such that t is
the sum of these triads.1 To every set of bilinear forms F there is a corresponding tensor t
and vice versa. As we have seen, their rank is the same.

Example 3.6 (Complex multiplication). Consider the multiplication of complex number
viewed as an R-algebra. Its multiplication is described by the two bilinear forms f0 and f1

defined by
(x0 + x1i)(y0 + y1i) = x0y0 − x1y1

︸ ︷︷ ︸

f0

+ (x0y1 + x1y0)
︸ ︷︷ ︸

f1

i

It is clear that R(f0, f1) ≤ 4. But also R(f0, f1) ≤ 3 holds. Let

P1 = x0y0,

P2 = x1y1,

P3 = (x0 + x1)(y0 + y1).

Then

f0 = P1 − P2,

f1 = P3 − P1 − P2.

Multiplicative complexity and rank are linearly related.

Theorem 3.7. Let F = {f1, . . . , fk} be a set of bilinear forms in variables {x1, . . . , xM} and
{y1, . . . , yN}. Then

C∗/(F) ≤ R(F) ≤ 2C∗/(F).

Proof. The first inequality is clear. For the second, assume that C∗/(F) = ℓ and consider an
optimal computation. We have

fκ =

ℓ∑

λ=1

wλκ

(
M∑

µ=1

uλµxµ +

N∑

ν=1

u
′

λνyν

)(
M∑

µ=1

v
′

λµxµ +

N∑

ν=1

vλνyν

)

=

ℓ∑

λ=1

wλκ

(
M∑

µ=1

uλµxµ

)(
N∑

ν=1

vλνyν

)
+

ℓ∑

λ=1

wλκ

(
M∑

µ=1

v
′

λµxµ

)(
N∑

ν=1

u
′

λνyν

)
.

1Note the similarity to the definition of rank of a matrix. The rank of a matrix M is the minimum number
of rank-1 matrices (“dyads”) such such that M is the sum of these rank-1 matrices.

21

The terms of the form xixj and yiyj have to cancel each other, since they do not appear in
fκ.

Example 3.8 (Winograd’s algorithm [Win68]). Do products that are not bilinear help in
for the computation of bilinear forms? Here is an example. We consider the multiplication of
M × 2 matrices with 2 × N matrices. Then entries of the product are given by

fµν = xµ1y1ν + xµ2y2ν .

Consider the following MN products

(xµ1 + y2ν)(xµ2 + y1ν)
1 ≤ µ ≤ M,

1 ≤ ν ≤ N

We can write
fµν = (xµ1 + y2ν)(xµ2 + y1ν) − xµ1xµ2 − y1νy2ν ,

thus a total of MN +M +N products suffice. Setting M = 2, we can multiply 2×2 matrices
with 2 × n matrices with 3N + 2 multiplications. For the rank, the best we know is ⌈31

2N⌉
multiplications, which we get by repeatedly applying Strassen’s algorithm and possibly one
matrix-vector multiplication if N is odd.

Waksman [Wak70] showed that if char K 6= 2, then even MN + M + N − 1 products
suffice. We get that the multiplicative complexity of 2× 2 with 2× 3 matrix multiplication is
≤ 10. On the other hand, Alekseyev [Ale85] proved that the rank is 11.

22

Chapter 4

The exponent of matrix
multiplication

In the following 〈k,m, n〉 : Kk×m × Km×n → Kk×n denotes the the bilinear map that maps
a k × m-matrix A and an m × n-matrix B to their product AB. Since there is no danger of
confusion, we will also use the same symbol for the corresponding tensor and for the set of
bilinear forms {∑m

µ=1 XκµYµν | 1 ≤ κ ≤ k, 1 ≤ ν ≤ n}.

Definition 4.1. ω = inf{β | R(〈n, n, n〉) ≤ O(nβ)} is called the exponent of matrix multiplication.

In the definition of ω above, we only count bilinear products. For the asymptotic growth,
it does not matter whether we count all operations or only bilinear products. Let ω̃ = inf{β |
C(〈n, n, n〉) ≤ O(nβ)} with ¢(±) = ¢(∗/) = ¢(λ·) = 1.

Theorem 4.2. ω = ω̃, if K is infinite.

Proof. ” ≤ ” :
√

” ≥ ” : From the definition of ω, it follows that

∀ǫ > 0 : ∃m0 > 1 : ∀m ≥ m0 : R(〈m,m,m〉) ≤ α
︸︷︷︸

w.l.o.g. = 1

mw+ǫ

Choose such an m. Let r = R(〈m,m,m〉). To multiply mi ×mi-matrices we decompose them
into blocks of mi−1×mi−1-matrices and apply recursion. Let A(i) be the number of arithmetic
operations for the multiplication of mi × mi-matrices with this approach. We obtain

A(i) ≤ rA(i − 1) + c m2(i−1)

where c is the number of additions and scalar multiplications that are performed by the chosen

23

bilinear algorithm for 〈m,m,m〉 with r bilinear multiplications. Expanding this, we get

A(i) ≤ riA(0) + cm2(i−1)





i−2∑

j=0

rj

m2j





= riA(0) + c m2(i−1)

(r

m2

)i−1
− 1

r

m2
− 1

= riA(0) + c m2 ri−1 − m2(i−1)

r − m2

=
(

A(0) +
c m2

r(r − m2)

)

︸ ︷︷ ︸

constant

ri − c

r − m2
m2.

We have C(〈n′, n′, n′〉) ≤ C(〈n, n, n〉) if n′ ≤ n. (Recall that we can eliminate divisions.)
Therefore,

C(〈n, n, n〉) ≤ C(
〈

m⌈logm n⌉,m⌈logm n⌉,m⌈logm n⌉
〉

)

≤ A(⌈logm n⌉)
= O(r⌈logm n⌉)

= O(rlogm n)

= O(nlogm r).

Since r ≤ mω+ǫ, we have logm r ≤ ω + ǫ. Therefore,

C(〈n, n, n〉) = O(nlogm r) = O(nω+ǫ)

and

ω̃ ≤ ω + ǫ for all ǫ > 0.

This means ω̃ = ω, since ω̃ is an infimum.

To prove good upper bounds for ω, we introduce some operation on tensors and analyze
the behavior of the rank under these operations.

4.1 Permutations (of tensors)

Let t ∈ Kk×m×n and t =
r∑

j=1
tj with triads tj = aj1 ⊗ aj2 ⊗ aj3, 1 ≤ j ≤ r. Let π ∈ S3. For a

triad tj, let πtj = ajπ−1(1) ⊗ ajπ−1(2) ⊗ ajπ−1(3) and πt =
∑r

j=1 πtj. πt is well-defined. To see
this, let t =

∑s
i=1 bi1 ⊗ bi2 ⊗ bi3 be a second decomposition of t. We claim that

r∑

j=1

ajπ−1(1) ⊗ ajπ−1(2) ⊗ ajπ−1(3) =

s∑

i=1

biπ−1(1) ⊗ biπ−1(2) ⊗ biπ−1(3).

24

Let aj1 = (aj11, . . . , aj1k) and bi1 = (bi11, . . . , bi1k) and let aj2, aj3, bi2, and bi3 be given
analogously.

We have

te1e2e3 =
r∑

j=1

aj1e1 ⊗ aj2e2 ⊗ aj3e3 =
s∑

i=1

bi1e1 ⊗ bi2e2 ⊗ bi3e3 .

Thus

πte1e2e3 =

r∑

j=1

ajπ−1(1)e
π−1(1)

⊗ ajπ−1(2)e
π−1(2)

⊗ ajπ−1(3)e
π−1(3)

=
s∑

i=1

biπ−1(1)e
π−1(1)

⊗ biπ−1(2)e
π−1(2)

⊗ biπ−1(3)e
π−1(3)

.

π

Figure 4.1: Permutation of the dimensions

The proof of the following lemma is obvious.

Lemma 4.3. R(t) = R(πt).

Instead of permuting the dimensions, we can also permute the slices of a tensor. Let
t = (tijl) ∈ Kk×m×n and σ ∈ Sk. Then, for t′ = (tσ(i)jl), R(t′) = R(t).

More general, let A : Kk → Kk′
, B : Km → Km′

, and C : Kn → Kn′
be homomorphisms.

Let t =
∑r

j=1 tj with triads tj = aj1 ⊗ aj2 ⊗ aj3. For a triad tj, we set

(A ⊗ B ⊗ C)tj = A(aj1) ⊗ B(aj2) ⊗ C(aj3)

and

(A ⊗ B ⊗ C)t =

r∑

j=1

(A ⊗ B ⊗ C)tj.

Like above, be looking at a particular entry of t, it is easy to see that this is well-defined.

The proof of the following lemma is again obvious.

Lemma 4.4. R((A ⊗ B ⊗ C)t) ≤ R(t).

25

Figure 4.2: Permutation of the slices

Equality holds if A, B, and C are isomorphisms.

How does the tensor of matrix multiplication look like? Recall that the bilinear forms are
given by

Zκν =

m∑

µ=1

XκµYµν , 1 ≤ κ ≤ k, 1 ≤ ν ≤ n.

The entries of the corresponding tensor

(tκµ̄,µν̄,νκ̄) = t ∈ K(k×m)×(m×n)×(n×k)

are given by

tκµ̄,µν̄,νκ̄ = δκ̄κδµ̄µδν̄ν

where δij is Kronecker’s delta. (Here, each dimension of the tensor is addressed with a two-
dimensional index, which reflects the way we number the entries of matrices. If you prefer it,
you can label the entries of the tensor with indices from 1, . . . km, 1, . . . mn, and 1, . . . , nk.
We also “transposed” the indices in the third slice, to get a symmetric view of the tensor.)

Let π = (123). Then for πt =: t′ ∈ K(n×k)×(k×m)×(m×n), we have

t′νκ̄,κµ̄,µν̄ = δν̄νδκ̄κδµ̄µ

= δκ̄κδµ̄µδν̄ν

= tκµ̄,µν̄,νκ̄

Therefore,

R(〈k,m, n〉) = R(〈n, k,m〉) = R(〈m,n, k〉)
Now, let t′′ = (tµκ̄,νµ̄,κ̄ν). We have R(t) = R(t′′), since permuting the “inner” indices

corresponds to permuting the slices of the tensor.

26

Next, let π = (12)(3). Let πt′′ =: t′′′ ∈ K(n×m)×(m×k)×(k×n). We have,

t′′′νµ̄,µκ̄,κν̄ = δµ,µ̄δκ,κ̄δν,ν̄

= tκ̄µ,µ̄ν,ν̄κ.

Therefore,
R(〈k,m, n〉) = R(〈n,m, k〉).

The second transformation corresponds to the well-known fact that AB = C implies BT AT =
CT .

4.2 Products and sums

Let t ∈ Kk×m×n and t′ ∈ Kk′×m′×n′
. The direct sum of t and t′, s := t⊕t′ ∈ K(k+k′)×(m+m′)×(n+n′),

is defined as follows:

sκµν =







tκµν if 1 ≤ κ ≤ k, 1 ≤ µ ≤ m, 1 ≤ ν ≤ n

t′κ−k,µ−m,ν−n if k + 1 ≤ κ ≤ k + k′, m + 1 ≤ µ ≤ m + m′, n + 1 ≤ ν ≤ n + n′

0 otherwise

m

m′

k

k′

n

n′

Figure 4.3: Sum of two tensors

Lemma 4.5. R(t ⊕ t′) ≤ R(t) + R(t′)

Proof. Let t =
r∑

i=1
ui ⊗ vi ⊗ wi and t′ =

r∑

i=1
u′

i ⊗ v′i ⊗ w′
i. Let

ûi = (ui1, · · · , uik
︸ ︷︷ ︸

ui

, 0, · · · , 0
︸ ︷︷ ︸

k′

) and

û′
i = (0, · · · , 0

︸ ︷︷ ︸

k

, u′
i1, · · · , u′

ik
︸ ︷︷ ︸

u′
i

).

and define v̂i, ŵi and v̂′i, ŵ′
i analogously. And easy calculation shows that

t ⊕ t′ =

r∑

i=1

ûi ⊗ v̂i ⊗ ŵi +

r′∑

j=1

û′
i ⊗ v̂′i ⊗ ŵ′

i,

which proves the lemma.

27

Research problem 4.1. (Strassen’s additivity conjecture) Show that for all tensors t and
t′, R(t ⊕ t′) = R(t) + R(t′), that is, equality always holds in the lemma above.

The tensor product t⊗ t′ ∈ Kkk′×mm′×nn′
of two tensors t ∈ Kk×m×n and t′ ∈ Kk′×m′×n′

is defined by
t ⊗ t′ =

(
tκµν t′κ′µ′ν′

)

1 ≤ κ ≤ k, 1 ≤ κ′ ≤ k′

1 ≤ µ ≤ m, 1 ≤ µ′ ≤ m′

1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n′

It is very convenient to use double indices κ, κ′ to “address” the slices 1, . . . , kk′ of the tensor
product. The same is true for the other two dimensions.

⊗

Figure 4.4: Product of two tensors

Lemma 4.6. R(t ⊗ t′) ≤ R(t)R(t′).

Proof. Let t =
r∑

i=1
ui ⊗ vi ⊗ wi and t′ =

r′∑

i=1
u′

i ⊗ v′i ⊗ w′
i. Let ui ⊗ u′

j
Def
= (uiκu′

jκ′) ∈ Kkk′

In the same way we define vi ⊗ v′j , wi ⊗ w′
j. We have

(ui ⊗ u′
j) ⊗ (vi ⊗ v′j) ⊗ (wi ⊗ w′

j) = (uiκu′
jκ′ · viµv′jµ′ · wiνw′

jν′) 1 ≤ κ ≤ k, 1 ≤ κ′ ≤ k′

1 ≤ µ ≤ m, 1 ≤ µ′ ≤ m′

1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n′

∈ Kkk′×mm′×nn′ ∼= K(k×k′)×(m×m′)×(n×n′)

and

r∑

i=1

r′∑

j=1

(ui ⊗ u′
j) ⊗ (vi ⊗ v′j) ⊗ (wi ⊗ w′

j) = (

r∑

i=1

r′∑

j=1

uiκu′
jκ′viµv′jµ′wiνw

′
iν′) 1 ≤ κ ≤ k, 1 ≤ κ′ ≤ k′

1 ≤ µ ≤ m, 1 ≤ µ′ ≤ m′

1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n′

=
((

r∑

i=1

uiκviµwiν

)

︸ ︷︷ ︸

tκµν

·
(

r′∑

j=1

u′
jκv′jµw′

jν′

)

︸ ︷︷ ︸

t′
κ′µ′ν′

)

1 ≤ κ ≤ k, 1 ≤ κ′ ≤ k′

1 ≤ µ ≤ m, 1 ≤ µ′ ≤ m′

1 ≤ ν ≤ n, 1 ≤ ν′ ≤ n′

= t ⊗ t′,

which proves the lemma.

For the tensor product of matrix multiplications, we have

〈k,m, n〉 ⊗
〈
k′,m′, n′

〉
= (δκκ̄δµµ̄δνν̄δκ′κ̄′δµ′µ̄′δν′ν̄′)

= (δκκ̄δκ′κ̄′δµµ̄δµ′µ̄′δνν̄δν′ν̄′)

=
(
δ(κ,κ′),(κ̄,κ̄′)δ(µ,µ′),(µ̄,µ̄′)δ(ν,ν′),(ν̄,ν̄′)

)

=
〈
kk′,mm′, nn′

〉

28

Thus, the tensor product of two matrix tensors is a bigger matrix tensor. This corresponds to
the well known identity (A⊗B)(A′⊗B′) = (AA′⊗BB′) for the Kronecker product of matrices.
(Note that we use quadruple indices to address the entries of the Kronecker products and also
of the slices of of 〈k,m, n〉 ⊗ 〈k′,m′, n′〉.)

Using this machinery, we can show that whenever we can multiply matrices of a fixed
format efficiently, then we get good bounds for ω.

Theorem 4.7. If R(〈k,m, n〉) ≤ r, then ω ≤ 3 · logkmn r.

Proof. If R(〈k,m, n〉) ≤ r, then R(〈n, k,m〉) ≤ r and R(〈m,n, k〉) ≤ r. Thus

R(〈k,m, n〉 ⊗ 〈n, k,m〉 ⊗ 〈m,n, k〉
︸ ︷︷ ︸

=〈kmn,kmn,kmn〉

) ≤ r3

and, with N = kmn,

R(
〈
N i, N i, N i

〉
≤ r3i = (N3logN r)i = (N i)3logN r

for all i ≥ 1. Therefore, ω ≤ 3 logN r.

Example 4.8 (Matrix tensor of small formats). What do we know about the rank of matrix
tensors of small formats?

• R(〈2, 2, 2〉) ≤ 7 =⇒ ω ≤ 3 · log23 7 = log2 7 ≈ 2.81

• R(〈2, 2, 3〉) ≤ 11. (This is achieved by doing Strassen once and one trivial matrix-vector
product.) This gives a worse bound than 2.81. A lower bound of 11 is shown by [Ale85].

• 14 ≤ R(〈2, 3, 3〉) ≤ 15, see [BCS97] for corresponding references.

• 19 ≤ R(〈3, 3, 3〉) ≤ 23. The lower bound is shown in [Blä03], the upper bound is due to
Laderman [Lad76]. (We would need ≤ 21 to get an improvement.)

• R(〈70, 70, 70〉) ≤ 143.640 [Pan80]. This gives ω ≤ 2.80.

Research problem 4.2. What’s the complexity of tensor rank? Hastad [] has shown that
this problem is NP-complete over Fq and NP-hard over Q. What upper bounds can we show
over Q? Over R, the problem is decidable, since it reduces to quantifier elemination.

29

30

Chapter 5

Border rank

Over R, C, the rank of matrices is semi-continuous. Let

Cn×n ∋ Aj → A = lim
j→∞

Aj

If for all j, rk(Aj) ≤ r, then rk(A) ≤ r. rk(Aj) ≤ r means all (r + 1)× (r + 1) minors vanish.
But since minors are continuous functions, all (r + 1) × (r + 1) minor of A vanish, too.

The same is not true for 3-dimensional tensors. Consider multiplication of univariate
polynomials of degree one modulo X2:

(a0 + a1X)(b0 + b1X) = a0b0 + (a1b0 + a0b1)X + a1b1X
2

The tensor corresponding to the two bilinear forms a0b0 and a1b0 + a0b1 has rank 3:

1 0

0 0

0 1

1 0

To show the lower bound, we use the substitution method. We first set a0 = 0, b0 = 1.
Then we still compute a1. Thus there is a product that depends on a1, say one factor is

αa0 + βa1
︸︷︷︸

6=0

. When we replace a1 by −α

β
a0, we kill one product. We still compute a0b0 and

−α

β
a0b0 + a0b1. Next, set a0 = 1, b0 = 0. Then we still compute b1. We can kill another

product by substituting b1 as above. After this, we still compute a0b0, which needs one
product.

However, we can approximate the tensor above by tensors of rank two. Let

t(ǫ) = (1, ǫ) ⊗ (1, ǫ) ⊗ (0,
1

ǫ
) + (1, 0) ⊗ (1, 0) ⊗ (1,−1

ǫ
)

t(ǫ) obviously has rank two for every ǫ > 0. The slices of t(ǫ) are

1 0

0 0

0 1

1 ǫ

31

Thus t(ǫ) → t if ǫ → 0.
Bini, Capovani, Lotti and Romani [BCLR79] used this effect to design better matrix

multiplication algorithms. They started with the following partial matrix multiplication:

(
x11 x12

x21 x22

)(
y11

y21

∣
∣
∣
∣

y12

y22

)

=

(
z11

z21

∣
∣
∣
∣

z12

z22////

)

where we only want to compute three entries of the result. We have R({z11, z12, z21}) = 6
but we can approximate {z11, z12, z21} with only five products.

That the rank is six can be shown using the substitution method. Consider z12. It clearly
depends on y12, so there is a product with one factor being y12 + ℓ(y11, y21, y22) where ℓ is
a linear form. Substitute y12 → −ℓ(y11, y21, y22). This substitution only affects z12. After
this substitution we still compute ¯z12 = x11(−l(y11, y21, y22)) + x12y22. ¯z12 still depends on
y22. Thus we can substitute again y22 → −ℓ′(y11, y21). This kills two products and we still
compute z11, z21.

Consider the following five products:

p1 = (x12 + ǫx22)y21

p2 = x11(y11 + ǫy12)

p3 = x12(y12 + y21 + ǫy22)

p4 = (x11 + x12 + ǫx21)y11

p5 = (x12 + ǫx21)(y11 + ǫy22)

We have

ǫz11 = ǫp1 + ǫp2 + O(ǫ2)

ǫz12 = p2 − p4 + p5 + O(ǫ2)

ǫz21 = p1 − p3 + p5 + O(ǫ2)

Now we take a second copy of the partial matrix multiplication above, with new variables.
With these two copies, we can multiply 2 × 2-matrices with 2 × 3-matrices (by identifying
some of the variables in the copy). So we can approximate 〈2, 2, 3〉 with 10 multiplications.
If approximation would be as good as exact computation, then we would get ω ≤ 2.79... out
of this.

We will formalize the concept of approximation. Let K be a field and K[[ǫ]] =: K̂. The
role of the small quantity ǫ in the beginning of this chapter is now taken by the indeterminate
ǫ.

Definition 5.1. Let k ∈ N, t ∈ Kk×m×n.

1. Rh(t) = {r | ∃uρ ∈ K[ǫ]k, vρ ∈ K[ǫ]m, wρ ∈ K[ǫ]n :
r∑

ρ=1
uρ ⊗ vρ ⊗ wρ = ǫht + O(ǫh+1)}

2. R(t) = min
h

Rh(t), R(t) is called the border rank of t.

Remark 5.2. ()

1. R0(t) = R(t)

32

2. R0(t) ≥ R1(t) ≥ ... = R(t)

3. For Rt it is sufficient to consider powers up to ǫh in uρ, vρ, wρ.

Theorem 5.3. Let t ∈ Kk×m×n, t′ ∈ Kk′×m′×n′
. We have

1) ∀π ∈ S3 : Rh(πt) = Rh(t).

2) Rmax{h,h′}(t ⊕ t′) ≤ Rh(t) + Rh′(t′).

3) Rh+h′(t ⊗ t′) ≤ Rh(t) · Rh′(t′).

Proof. 1) Clear.

2) W.l.o.g. h ≥ h′. There are approximate computations such that

r∑

ρ=1

uρ ⊗ vρ ⊗ wρ = ǫht + O(ǫh+1) (5.1)

r′∑

ρ=1

ǫh−h′

u′
ρ ⊗ v′ρ ⊗ w′

ρ = ǫ
h
6h′ t′ + O(ǫ

h
6h′ +1

) (5.2)

Now we can combine these two computations as we did in the case of rank.

3) Let t = (tijl) and t′ = (t′i′j′l′). We have t ⊗ t′ = (tijl · t′i′j′l′) ∈ Kkk′×mm′×nn′
. Take two

approximate computations for t and t′ as above. Viewed as exact computations over K[[ǫ]],
their tensor product computes over the following:

T = ǫht + ǫh+1t̂, T ′ = ǫh′

t′ + ǫh′+1t̂′

with t̂ ∈ K[ǫ]k×m×n and t̂′ ∈ K[ǫ]k
′×m′×n′

. The tensor product of these two computations
computes:

T ⊗ T ′ = (ǫhtijl + ǫh + 1t̂ijl)(ǫ
h′

t′i′j′l′ + ǫh′+1t̂′i′j′l′)

= (ǫh+h′

tijlt
′
i′j′l′ + O(ǫh+h′+1))

= ǫh+h′

t ⊗ t′ + O(ǫh+h′+1)

But this is an approximate computation for t ⊗ t′.

The next lemma shows that we can turn approximate computations into exact ones.

Lemma 5.4. There is a constant ch such that for all t : R(t) ≤ chRh(t). ch depends polyno-

mially on h, in particular ch ≤
(

h+2
2

)

.

Remark 5.5. (Better bound for ch) Over infinite fields, even ch = 1 + 2h works.

Proof. Let t be a tensor with border rank r and let

r∑

ρ=1

(
h∑

α=0

ǫαuρα

)

︸ ︷︷ ︸

∈K[ǫ]k

⊗





h∑

β=0

ǫβvρβ



⊗





h∑

γ=0

ǫγwργ



 = ǫht + O(ǫh+1)

33

h+2

Figure 5.1: By choosing two out of h+2 squares, we get a decompsition of h into three pieces.

Thus there are
(

h+2
2

)

such decompositions.

The lefthand side of the equation can be rewritten as follows:

r∑

ρ=1

h∑

α=0

h∑

β=0

h∑

γ=0

ǫα+β+γuρα ⊗ vρβ ⊗ wργ

By comparing the coefficients of ǫ powers, we see that t is the sum of all uρα ⊗ vρβ ⊗wργ with

α + β + γ = h. Thus it is only necessary to compute
(

h+2
2

)

products.

A first attempt to use the results above is to do the following:

R1(〈2, 2, 3〉) ≤ 10
R1(〈3, 2, 2〉) ≤ 10 (Theorem 5.3.1)
R1(〈2, 3, 2〉) ≤ 10

R3(〈12, 12, 12〉) ≤ 1000 (Theorem 5.3.3)

=⇒ R(〈12, 12, 12〉) ≤
(3+2

2

)
· 1000 = 10 · 1000 = 10000

But trivially, R(〈12, 12, 12〉) ≤ 123 = 1728. It turns out that it is better to first “tensor up”
and then turn the approximate computation into the exact one.

Theorem 5.6. If R(〈k,m, n〉) ≤ r then ω ≤ 3 logkmn r.

Proof. Let N = kmn and let Rh(〈k,m, n〉) ≤ r.
By Theorem 5.3, we get R3h(〈N,N,N〉) ≤ r3 and R3hs(〈N s, N s, N s〉) ≤ r3s for all s. By
Lemma 5.4, this yields R(〈N s, N s, N s〉) ≤ c3hsr

3s. Therefore,

ω ≤ logNs(c3hsr
3s)

= 3s logNs(r) + logNs(c3hs)

= 3 logN (r) +
1

s
logN (poly(s))
︸ ︷︷ ︸

→0

Since ω is an infimum, we get ω ≤ 3 logN (r).

Corollary 5.7. ω ≤ 2.79...

34

Chapter 6

τ-Theorem

In this chapter, we will consider direct sums of matrix tensors, namely, sums of the form
R(〈k, 1, n〉 ⊕ 〈1,m, 1〉). The first summand is the product of vector of length k with a vector
of length n, forming a rank-one matrix. The second summand is a scalar product of two
vectors of length m.

Remark 6.1. ()

1. R(〈k, 1, n〉 ⊕ 〈1,m, 1〉) = k · n + m

2. R(〈k, 1, n〉) = k · n and R(〈1,m, 1〉) = m

3. R(〈k, 1, n〉 ⊕ 〈1,m, 1〉) ≤ k · n + 1 with m = (n − 1)(k − 1).

The first statement is shown by using the substitution method. We first substitute m
variables belonging to one vector of 〈1,m, 1〉. Then we set the variables of the other vector
to zero. We still compute 〈k, 1, n〉.

For the second statement, it is sufficient to note that both tensors consist of kn and m
linearly independent slices, respectively.

For the third statement, we just prove the case k = n = 3. From this, the general
construction becomes obvious. So we want to compute aibj for 1 ≤ i, j ≤ 3 and

∑4
µ=1 uµvµ.

Consider the following products

p1 = (a1 + ǫu1)(b1 + ǫv1)

p2 = (a1 + ǫu2)(b2 + ǫv2)

p3 = (a2 + ǫu3)(b1 + ǫv3)

p4 = (a2 + ǫu4)(b2 + ǫv4)

p5 = (a3 − ǫu1 − ǫu3)b1

p6 = (a3 − ǫu2 − ǫu4)b2

p7 = a1(b3 − ǫv1 − ǫv2)

p8 = a2(b3 − ǫv3 − ǫv4)

p9 = a3b3

These nine product obviously compute aibj , 1 ≤ i, j ≤ 3. Furthermore,

ǫ2
4∑

µ=1

uµvµ = p1 + · · · + p9 − (a1 + a2 + a3)(b1 + b2 + b3).

35

Thus ten products are sufficient to approximate 〈3, 1, 3〉 ⊕ 〈1, 4, 1〉.
The second and the third statement together show, that the additivity conjecture is not

true for the border rank. We will try to make use of this in the following.

Definition 6.2. Let t ∈ Kk×m×n and t′ ∈ Kk′×m′×n′
.

1. t is called a restriction of t′ if there are homomorphisms α : Kk′ → Kk, β : Km′ → Km,
and γ : Kn′ → Kn such that t = (α ⊗ β ⊗ γ)t′. We write t ≤ t′.

2. t and t′ are isomorphic if α, β, γ are isomorphisms (t ∼= t′).

In the following, 〈r〉 denotes the tensor in Kr×r×r that has a 1 in the positions (ρ, ρ, ρ),
1 ≤ ρ ≤ r, and 0s elsewhere. This tensor corresponds to the r bilinear forms xρyρ, 1 ≤ ρ ≤ r
(r independent products).

Lemma 6.3. R(t) ≤ r ⇔ t ≤ 〈r〉

Proof. ”⇐”: immediatly from Lemma 4.4.

”⇒”: 〈r〉 =
r∑

ρ=1
eρ ⊗ eρ ⊗ eρ, where eρ is the ρth unit vector. If the rank of t is ≤ r, then we

can write t as the sum of r triads,

t =

r∑

ρ=1

uρ ⊗ vρ ⊗ wρ.

We define three homomorphisms:

α is defined by eρ 7→ uρ; 1 ≤ ρ ≤ r

β is defined by eρ 7→ vρ; 1 ≤ ρ ≤ r

γ is defined by eρ 7→ wρ; 1 ≤ ρ ≤ r

By construction,

(α ⊗ β ⊗ γ)〈r〉 =

r∑

ρ=1

α(eρ)
︸ ︷︷ ︸

=uρ

⊗β(eρ)
︸ ︷︷ ︸

=vρ

⊗ γ(eρ)
︸ ︷︷ ︸

=vρ

= t

which finishs the proof.

Observation. 1. t ⊗ t′ ∼= t′ ⊗ t

2. t ⊗ (t′ ⊗ t′′) ∼= (t ⊗ t′) ⊗ t′′

3. t ⊕ t′ ∼= t′ ⊕ t

4. t ⊕ (t′ ⊕ t′′) ∼= (t ⊕ t′) ⊕ t′′

5. t ⊗ 〈1〉 ∼= t

6. t ⊕ 〈0〉 ∼= t

7. t ⊗ (t′ ⊕ t′′) ∼= t ⊗ t′ ⊕ t ⊗ t′′.

36

Above, 〈0〉 is the empty tensor in K0×0×0. So the (isomorphism classes of) tensors form a
ring. (Remark: If two tensors are isomorphic, then the live in they same space Kk×m×n. If t
is any tensor and n is a tensor that is completely filled with zeros, then t is not isomorphic to
t⊕n. But from a computational viewpoint, these tensors are the same. So it is also useful to

use the wider notion of equivalence. Two tensors t and t′ are ˜isomorphic, if there are tensors
n and n′ completely filled with zeros such that t ⊕ n and t′ ⊕ n′ are isomorphic.)

The main result of this chapter is the following theorem due to Schönhage [Sch81]. It is
often called τ -theorem in the literature, because the letter τ has a leading role in the original
proof. But in our proof, it only has a minor one.

Theorem 6.4. (Schönhage’s τ -theorem) If R(
p⊕

i=1
〈ki,mi, ni〉) ≤ r with r > p then ω ≤ 3τ

where τ is defined by
p
∑

i=1

(ki · mi · ni)
τ = r.

Notation. Let f ∈ N, t be a tensor. f ⊙ t
Def
= t ⊕ . . . ⊕ t
︸ ︷︷ ︸

f times

.

Lemma 6.5. If R(f ⊙ 〈k,m, n〉) ≤ g, then ω ≤ 3 ·
log
⌈

g
f

⌉

log(kmn)
.

Proof. We first show that for all s, R(f ⊙ 〈ks,ms, ns〉) ≤
⌈

g

f

⌉s

· f .

The proof is by induction in s: If s = 1, this is just the assumption of the lemma.
s → s + 1: We have

f ⊙
〈
ks+1,ms+1, ns+1

〉
= (f ⊙ 〈k,m, n〉)
︸ ︷︷ ︸

≤〈g〉

⊗〈ks,ms, ns〉

≤ 〈g〉 ⊗ 〈ks,ms, ns〉
= g ⊙ 〈ks,ms, ns〉.

Therefore,

R(f ⊙
〈
ks+1,ms+1, ns+1

〉
) ≤ R(g ⊙ 〈ks,ms, ns〉)
≤ R(⌈ g

f
⌉ · f ⊙ 〈ks,ms, ns〉)

= ⌈ g

f
⌉ · ⌈ g

f
⌉s · f

= ⌈ g

f
⌉s+1f

This shows the claim. Now use the claim to proof our lemma: R(〈ks,ms, ns〉) ≤ ⌈ g

f
⌉s · f

implies

ω ≤
3s log⌈ g

f ⌉ + log(f) · 3
s · log(kmn)

=
3 log⌈ g

f ⌉ +

→0 for s→∞
︷ ︸︸ ︷

log(f) · 3

s
log(kmn)

.

37

Since ω is an infimum, we get ω ≤
3 log⌈ g

f ⌉
log(kmn)

.

Proof of Theorem 6.4. There is an h such that

Rh(

p
⊕

i=1

〈ki,mi, ni〉) ≤ r.

By taking tensor powers and using the fact that the tensor form a ring, we get

Rhs









⊕

σ1+...+σp=s

s!

σ1! · . . . · σp!
⊙
〈

p
∏

i=1

kσi

i

︸ ︷︷ ︸

=k′

,

p
∏

i=1

mσi

i

︸ ︷︷ ︸

=m′

,

p
∏

i=1

nσi

i

︸ ︷︷ ︸

=n′

〉









≤ rs.

k′,m′, n′ depend on σ1, . . . , σp. Next, we convert the approximate computation into an exact
one and get

R




⊕

σ1+...+σp=s

s!

σ1! · . . . · σp!
⊙
〈
k′,m′, n′

〉



 ≤ rs · chs
︸︷︷︸

polynomial in h and s

.

Define τ by
∑

s=σ1+...+σp

s!

σ1! · . . . · σp!
(k′ · m′ · n′)τ

︸ ︷︷ ︸

=(1)

= rs

Fix σ1, . . . , σp such that (1) is maximized. Then k′, m′, and n′ are constant. To apply
Lemma 6.5, we set

f =
s!

σ1! · . . . · σp!
< ps,

g = rs · chs,

m = m, h = h′, n = n′.

The number of all ~σ with σ1 + . . . + σp = s is

(
s + p − 1

p − 1

)

=
s + p − 1

p − 1
· s + p − 2

p − 2
. . . ≤ (s + 1)p−1.

Thus

f · (kmn)τ ≥ σs

(s + 1)p−1
.

We get that ⌈

g

f

⌉

≤ rs · chs

f
+ 1 ≤ (kmn)τ · (s + 1)p−1 · chs

Furthermore,

(kmn)τ ≥ rs

(s + 1)p−1f
≥ rs

(s + 1)p−1ps
(6.1)

38

By Lemma 6.5,

ω ≤ 3 · τ · log(kmn) + (p − 1) · log(s + 1) + log(chs)

log(kmn)

= 3τ +
(p − 1) log(s + 1) + log(chs)

log(kmn)
→

s→∞
3τ

because log(kmn) ≥ s · (log r − log p)
︸ ︷︷ ︸

>0

−O(log(s)) by (6.1).

By using the example at the beginning of this chapter with k = 4 and n = 3, we get the
following bound out of the τ -theorem.

Corollary 6.6. ω ≤ 2.55.

39

40

Chapter 7

Strassen’s Laser Method

Consider the following tensor

Str =

q
∑

i=1

(ei ⊗ e0 ⊗ ei
︸ ︷︷ ︸

〈q,1,1〉

+ e0 ⊗ ei ⊗ ei
︸ ︷︷ ︸

〈1,1,q〉

)

This tensor is similar to 〈1, 2, q〉, only the “directions” of the two scalar products are not the
same. But Strassen’s tensor can be approximated very efficiently. We have

q
∑

i=1

(e0 + ǫei) ⊗ (e0 + ǫei) ⊗ ei =

q
∑

i=1

e0 ⊗ e0 ⊗ ei + ǫ

q
∑

i=1

(ei ⊗ e0 ⊗ ei + e0 ⊗ ei ⊗ ei) + O(ǫ2)

If we subtract the triad e0⊗e0⊗
∑q

i=1 ei, we get an approximation of Str. Thus R(Str) ≤ q+1.

Definition 7.1. Let t ∈ Kk×m×n be a tensor. Let the sets Ii, Jj , Lℓ be sucht that:

1 ≤ i ≤ p : Ii ⊆ {1, . . . , k},
1 ≤ j ≤ q : Jj ⊆ {1, . . . ,m},
1 ≤ l ≤ s : Lℓ ⊆ {1, . . . , n}.

These sets are called a decomposition D if the following holds:

I1∪̇I2∪̇ . . . ∪̇Ip = {1, . . . , k},
J1∪̇J2∪̇ . . . ∪̇Jq = {1, . . . ,m},

L1∪̇L2∪̇ . . . ∪̇Ls = {1, . . . , n}.

tIi,Jj,Lℓ
∈ K |Ii|×|Jj|×|Lℓ| is the tensor that one gets when restricting t to the slices in Ii, Jj , Lℓ,

i.e,

(tIi,Jj,Lℓ
)a,b,c = tâ,b̂,ĉ

Fabian promised to draw a picture.

Figure 7.1: Strassen’s tensor

41

where â = the ath largest element in Ii and b̂ and ĉ are defined analogously. tD ∈ Kp×q×s =
(tD,i,j,l) is defined by:

tD,i,j,l =

{
1 if tIi,Jj ,Lℓ

6= 0
0 otherwise

Finally, suppD t
Def
= {(i, j, ℓ) | tIi,Jj ,Lℓ

6= 0}.

We can think of giving the tensors an “inner” and an “outer” structure. The tIi,Jj,Lℓ
are

the inner tensor, the tensor tD is the outer structure. Now we decompose Strassen’s tensor
and analyse its outer structure: Define D as follows:







{0} ∪̇ {1, . . . , q} = {0, . . . , q}
= I0 = I1

{0} ∪̇ {1, . . . , q} = {0, . . . , q}
= J0 = J1

{1, . . . , q} = {1, . . . , q}
= L1

The outer structure is a matrix tensor,

StrD =

(
1 0
0 1

)

= 〈1, 2, 1〉.

The inner structures are matrix tensors, too,

StrIi,Jj,Lℓ
∈ {〈q, 1, 1〉, 〈1, 1, q〉}, for all (i, j, k) ∈ suppD Str.

Lemma 7.2. Let T ,T ′ be sets of tensors. Let t ∈ Kk×m×n, t′ ∈ Kk′×m′×n′
with decompo-

sitions D, D′. Assume that tIi,Jj ,Ll
∈ T for all (i, j, l) ∈ suppDt and t′I′i,J ′

j ,L′
l
∈ T ′ for all

(i, j, l) ∈ suppDt′. Then

Ii × I ′i′ , 1 ≤ i ≤ p , 1 ≤ i′ ≤ p′

Jj × J ′
j′ , 1 ≤ j ≤ q , 1 ≤ j′ ≤ q′

Ll × L′
l′ , 1 ≤ l ≤ s , 1 ≤ l′ ≤ s′






=: D ⊗ D′

is a decomposition of t ⊗ t′ such that

(t ⊗ t′)D⊗D′ ∼= tD ⊗ t′D′

Furthermore

(t ⊗ t′)Ii×I′
i′

,Jj×J ′
j′

,Ll×L′
l′
∈ T ⊗

︸︷︷︸

elementwise

T ′

for all (i, j, l) ∈ suppDt and (i′, j′, l′) ∈ suppD′t′.

Exercise 7.1. Proof the lemma above.

In the same way, we can prove a similar theorem for sums of tensors and for permutation
of tensor.

42

Now take the permutation π = (1 2 3). We have

π StrπD = 〈1, 1, 2〉 and π2 Strπ2D = 〈2, 1, 1〉

Taking the tensor product of these three tensors and using Lemma 7.2, we get:

(Str⊗π Str⊗π2 Str)D⊗πD⊗π2D
Def
= Sym-Str = 〈2, 2, 2〉

with every nonzeor inner tensor in begin an element of {〈k,m, n〉 | k · m · n = q3}
If a tensor t is a restriction of a tensor t′, then R(t) ≤ R(t′). It is easy to check that also

R(t) ≤ R(t′). We can generalize restrictions further such that they are still compliant with
border rank (but not with rank). Let A(ǫ) ∈ K[ǫ]k×k′

, B(ǫ) ∈ K[ǫ]m×m′
, C(ǫ) ∈ K[ǫ]n×n′

be polynomial matrices, i.e., matrices whose entries are polynomials in ǫ. For a tensor t′ ∈
Kk′×m′×n′

with a decomposition t′ =
r∑

ρ=1
uρ ⊗ vρ ⊗ wρ, we set

(A(ǫ) ⊗ B(ǫ) ⊗ C(ǫ))t′
Def
=

r∑

ρ=1

A(ǫ)uρ ⊗ B(ǫ)vρ ⊗ C(ǫ)wρ.

As before, it is easy to check that this definition is independent of the decomposition and
therefore well-defined. is well-defined.

Definition 7.3. Let t ∈ Kk×m×n, t′ ∈ Kk′×m′×n′
. t is a degeneration of t′ if there are

A(ǫ) ∈ K[ǫ]k×k′
, B(ǫ) ∈ K[ǫ]m×m′

, C(ǫ) ∈ K[ǫ]n×n′
and q ∈ N such that

ǫqt = (A(ǫ) ⊗ B(ǫ) ⊗ C(ǫ))t′ + O(ǫq+1).

We will write t Eq t′ or t E t′.

Remark 7.4. ()R(t) ≤ r ⇔ t E 〈r〉

Lemma 7.5. For all odd n, 〈⌈

3

4
n2

⌉〉

E 〈n, n, n〉

Furthermore, this degeneration is achieved by a monomial mapping, that is, the matrices A(ǫ),
B(ǫ), and C(ǫ) are diagonal matrices with ǫ-powers on the diagonal.

Before we proof this lemma, let us understand what is means. R(〈n, n, n〉) ≤ r or equiv-
alently, 〈n, n, n〉 E 〈r〉, means that with r bilinear multiplication, we can “buy” the tensor
〈n, n, n〉. 〈ℓ〉 E 〈n, n, n〉 means, that if we “resell” the tensor 〈n, n, n〉, then we get ℓ bilinear
multiplications back.

Proof. Let n = 2ν + 1. We label rows and colums of the matrices from −ν, . . . , ν. We define
the matrices A, B, and C by specifying they values on the standard basis of kn×n:

A : eij → eij · ǫi2+2ij

B : ejk → ejk · ǫj2+2jk

C : eki → eki · ǫk2+2ki

so each matrix is a diagonal matrix with ǫ powers on the diagonal.

43

We have

〈n, n, n〉 =

n∑

i,j,k=1

eij ⊗ ejk ⊗ eki,

thus

(A ⊗ B ⊗ C)〈n, n, n〉 =
n∑

i,j,k=1

ǫi2+2ij+j2+2jk+k2+2ki
︸ ︷︷ ︸

=ǫ(i+j+k)2

eij ⊗ ejk ⊗ eki.

If i + j + k = 0 then







i, k
i, j
j, k






determine







j
k
i






. So all terms with exponent 0 form a

set of independent products. It is easy to see that there are ≥ 3

4
n2 triples (i, j, k) with

i + j + k = 0.

Now we start with the tensor Sym-Str and the corresponding decomposition Sym-D. Then
we take sth tensor power. The outer structure Sym-Str⊗s

Sym-D⊗s is isomorphic to 〈2s, 2s, 2s〉.
The nonzero tensors of the inner structure are all of the form 〈k,m, n〉 with kmn = q3s.

We have 〈

3

4
22s

〉

E
︸︷︷︸

Lemma 7.5

(Sym-Str)⊗s
Sym-D⊗s

Since the degeneration above is a monomial degeneration, we get, by extending the degener-
ation to the whole tensor, that a direct sum of 3

42s matrix tensors 〈ki,mi, ni〉, 1 ≤ i ≤ 3
42s

with kimini = q3s. To this sum, we can apply the τ -theorem and get

(q3s)τ
3

4
22s ≤ (q + 1)3s

q3τ s

√

3

4
︸︷︷︸

→1

22 ≤ (q + 1)3.

Therefore, ω ≤ logq

(q + 1)3

4
. This is minimal for q = 5 and gives us the result ω ≤ 2.48.

Theorem 7.6. (Strassen [Str87]) ω ≤ 2.48

Research problem 7.1. What is R(Sym-Str)? Is it strictly smaller than (q + 1)3.

44

Bibliography

[Ale85] Valery B. Alekseyev. On the complexity of some algorithms of matrix multiplica-
tion. J. Algorithms, 6(1):71–85, 1985.

[BCLR79] Dario Bini, Milvio Capovani, Grazia Lotti, and Francesco Romani. O(n2.7799)
complexity for matrix multiplication. Inform. Proc. Letters, 8:234–235, 1979.

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complexity
Theory. Springer, 1997.

[Blä03] Markus Bläser. On the complexity of the multiplication of matrices of small for-
mats. J. Complexity, 19:43–60, 2003.

[Bra39] A. T. Brauer. On addition chains. Bulletin of the American Mathematical Society,
45:736–739, 1939.

[Bsh95] Nader H. Bshouty. On the additive complexity of 2 × 2-matrix multiplication.
Inform. Proc. Letters, 56(6):329–336, 1995.

[Lad76] J. Laderman. A noncommutative algorithm for multiplying 3 × 3–matrices using
23 multiplications. Bull. Amer. Math. Soc., 82:180–182, 1976.

[Pan80] Victor Ya. Pan. New fast algorithms for matrix multiplication. SIAM J. Comput,
9:321–342, 1980.

[Sch37] Arnold Scholz. Aufgabe 253. Jahresberichte der deutschen
Mathematiker-Vereinigung, 47:41–42, 1937.

[Sch81] Arnold Schönhage. Partial and total matrix multiplication. SIAM J. Comput,
10:434–455, 1981.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356,
1969.

[Str73] Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202,
1973.

[Str87] Volker Strassen. Relative bilinear complexity and matrix multiplication. J. Reine
Angew. Math., 375/376:406–443, 1987.

[Wak70] A. Waksman. On Winograd’s algorithm for inner products. IEEE Trans. Comput.,
C–19:360–361, 1970.

45

[Win68] Shmuel Winograd. A new algorithm for inner products. IEEE Trans. Comput.,
C–17:693–694, 1968.

[Win71] Shmuel Winograd. On multiplication of 2×2–matrices. Lin. Alg. Appl., 4:381–388,
1971.

46

