Computational Number Theory and Algebra May 2, 2012

Lecture 5
Lecturers: Markus Bldser, Chandan Saha Scribe: Chandan Saha

In the previous lecture, we saw how to use FFT to multiply two polynomials in R[z] with degree less
than n/2 using O(nlogn) operations in R. This is a significant improvement over the naive polynomial
multiplication algorithm that runs in O(n?) time over R. But, to achieve this improvement it is crucial that
R has a principal n'* root of unity. In today’s class, we will see how to attach a ‘virtual’ root of unity to
R, if R doesn’t have such a root to begin with. We will see this idea at work in an integer multiplication
algorithm which we discuss next. The topics for today’s discussion are:

e Integer multiplication via polynomial multiplication,

e Reducing polynomial division to polynomial multiplication,

1 Integer multiplication via polynomial multiplication

We want to design an asymptotically efficient algorithm to multiply two N-bit integers a and b. Once again,
a naive integer multiplication algorithm takes O(NN?) bit operations. We want to do significantly better than
this complexity. Let a = Zf;ol ;2" and b = ZZN;OI b;2%, where an_1an—2...ao and by_1by—_s...by are
the binary representations of a and b, respectively. Assume without loss of generality that NV is a power of
2. Further, for the sake of simplicity of exposition, we will assume that N is a number of the form 22" _
this is just to ensure that N 37 is an integer for every j < £. One can certainly avoid making this second
assumption by using appropriate ‘ceil’ and ‘floor’ notations.

Split each of the two binary numbers into blocks of size v/N bits, and write them as, a = Zg_l A; - VN

and b = Eg_l B; - 2‘/ﬁ'i, respectively, where A; and B; are v/ N-bit numbers i.e. 0 < A;, B; < VN _ 1.
Consider the polynomials A(z) = Eg_l A;-2* and B(z) = Zi\iﬁo_l B, - 2*. Now notice that the product
a-b is equal to the product of the polynomials A(z) and B(z) evaluated at 2VN ie. a-b= A(2VN).B(2VN).
This simple observation suggests an integer multiplication algorithm via polynomial multiplication: encode

the integers as polynomials, multiply the polynomials using FFT, and finally evaluate the product polynomial
at 2V,

But, there is an issue here. The polynomials A(z) and B(x) have degree less than v N. So, by Lemma
4 of the previous lecture, we need a principal 2v/ N-th root of unity in the underlying ring (in order to
multiply these two polynomials using FFT). The coefficients of these polynomials are integers in the range

0,2V~ —1]. Although, Z does not contain a 2v/N-th root of unity, the ring Z/(2VN +1) does indeed contain
such a root - because, the element 2 is a principal 2v/N-th root of unity in Z/(2VN + 1) (why?). Why not
pretend that the polynomials A(x) and B(z) are polynomials over the ring Z/(2V~ + 1) (as the coefficients
A; and B; are anyway less than ZW), and multiply them over this ring using FFT? The only problem is
that the product polynomial C(z) = A(x) - B(z), might have coefficients as large as (about) v/N - 22VV -
which means, some of the coefficients of C(z) might end up being different numbers in the ring Z/(2VN +1)
i.e. when we go modulo (2\/N + 1). There is a relatively easy fix for this - instead of working with the ring
Z/(2VN +1), work with the ring R = Z/(2*VN +1). In the ring R, the element 2® = 8 is a principal 2v/N-th
root of unity. Moreover, the coefficients of C'(x) remain unchanged in R, as 22VN 4 1> N - 22N for any
N > 1. This suggests the following integer multiplication algorithm.

Algorithm 1 Integer multiplication using FFT

1. Encode integers a and b as polynomials A(z) = Eg_l A;x' and B(z) = Zg_l B;xt.

2. Multiply A(z) and B(z) over the ring (23*/L++1) using 8 as the 2v/N-th root of unity.

3. Evaluate the product C(z)= A(z)- B(z) at 2V,

Time complexity - In the following analysis, log stands for log,. Encoding the integers as polynomials in
Step 1 takes O(N) bit operations. By Lemma 4 of the previous lecture, multiplication of A(z) and B(x)
over R = Z/(23VN + 1) in step 2, takes O(v/N log vVN) additions in R, O(v/N log v/N) multiplications by
powers of w = 8, 2v/N multiplications by the inverse of 2¢/N in R, and 2v/N multiplications in R.

An element in R is an integer in the range [0, ZBW}, hence it can be represented by 3v/N bits (except
for the element 23VN which takes 3vV/N +1 bits). We can add two elements r1 and r in R in the following
way: First add r; and ro over integers - say, r = r1 +ro, and then find mod (23‘/ﬁ +1). Adding r; and 79
over integers takes O(v/N) bit operations, and moreover, the value of r is at most 25VN+1 ag ry ry < 23VN,
Express r as 7 = ¢1 - 22VN 4 ¢o, where 0 < ¢; < 2 and 0 < ¢ < 23VN. Then, r mod (23VN +1) = ¢y — ¢;
mod (23‘/ﬁ +1). If ¢cg — ¢; > 0 then sum of 1 and r5 is ¢g — ¢; in R. Else, if ¢cg —¢; < 0 then ¢g —¢; = —1
or —2 (as ¢; < 2). The element —1 is the same as the element 23VN ip R, and similarly, —2 is equal to
23VN _ 1 in R. Therefore, adding two elements in R takes O(v/N) bit operations. Hence, O(v/NlogV/N)
additions in R takes O(N log N) bit operations.

What is the cost of multiplying an element r € R by a power of w = 23? The maximum power of w
that is multiplied with an element of R in the FFT algorithm is v N — 1 (see Algorithm 1 in the previous
lecture note). So, let us find out the complexity of multiplying r by wYN-1 = 23(VN-1), First, multiply r
by 23(VN-1) gyer integers - this essentially amounts to shifting r by 3(v/N — 1) bits, which takes O(v/N) bit
operations (why?). As r € [0,23VN], 23(VN=1) . < 96VN=3_ Now find 23VN=D . mod (23VN +1). By
the same argument as above, we can show that 23VN=1 . mod (23VN+1) can be computed using O(v/N)
bit operations. (The details are left as an exercise.) Hence, O(v/N log v/N) multiplications by powers of w
in R takes O(N log N) bit operations. The purpose of choosing w, a power of 2, is to reduce multiplications
by powers of w to shift operations, which can be done efficiently.

Verify that n = 26VN-1oe VN-1 ig the inverse of 2v/N in R. By a similar argument as above, multiplication
by n amounts to shift operations, which takes O(\/N) bit operations. Hence, 2v/N multiplications by the
inverse of 2v/N in R takes O(N) bit operations. (We leave the details as an exercise.)

We are left with finding the time complexity of 2v/N multiplications in R. Since, elements of R are
numbers in the range [0,23‘/ﬁ], a multiplication in R can be viewed as multiplication of two 3v/N bit
integers (multiplication by 23VN ¢ R is just a shift operation), followed by going modulo 23VN 41, Arguing
along the same line as before, we can derive that the ‘going modulo (23‘/ﬁ + 1)’ step can be achieved using
O(V/N) bit operations. Therefore, if T(N) is the bit complexity of multiplying two N-bit integers, then
2V/N -T(3v/N) + O(N) is the bit complexity of 2v/N multiplications in R. (Once again we leave the details
as an exercise.)

Finally, in step 3, the evaluation of the product polynomial C'(x) at 2VN can be done using O(N) bit
operations (by shift operations) (why?). Putting everthing together, we get the bit complexity of multiplying
two N-bit integers as,

T(N) = O(Nlog N) +2V'N - T(3V/N).

Solving the recurrence relation, we get T(N) = O(N log®>™® N), where o = log, 3 — 1.
Till date, the asymptotically fastest integer multiplication algorithm is due to Fiirer [Fiir07]. Fiirer’s
algorithm multiplies two N-bit integers using N - log N - 20U0g" N) bit operations. A slight (but, perhaps

simpler) variant of Fiirer’s algorithm can be found here [DKSS08]. The previous best integer multiplication
algorithm (by Schonhage and Strassen [SS71]) had running time O(N log N loglog N) bit operations.

5-2

Superlinear property of multiplication complexity

Denote the time complexity of multiplying two polynomials of degree less than n by M(n), and the complexity
of multiplying two N-bit integers by M|(N). By Schonhage-Strassen’s algorithm, M(n) = O(nlognloglogn),
and by Fiirer’s algorithm M;(N) = N -log N - 20(log” N) " Thus, these multiplication complexities satisfy the
following superlinear property:

Observation 1 For alln,m € Z*, M(n +m) > M(n) + M(m). Similarly, Mi(n +m) > Mi(n) + M;(m).

This observation will be useful later, when we show that some other problems have essentially the same
complexity as polynomial multiplication.

2 Reducing polynomial division to polynomial multiplication

Let f, g be polynomials in R[z], where R is a commutative ring with unity, deg(f) = n, deg(g) = m (m < n),
and g is a monic polynomial (meaning, the coefficient of the highest degree term in ¢ is 1). We want to design
an algorithm to divide f by g and find the quotient and the remainder ¢ and r, respectively. Since g is monic,
division by g is well defined over R. Once again, the naive division algorithm might take O(nm) operations
over R, which can be O(n?) when m = O(n). We want to do significantly better than this complexity.

Let f(z) = q(x)g(z) + r(x), where ¢,r € R[x] and deg(r) < m. Then,

2" f(1/2) = (&"""q(1/2)) - (a™g(1/2)) + 2" (@™ (1 /).

For any polynomial h(z) € R[z], denote x*h(1/z) by R} (x), where k > deg(h). By the above equation,

fa(@) = (@) g (@) + 2", (2)
= fu@) = (@) g,(x) modz" "
= Gom(@) = fo(@)-(g,(x))"! mod 2" !

Does the last equation make sense? What do we mean by (g/,(x))~!? It means, a polynomial h(z) such
that h(z) - ¢/, (z) =1 mod z" ™% 1. But, does such an inverse of g/, exist modulo z"~™%1? The following
lemma shows that it does. Since g is monic, the constant term of g/, is 1. Therefore, g/, - ho = 1 mod =z,
where hg = 1.

Lemma 2 Ifg/ -h; =1 mod 22 then hiv1 def 2h; — gl h? mod 22" s such that g, hit1 =1 mod 22"

+1

Proof ¢, - hit1 = 2g/,hi — g, °h2 =1 — (g/,hi —1)2 mod 22" . Note, (¢/,hi —1)2=0 mod 2> . W

Let ¢ = [log(n —m + 1)]. By the above lemma, there is a polynomial h, such that g/, (z) - h¢ =1 mod 22"

n—m-+1 n—m-+1

Therefore, g/, (z)-hg =1 mod x , a8 T divides 22°. Once we compute ke, we can find Q. 8S,

@ = f,-he mod 2" (note that deg(q,_,,) < n —m).

Now observe that ¢ = 2" "™¢},_,.(1/x). So, we can find ¢ in this way, and once we find ¢, we can compute

the remainder r as, r = f — gg. This suggests the following algorithm.

Algorithm 2 Polynomial division
1. Compute f/ =z"f(1/x) and ¢, = 2™g(1l/x).

n
n—m-+1

2. Find h=g,,” " mod x
3. Compute the quotient ¢ ==z

, and compute ¢,_,, = f, -h mod z"~™Tt.
", (1/z), and the remainder r = f —qg.

Qn—m.

5-3

Time complexity - Step 1 takes O(n 4+ m) operations over R. In step 2, we compute the inverse of g/,

n=m+1 This is done by computing he = ¢/, ~* mod 22°, where £ = [log(n —m + 1)]. We compute

he by iteratively computing the inverses hg, h1, ..., hy modulo x207x217 . 7m2£, respectively, using lemma

2. In the beginning ho = 1. At the i*" iteration, we already have the inverse h;_; modulo z?' 1, and we

modulo x

want to compute h;. Since, h;_; is computed modulo le_l, we can assume that deg(h;_1) < 2'~!. By
lemma 2, h; = 2h;_1 — g/,h?_; mod 22", So, we need to multiply gh, with h?_;. Since, this computation
is modulo 22", we can drop those terms in gl whose degree is greater than 2¢ — 1. Therefore, computing
the product g/, h? , is like multiplying three polynomials with degree of each bounded by 2¢. So, this takes
O(M(2?)) operations over R. Once, we compute 2h; 1 — g/, h? | we can go modulo z>* by dropping all terms
of degree higher than 2° — 1. Therefore, to compute h; from h;_1, it takes O(M(2%)) operations over R.
Which means, to compute h, we have to spend a total of Zf:o O(M(2%)) operations. By Observation 1, this
sum is O(M(n)). We can derive h from hy by dropping all terms with degree higher than n — m. Finally,
computing ¢},_,, = f/ - h mod z"~™* ! takes another O(M(n)) time. Therefore, step 2 can be executed
using O(M(n)) operations over R. In step 3, we compute r by doing one more polynomial multiplication.
Hence, the total complexity of the above algorithm is O(M(n)) operations over R.

A remark on Le_rgma 2: Lemma 2 gives us a method to ‘lift” an inverse of a polynomial modulo 2% to an
inverse modulo 22" . This is part of a more general technique called Hensel lifting, which we will discuss in
a later lecture.

Another remark: Just like polynomial division reduces to polynomial multiplication, integer division too
has the same bit complexity as integer multiplication. In other words, division with remainder of N-bit
integers can be done using O(M;(N)) bit operations. If you're interested, you can look up the details of this
reduction in Chapter 9 of [GGO03], or Section 1.3 of this lecture note [AK09].

Exercises:

1. Fill in the missing details in the time complexity analysis of Algorithm 1.

2. Design an algorithm to multiply two polynomials (over a ring R) of degree less than n using O(n log? n)
operations in R. The ring R may not have a principal 2n-th root of unity.

References
[AKO9] Manindra Agrawal and Purushottam Kar. Lecture 1 & 2 In-
teger and Modular Arithmetic, July 20009. Available from

http://www.cse.iitk.ac.in/users/manindra/CS681/lectureland?2.pdf.

[DKSS08] Anindya De, Piyush P. Kurur, Chandan Saha, and Ramprasad Saptharishi. Fast integer multi-
plication using modular arithmetic. In STOC, pages 499-506, 2008.

[Fur07] Martin Fiirer. Faster integer multiplication. In STOC, pages 57-66, 2007.

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2003.

[SST1] A Schénhage and V Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281-292,
1971.

5-4

