
Computational Number Theory and Algebra May 2, 2012

Lecture 5
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the previous lecture, we saw how to use FFT to multiply two polynomials in R[x] with degree less
than n/2 using O(n log n) operations in R. This is a significant improvement over the näıve polynomial
multiplication algorithm that runs in O(n2) time over R. But, to achieve this improvement it is crucial that
R has a principal nth root of unity. In today’s class, we will see how to attach a ‘virtual’ root of unity to
R, if R doesn’t have such a root to begin with. We will see this idea at work in an integer multiplication
algorithm which we discuss next. The topics for today’s discussion are:

• Integer multiplication via polynomial multiplication,

• Reducing polynomial division to polynomial multiplication,

1 Integer multiplication via polynomial multiplication

We want to design an asymptotically efficient algorithm to multiply two N -bit integers a and b. Once again,
a näıve integer multiplication algorithm takes O(N2) bit operations. We want to do significantly better than
this complexity. Let a =

∑N−1
i=0 ai2i and b =

∑N−1
i=0 bi2i, where aN−1aN−2 . . . a0 and bN−1bN−2 . . . b0 are

the binary representations of a and b, respectively. Assume without loss of generality that N is a power of
2. Further, for the sake of simplicity of exposition, we will assume that N is a number of the form 22`

-
this is just to ensure that N

1
2j is an integer for every j ≤ `. One can certainly avoid making this second

assumption by using appropriate ‘ceil’ and ‘floor’ notations.
Split each of the two binary numbers into blocks of size

√
N bits, and write them as, a =

∑√N−1
i=0 Ai · 2

√
N ·i

and b =
∑√N−1
i=0 Bi · 2

√
N ·i, respectively, where Ai and Bi are

√
N -bit numbers i.e. 0 ≤ Ai, Bi ≤ 2

√
N − 1.

Consider the polynomials A(x) =
∑√N−1
i=0 Ai · xi and B(x) =

∑√N−1
i=0 Bi · xi. Now notice that the product

a ·b is equal to the product of the polynomials A(x) and B(x) evaluated at 2
√
N , i.e. a ·b = A(2

√
N ) ·B(2

√
N ).

This simple observation suggests an integer multiplication algorithm via polynomial multiplication: encode
the integers as polynomials, multiply the polynomials using FFT, and finally evaluate the product polynomial
at 2

√
N .

But, there is an issue here. The polynomials A(x) and B(x) have degree less than
√
N . So, by Lemma

4 of the previous lecture, we need a principal 2
√
N -th root of unity in the underlying ring (in order to

multiply these two polynomials using FFT). The coefficients of these polynomials are integers in the range
[0, 2

√
N −1]. Although, Z does not contain a 2

√
N -th root of unity, the ring Z/(2

√
N +1) does indeed contain

such a root - because, the element 2 is a principal 2
√
N -th root of unity in Z/(2

√
N + 1) (why?). Why not

pretend that the polynomials A(x) and B(x) are polynomials over the ring Z/(2
√
N + 1) (as the coefficients

Ai and Bi are anyway less than 2
√
N ), and multiply them over this ring using FFT? The only problem is

that the product polynomial C(x) = A(x) · B(x), might have coefficients as large as (about)
√
N · 22

√
N -

which means, some of the coefficients of C(x) might end up being different numbers in the ring Z/(2
√
N + 1)

i.e. when we go modulo (2
√
N + 1). There is a relatively easy fix for this - instead of working with the ring

Z/(2
√
N +1), work with the ring R = Z/(23

√
N +1). In the ring R, the element 23 = 8 is a principal 2

√
N -th

root of unity. Moreover, the coefficients of C(x) remain unchanged in R, as 23
√
N + 1 >

√
N · 22

√
N for any

N ≥ 1. This suggests the following integer multiplication algorithm.

5-1



Algorithm 1 Integer multiplication using FFT

1. Encode integers a and b as polynomials A(x) =
∑√N−1
i=0 Aix

i and B(x) =
∑√N−1
i=0 Bix

i.

2. Multiply A(x) and B(x) over the ring Z
(23
√

N+1)
using 8 as the 2

√
N-th root of unity.

3. Evaluate the product C(x) = A(x) ·B(x) at 2
√
N.

Time complexity - In the following analysis, log stands for log2. Encoding the integers as polynomials in
Step 1 takes O(N) bit operations. By Lemma 4 of the previous lecture, multiplication of A(x) and B(x)
over R = Z/(23

√
N + 1) in step 2, takes O(

√
N log

√
N) additions in R, O(

√
N log

√
N) multiplications by

powers of ω = 8, 2
√
N multiplications by the inverse of 2

√
N in R, and 2

√
N multiplications in R.

An element in R is an integer in the range [0, 23
√
N ], hence it can be represented by 3

√
N bits (except

for the element 23
√
N which takes 3

√
N + 1 bits). We can add two elements r1 and r2 in R in the following

way: First add r1 and r2 over integers - say, r = r1 + r2, and then find r mod (23
√
N + 1). Adding r1 and r2

over integers takes O(
√
N) bit operations, and moreover, the value of r is at most 23

√
N+1, as r1, r2 ≤ 23

√
N .

Express r as r = c1 · 23
√
N + c0, where 0 ≤ c1 ≤ 2 and 0 ≤ c0 < 23

√
N . Then, r mod (23

√
N + 1) = c0 − c1

mod (23
√
N + 1). If c0 − c1 ≥ 0 then sum of r1 and r2 is c0 − c1 in R. Else, if c0 − c1 < 0 then c0 − c1 = −1

or −2 (as c1 ≤ 2). The element −1 is the same as the element 23
√
N in R, and similarly, −2 is equal to

23
√
N − 1 in R. Therefore, adding two elements in R takes O(

√
N) bit operations. Hence, O(

√
N log

√
N)

additions in R takes O(N logN) bit operations.
What is the cost of multiplying an element r ∈ R by a power of ω = 23? The maximum power of ω

that is multiplied with an element of R in the FFT algorithm is
√
N − 1 (see Algorithm 1 in the previous

lecture note). So, let us find out the complexity of multiplying r by ω
√
N−1 = 23(

√
N−1). First, multiply r

by 23(
√
N−1) over integers - this essentially amounts to shifting r by 3(

√
N − 1) bits, which takes O(

√
N) bit

operations (why?). As r ∈ [0, 23
√
N ], 23(

√
N−1) · r ≤ 26·

√
N−3. Now find 23(

√
N−1) · r mod (23

√
N + 1). By

the same argument as above, we can show that 23(
√
N−1) · r mod (23

√
N+1) can be computed using O(

√
N)

bit operations. (The details are left as an exercise.) Hence, O(
√
N log

√
N) multiplications by powers of ω

in R takes O(N logN) bit operations. The purpose of choosing ω, a power of 2, is to reduce multiplications
by powers of ω to shift operations, which can be done efficiently.

Verify that η = 26
√
N−log

√
N−1 is the inverse of 2

√
N inR. By a similar argument as above, multiplication

by η amounts to shift operations, which takes O(
√
N) bit operations. Hence, 2

√
N multiplications by the

inverse of 2
√
N in R takes O(N) bit operations. (We leave the details as an exercise.)

We are left with finding the time complexity of 2
√
N multiplications in R. Since, elements of R are

numbers in the range [0, 23
√
N ], a multiplication in R can be viewed as multiplication of two 3

√
N bit

integers (multiplication by 23
√
N ∈ R is just a shift operation), followed by going modulo 23

√
N + 1. Arguing

along the same line as before, we can derive that the ‘going modulo (23
√
N + 1)’ step can be achieved using

O(
√
N) bit operations. Therefore, if T (N) is the bit complexity of multiplying two N -bit integers, then

2
√
N ·T (3

√
N) +O(N) is the bit complexity of 2

√
N multiplications in R. (Once again we leave the details

as an exercise.)
Finally, in step 3, the evaluation of the product polynomial C(x) at 2

√
N can be done using O(N) bit

operations (by shift operations) (why?). Putting everthing together, we get the bit complexity of multiplying
two N -bit integers as,

T (N) = O(N logN) + 2
√
N · T (3

√
N).

Solving the recurrence relation, we get T (N) = O(N log2+αN), where α = log2 3− 1.

Till date, the asymptotically fastest integer multiplication algorithm is due to Fürer [Für07]. Fürer’s
algorithm multiplies two N -bit integers using N · logN · 2O(log∗N) bit operations. A slight (but, perhaps
simpler) variant of Fürer’s algorithm can be found here [DKSS08]. The previous best integer multiplication
algorithm (by Schönhage and Strassen [SS71]) had running time O(N logN log logN) bit operations.

5-2



Superlinear property of multiplication complexity

Denote the time complexity of multiplying two polynomials of degree less than n by M(n), and the complexity
of multiplying two N -bit integers by MI(N). By Schönhage-Strassen’s algorithm, M(n) = O(n log n log log n),
and by Fürer’s algorithm MI(N) = N · logN · 2O(log∗N). Thus, these multiplication complexities satisfy the
following superlinear property:

Observation 1 For all n,m ∈ Z+, M(n+m) ≥ M(n) + M(m). Similarly, MI(n+m) ≥ MI(n) + MI(m).

This observation will be useful later, when we show that some other problems have essentially the same
complexity as polynomial multiplication.

2 Reducing polynomial division to polynomial multiplication

Let f, g be polynomials in R[x], where R is a commutative ring with unity, deg(f) = n, deg(g) = m (m ≤ n),
and g is a monic polynomial (meaning, the coefficient of the highest degree term in g is 1). We want to design
an algorithm to divide f by g and find the quotient and the remainder q and r, respectively. Since g is monic,
division by g is well defined over R. Once again, the näıve division algorithm might take O(nm) operations
over R, which can be O(n2) when m = O(n). We want to do significantly better than this complexity.

Let f(x) = q(x)g(x) + r(x), where q, r ∈ R[x] and deg(r) < m. Then,

xnf(1/x) = (xn−mq(1/x)) · (xmg(1/x)) + xn−m+1 · (xm−1r(1/x)).

For any polynomial h(x) ∈ R[x], denote xkh(1/x) by h′k(x), where k ≥ deg(h). By the above equation,

f ′n(x) = q′n−m(x) · g′m(x) + xn−m+1 · r′m−1(x)
⇒ f ′n(x) = q′n−m(x) · g′m(x) mod xn−m+1

⇒ q′n−m(x) = f ′n(x) · (g′m(x))−1 mod xn−m+1

Does the last equation make sense? What do we mean by (g′m(x))−1? It means, a polynomial h(x) such
that h(x) · g′m(x) = 1 mod xn−m+1. But, does such an inverse of g′m exist modulo xn−m+1? The following
lemma shows that it does. Since g is monic, the constant term of g′m is 1. Therefore, g′m · h0 = 1 mod x,
where h0 = 1.

Lemma 2 If g′m ·hi = 1 mod x2i

then hi+1
def= 2hi−g′mh2

i mod x2i+1
is such that g′m ·hi+1 = 1 mod x2i+1

.

Proof g′m · hi+1 = 2g′mhi − g′m
2
h2
i = 1− (g′mhi − 1)2 mod x2i+1

. Note, (g′mhi − 1)2 = 0 mod x2i+1
.

Let ` = dlog(n−m+ 1)e. By the above lemma, there is a polynomial h` such that g′m(x) · h` = 1 mod x2`

.
Therefore, g′m(x) · h` = 1 mod xn−m+1, as xn−m+1 divides x2`

. Once we compute h`, we can find q′n−m as,

q′n−m = f ′n · h` mod xn−m+1 (note that deg(q′n−m) ≤ n−m).

Now observe that q = xn−mq′n−m(1/x). So, we can find q in this way, and once we find q, we can compute
the remainder r as, r = f − qg. This suggests the following algorithm.

Algorithm 2 Polynomial division
1. Compute f ′n = xnf(1/x) and g′m = xmg(1/x).
2. Find h = g′m

−1 mod xn−m+1, and compute q′n−m = f ′n · h mod xn−m+1.
3. Compute the quotient q = xn−mq′n−m(1/x), and the remainder r = f − qg.

5-3



Time complexity - Step 1 takes O(n + m) operations over R. In step 2, we compute the inverse of g′m
modulo xn−m+1. This is done by computing h` = g′m

−1 mod x2`

, where ` = dlog(n−m+ 1)e. We compute
h` by iteratively computing the inverses h0, h1, . . . , h` modulo x20

, x21
, . . . , x2`

, respectively, using lemma
2. In the beginning h0 = 1. At the ith iteration, we already have the inverse hi−1 modulo x2i−1

, and we
want to compute hi. Since, hi−1 is computed modulo x2i−1

, we can assume that deg(hi−1) < 2i−1. By
lemma 2, hi = 2hi−1 − g′mh2

i−1 mod x2i

. So, we need to multiply g′m with h2
i−1. Since, this computation

is modulo x2i

, we can drop those terms in g′m whose degree is greater than 2i − 1. Therefore, computing
the product g′mh

2
i−1 is like multiplying three polynomials with degree of each bounded by 2i. So, this takes

O(M(2i)) operations over R. Once, we compute 2hi−1−g′mh2
i−1 we can go modulo x2i

by dropping all terms
of degree higher than 2i − 1. Therefore, to compute hi from hi−1, it takes O(M(2i)) operations over R.
Which means, to compute h` we have to spend a total of

∑`
i=0O(M(2i)) operations. By Observation 1, this

sum is O(M(n)). We can derive h from h` by dropping all terms with degree higher than n −m. Finally,
computing q′n−m = f ′n · h mod xn−m+1 takes another O(M(n)) time. Therefore, step 2 can be executed
using O(M(n)) operations over R. In step 3, we compute r by doing one more polynomial multiplication.
Hence, the total complexity of the above algorithm is O(M(n)) operations over R.

A remark on Lemma 2: Lemma 2 gives us a method to ‘lift’ an inverse of a polynomial modulo x2i

to an
inverse modulo x2i+1

. This is part of a more general technique called Hensel lifting, which we will discuss in
a later lecture.

Another remark: Just like polynomial division reduces to polynomial multiplication, integer division too
has the same bit complexity as integer multiplication. In other words, division with remainder of N -bit
integers can be done using O(MI(N)) bit operations. If you’re interested, you can look up the details of this
reduction in Chapter 9 of [GG03], or Section 1.3 of this lecture note [AK09].

Exercises:
1. Fill in the missing details in the time complexity analysis of Algorithm 1.
2. Design an algorithm to multiply two polynomials (over a ring R) of degree less than n using O(n log2 n)
operations in R. The ring R may not have a principal 2n-th root of unity.

References

[AK09] Manindra Agrawal and Purushottam Kar. Lecture 1 & 2: In-
teger and Modular Arithmetic, July 2009. Available from
http://www.cse.iitk.ac.in/users/manindra/CS681/lecture1and2.pdf.

[DKSS08] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast integer multi-
plication using modular arithmetic. In STOC, pages 499–506, 2008.

[Für07] Martin Fürer. Faster integer multiplication. In STOC, pages 57–66, 2007.

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2003.

[SS71] A Schönhage and V Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281–292,
1971.

5-4


