
Computational Number Theory and Algebra April 25, 2012

Lecture 3
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

Towards the end of the previous lecture, we mentioned that locally decodable codes (LDC) are very useful
in theory as well as in practice. We saw an example of LDC in the form of Hadamard codes. But the issue
with Hadamard codes is that the codeword length is a bit too long. We will see a better construction of
LDC today, namely Reed-Muller codes. Today’s topics of discussions are:

• Reed-Muller codes,

• Chinese Remaindering Theorem (CRT), and

• An application of CRT - determinant computation.

1 Reed-Muller codes

Reed-Muller codes are used in communications. They are also used to design probabilistically checkable
proofs (PCPs) in computational complexity theory. Instead of univariate polynomials (as is the case for
Reed-Solomon codes), Reed-Muller codes use multivariate polynomials to encode the message. The code
uses three parameters: a prime power (alphabet size) q, a number of variables n, and degree d < q − 1. It
encodes a k =

(
n+d

d

)
-long q-ary message to a qn-long codeword. The encoding procedure is as follows.

Algorithm 1 Reed-Muller codes: Encoding
1. Let m = (m1, . . . ,mk) ∈ Fk

q be the message to be encoded.
2. Let w1, . . . ,wk be a ‘certain’ fixed collection of points in Fn

q .
3. Construct a polynomial Pm(x1, . . . , xn) with deg(Pm) ≤ d such that Pm(wi) = mi.
4. The evaluations of Pm(x1, . . . , xn) at all points in Fn

q is the qn-long codeword.

Step 3 involves solving a system of linear equations by treating the
(
n+d

d

)
coefficients of Pm(x) as vari-

ables. (Convince yourself that Pm has at most
(
n+d

d

)
monomials.) Also, there exist points w1, . . . ,wk such

that the corresponding linear system has full rank (why?). So, a solution to the system Pm(wi) = mi

(1 ≤ i ≤ k) can always be found in step 3. Notice that the codeword length is qn, so that the alphabet size
q can be exponentially smaller than the codeword length (unlike Reed-Solomon codes).

The decoding procedure for Reed-Muller codes uses the power of randomization - an indispensible tool
in computation (especially in reducing query complexity). Let D be the received word. By querying the
received word at point u ∈ Fn

q , we get a (potentially corrupted) value of Pm(u). The decoding procedure
that retrieves the part of the message mi = Pm(wi) is as follows.

Algorithm 2 Reed-Muller codes: Decoding
1. Pick a point v ∈ Fn

q uniformly at random.
2. Query D at points {wi + yv}y∈S, where S ⊂ F×q , |S| = d+ 1, to obtain values {dy}y∈S.
3. Find the unique univariate polynomial f, deg(f) ≤ d, such that f(y) = dy.
4. Output f(0).

The set S chosen in step 2 is an arbitrary subset of F×q of size d + 1. Notice that as v is chosen uniformly
randomly, wi +yv is also a random point in Fn

q , for any fixed y ∈ F×q . So, if at most δ fraction of the qn-long

3-1

received word is corrupted then querying D at wi + yv (for any fixed y ∈ S) returns the value Pm(wi + yv)
with probability at least 1 − δ. Therefore, by union bound on the probabilities, we can recover the correct
values of Pm(wi + yv), for all y ∈ S, with probability at least 1− (d+ 1) · δ. Now, for a moment think of the
univariate polynomial Pm(wi + yv) by treating y as a variable. This polynomial has degree at most d, as
deg(Pm(x)) ≤ d. Also, we know that we can obtain d+1 correct evaluations of this polynomial Pm(wi +yv)
at all y ∈ S with probability at least 1− (d+ 1) · δ. Which mean, with probability at least 1− (d+ 1) · δ, the
polynomial f(y) constructed in step 3 is actually Pm(wi + yv). If so, then f(0) = Pm(wi) = mi. We can
find the polynomial f(y) in step 3 using polynomial interpolation.

Thus, Reed-Muller code is a (d+ 1, δ, (d+ 1) · δ)-locally decodable code - meaning that, by making d+ 1
queries to the received word, the decoder finds the right value of mi with probability at least 1− (d+ 1) · δ,
where δ is an upper bound on the fraction of errors that can occur in the codeword. The chance that the
decoder makes an error, can be made independent of d (in the above calculation, it is (d+ 1) · δ), by using
the Berlekamp-Welch algorithm for Reed-Solomon codes - I leave this as an exercise.

2 Chinese Remaindering Theorem

This theorem is a structural result about rings which is used for speeding up computation over integers and
polynomials, and also for arguing over rings like in the analysis of the Miller-Rabin primality test (which
will be covered in a later lecture). We state the theorem in a general form and then apply it to the rings of
integers and polynomials.

Let us refresh the definition of an ideal of a ring: A nonempty subset I of a (commutative) ring R is an
ideal of R if, I is a subgroup of R under addition, and for every u ∈ I and r ∈ R, u · r belongs to R. Two
ideals I and J of a ring R are coprime if there are elements a ∈ I and b ∈ J such that a + b = 1. The
product of two ideals I and J , denoted by IJ , is the ideal generated by all elements of the form a · b where
a ∈ I and b ∈ J . The theorem states the following.

Theorem 1 (Chinese Remaindering Theorem) Let I1, . . . , Ir be pairwise coprime ideals of R and I = I1 . . . Ir

be their product. Then,
R
I
∼=
R
I1
⊕ . . .⊕ R

Ir

Moreover, this isomorphism map is given by, a mod I −→ (a mod I1, . . . , a mod Ir), for all a ∈ R.

Proof The proof uses induction on the number of coprime ideals. Let J = I2 . . . Ir. Since I1 is coprime
to Ij for every j, 2 ≤ j ≤ r, there are elements yj ∈ Ij and xj ∈ I1 such that xj + yj = 1. Therefore,∏r

j=2 (xj + yj) = x+ y′ = 1 where x ∈ I1 and y′ ∈ J , implying that I and J are coprime.
We claim that I = I1 ∩J . By definition, I = I1J and it is easy to see that I1J ⊆ I1 ∩J . If z ∈ I1 ∩J

then, from x+ y′ = 1 we have zx+ zy′ = z. The left hand side of the last equation is an element of I1J as
both zx, zy′ ∈ I1J . Therefore, I1 ∩ J = I1J = I.

Consider the map φ : RI →
R
I1 ⊕

R
J defined as φ(a mod I) = (a mod I1, a mod J). It is easy to check that

φ is well-defined and is in fact a homomorphism. Let a1 = a mod I1 and a′ = a mod J . We will abuse
notation slightly and write φ(a) = (a1, a

′).
If φ(a) = φ(b) = (a1, a

′) then a1 = a mod I1 = b mod I1, implying that a− b ∈ I1. Similarly, a− b ∈ J .
This means a− b ∈ I ∩ J = I and hence φ is a one-one map. Also, since x+ y′ = 1 for x ∈ I1 and y′ ∈ J ,
we have φ(a1y

′ + a′x) = (a1, a
′) implying that φ is onto. Therefore, φ is an isomorphism i.e. RI

∼= R
I1 ⊕

R
J .

Inductively, we can show that RJ
∼= R
I2 ⊕ . . .⊕

R
Ir

and hence, RI
∼= R
I1 ⊕ . . .⊕

R
Ir

.

In Z (or F[x]), two elements m1 and m2 are coprime integers (or polynomials) if and only if the ideals
(m1) and (m2) are coprime. Applying the above theorem to the ring of integers (or polynomials) we get the
following result.

3-2

Corollary 2 Let m ∈ R = Z (or F[x]) be such that m =
∏r

j=1mj where m1, . . . ,mr are pairwise coprime
integers (or polynomials). Then R

(m)
∼= R

(m1)
⊕ . . .⊕ R

(mr) .

Thus every element of the ring R
(m) can be uniquely written as an r-tuple with the ith component belonging

to the ring R
(mi)

. Addition and multiplication in R
(m) amounts to component-wise addition and multiplication

in the rings R
(mi)

. This suggests a strategy to speed up computation based on the fact that it is faster to
compute modulo a small integer (or a small degree polynomial) than over integers (or polynomial ring).

• Given a bound, say A, on the output of a computation, choose small m1, . . . ,mr such that
∏r

i=1mi > A
and do the computations modulo each mi.

• At the end, combine the results of computations to get the desired result.

Let us see an application based on this idea next.

3 An application of CRT: Determinant computation

Suppose we want to compute the determinant of an n× n matrix M whose entries are integers. We can use
Gaussian elimination, but it is not immediately clear whether the sizes of the numerators and denominators
of the rational numbers appearing at intermediate stages of the elimination are polynomially bounded in
the input size. (The input size is roughly between n2 − 1 + logA and n2 logA bits, where A is the maxi-
mum among the absolute values of the entries of M .) Is it possible that the intermediate expressions are
very large? The answer to this is ‘No’. But, the proof that the intermediate numbers do not swell up to
a great extent during Gaussian elimination, is not quite easy. In today’s class, we will see an alternative,
faster approach to compute the determinant using Chinese remaindering. We say it is faster because CRT
is inherently parallelizable and each computation happens over a small modulus.

Let A be the bound on the largest absolute value of the integer elements of M . Hadamard’s inequality
gives a bound on the absolute value of det(M) in terms of n and A.

Lemma 3 (Hadamard’s Inequality) |det(M)| ≤ nn
2An.

Proof Let v1, . . . , vn be the row vectors of M . Assuming that v1, . . . , vn are linearly independent (otherwise
the determinant is zero), we can find an orthogonal basis v∗1 , . . . , v

∗
n, using Gram-Schimdt orthogonalization

(see Appendix), such that ‖v∗i ‖ ≤ ‖vi‖ for all i, 1 ≤ i ≤ n. Here, ‖v‖ denotes the 2-norm of vector v. It
follows from the properties of this orthogonal basis (see Lemma 4 in Appendix) that,

det(M)2 = det (M ·MT) =
n∏

i=1

‖v∗i ‖2 ≤
n∏

i=1

‖vi‖2 ≤ nnA2n.

We use this bound in the following algorithm, which computes the determinant of M .

Algorithm 3 Computing determinant using Chinese remaindering
1. Let B = n

n
2An and r = dlog(2B + 1)e.

2. Let m1, . . . ,mr be the first r primes and m =
∏r

i=1mi.
3. Compute ai = det(M) mod mi for each i.
4. Compute αi such that αi · m

mi
= 1 mod mi for each i.

5. Compute d =
∑r

i=1 αi · m
mi
· ai mod m.

6. If d ≤ B return d, else return d−m.

Correctness and time complexity - First note that m > 2r > 2B. By the Prime Number Theorem, the
rth prime has value about r log r, hence mi = O(r log r), which means m1, . . . ,mr can be found in Õ(r2)

3-3

time (in Step 2). Computing ai in Step 3 takes time that is polynomial in n and logA, using Gaussian
elimination over the field Fmi . Step 4 succeeds in finding an αi as gcd(m

mi
,mi) = 1. Also, an αi can be

found in Õ(r) time (why?). In step 5, d can also be computed in Õ(r) time. From the choice of αi it is clear
that d = ai mod mi, for all i. By the Chinese remaindering theorem, d = det(M) mod m. We know that
|det(M)| ≤ B < 2B < m (using Hadamard’s inequality). Therefore, if d ≤ B then det(M) = d, otherwise
det(M) = d −m. Therefore, the entire algorithm runs in time poly(n, logA). We leave it as an exercise to
find a precise expression for poly(n, logA) in ‘big-Oh’ notation.

Exercises:
1. Show that in Step 2 Algorithm 1 there exist points w1, . . . ,wk (independent of what the message is) such
that the linear system in step 3 always has a solution.
2. Show that Reed-Muller codes are (q − 1, δ, 2δ/(1− σ))-locally decodable, where d ≤ σ(q − 1)− 1, for all
δ. (Infer that the decoder can tolerate nearly 1/4 fraction of errors, while erring with probability less than
1/2.).
3. In the time complexity analysis of Algorithm 3, find a precise expression for poly(n, logA) using order
notation.
4. Prove Lemma 4.

4 Appendix

4.1 Gram-Schmidt orthogonalization

Let v1, . . . , vn be linearly independent vectors in Rm and V be the space spanned by them. Gram-Schmidt
orthogonalization is a technique to find orthogonal vectors v∗1 , . . . , v

∗
n such that the space spanned by them

is V. We denote the dot product of two vectors u and w by u.w and ‖u‖ =
√
u.u is the 2-norm of u. The

construction of the orthogonal vectors proceeds as follows,

v∗1 = v1 and

v∗i = vi −
∑
j<i

µijv
∗
j for 2 ≤ i ≤ n where, µij =

vi.v∗j
v∗j .v∗j for 1 ≤ j < i.

Define the projection matrix as U = (µij)1≤i,j≤n where µii = 1 for all i, µij = 0 for j > i and µij = vi.v∗j
v∗j.v∗j

for j < i. Let V be the n ×m matrix with v1, . . . , vn as the rows and V ∗ be the matrix with v∗1 , . . . , v
∗
n as

the rows. The following facts are easy to verify and are left as exercise.

Lemma 4 1. The vectors v∗1 , . . . , v
∗
n are mutually orthogonal (i.e. v∗i .v∗j = 0 for i 6= j), and the space

spanned by them is V.

2. The space spanned by v1, . . . , vi is the same as the space spanned by v∗1 , . . . , v
∗
i . Also, ‖v∗i ‖ ≤ ‖vi‖ for

all i.

3. V = U · V ∗.

4. det(U) = 1 and so if m = n then det(V) = det(V ∗).

3-4

