
Computational Number Theory and Algebra May 9, 2012

Lecture 7
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the last class, we mentioned that the extended Euclidean gcd algorithm for polynomials uses O(M(n) log n)
operations over the underlying field F. When F is a finite field, say Fp, then any operation in Fp takes at
most O(log2 p) bit operations - so, overall the gcd algorithm takes polynomially many bit operations. But,
what if the underlying field is Q? How do we show that the intermediate rational numbers generated during
gcd computation have ‘small’ numerators and denominators? Well, we need not have to show this... and
this is where the resultant comes to our rescue: The idea is to do the gcd computations modulo small primes
(which is essentially like gcd computation over finite fields), and then finally compose the modular gcds using
Chinese remaindering to obtain the gcd over Q. The topics of discussion for today’s class are:

• Modular gcd computation - an application of the resultant,

• Introduction to polynomial factoring over finite fields.

1 Modular gcd computation

We will show how to compute gcd of two polynomials in Z[x] in polynomial time (without proving that
the intermediate rational coefficients have small numerators and denominators). Let f =

∑n
i=0 fix

i and
g =

∑m
i=0 gix

i be two polynomials in Z[x] with deg(f) = n and deg(g) = m, i.e. fn, gm 6= 0. For simplicity
of exposition, we will assume that the polynomials f and g are monic, i.e., fn = gm = 1. We want to
compute h = gcd(f, g), which is also a monic polynomial in Z[x] (why? see exercise 1). (The assumption
that fn and gm are monic is not particularly binding, but it will simplify our discussion in a way. You may
refer to chapter 6 of [GG03] to see how to remove this assumption.)

First, we need to show that any factor f̂ ∈ Z[x] of f has coefficients whose absolute values are ‘polynomi-
ally’ bounded in the input size. For any polynomial s ∈ Z[x], we denote the maximum among the absolute
values of the coefficients of s by As.

Lemma 1 Af̂ ≤ (2nAf)n.

Proof By the fundamental theorem of algebra, f factorizes completely over complex numbers. Let,
f =

∏n
i=1(x− ai), where ai ∈ C. For any root ai, since an

i = −
∑n−1

j=0 fja
j
i , hence |ai| ≤ nAf . Any factor f̂

of f is a product of the form
∏

i∈S (x− ai) for some subset S ⊆ {1, . . . n}. Therefore, Af̂ ≤ 2|S|(nAf)|S|.

Remark - Although, the value of Af̂ can be exponentially larger than Af , its bit length is bounded by
O(n log nAf), which is polynomial in the input size Ω(n + log Af). (In our problem, the input is n coeffi-
cients of the polynomial f and m coefficients of the polynomial g.)

Observe that gcd(f/h, g/h) = 1. Hence, r
def= Res(f/h, g/h) 6= 0. We need the following bound on the

absolute value of Res(f/h, g/h) (the proof follows easily from Lemma 1).

Observation 2 If A = maxi,j{|fi|, |gj |} then |Res(f/h, g/h)| ≤ (n + m)n+m(2nA)n+m.

In fact, using Hadamard inequality (Lemma 3 in Lecture 3), one can prove a better bound (see exercise 2).

Let B = dlog((n + m)n+m(2nA)n+m)e. Therefore, the number of primes dividing r = Res(f/h, g/h) is at
most B = poly(n, m, log A). For any polynomial s ∈ Z[x] and a fixed prime p, denote by s̄, the polynomial
s mod p (basically, reducing every coefficient of s modulo p). Naturally, s̄ is a polynomial in Fp[x].

7-1

Lemma 3 If the prime p - r then gcd(f̄ , ḡ) in Fp[x] is equal to h̄. If p|r then deg(gcd(f̄ , ḡ)) is greater than
deg(h̄).

Proof Let f1 = f/h and g1 = g/h where f1, g1 ∈ Z[x] (see excercise 1). Then, f = hf1 ⇒ f̄ = h̄ · f̄1

mod p. Similarly, ḡ = h̄ · ḡ1 mod p. Therefore, h̄| gcd(f̄ , ḡ) over Fp. The polynomial h̄ would be equal
to gcd(f̄ , ḡ) if the polynomials f̄1 and ḡ1 do not share any factor over Fp. Polynomials f̄1 and ḡ1 share a
factor over Fp if and only if Res(f̄1, ḡ1) = 0 over Fp. Now observe that since f, g are monic, f1, g1 are also
monic, and hence Res(f̄1, ḡ1) over Fp is equal to r mod p. If p - r then Res(f̄1, ḡ1) 6= 0 over Fp, and therefore
gcd(f̄ , ḡ) = h̄. On the other hand, if p|r then Res(f̄1, ḡ1) = 0 over Fp, implying that f̄1 and ḡ1 share a
common factor over Fp, and therefore deg(gcd(f̄ , ḡ)) > deg(h̄).

We call a prime p, a good prime if p - r, otherwise it’s a bad prime. We have argued before that the number
of bad primes is bounded by B = poly(n, m, log A). By lemma 3, if p is a good prime then gcd(f̄ , ḡ) over Fp

is exactly h̄ = h mod p. Further, by lemma 1, the absolute values of the integer coefficients of h is bounded
by C = (2nA)n. Hence, by choosing dlog(2C + 1)e many good primes, we should be able to reconstruct
h ∈ Z[x] using Chinese remaindering theorem (CRT) - (this argument is similar in spirit to the determinant
computation algorithm using CRT from lecture 3). This means, if we choose ` = B + dlog(2C + 1)e primes
p1, . . . , p` then at least dlog(2C + 1)e of them are good primes. Denote by h̄i, the polynomial h mod pi.
From lemma 3, if pi is a good prime and pj is a bad prime then deg(h̄i) < deg(h̄j). This suggests the
following algorithm, where A = maxi,j{|fi|, |gj |}, B = poly(n, m, log A) and C = (2nA)n.

Algorithm 1 Modular gcd computation
1. Let ` = B + dlog(2C + 1)e, and p1, . . . , p` be the first ` primes.
2. Let f̄i = f mod pi and ḡi = g mod pi, for 1 ≤ i ≤ `.
3. Compute h̄i = gcd(f̄i, ḡi) over Fpi for all 1 ≤ i ≤ `.
4. Let d = min1≤i≤`{deg(h̄i)}. Let S = {pj : deg(h̄j) = d}.
5. Construct h = gcd(f, g) from the polynomials {h̄j : j ∈ S} using CRT.

Time complexity - It follows from the above discussion, and from the fact that CRT runs in polynomial
time (see analysis of Algorithm 3 in lecture 3), that the bit complexity of the above algorithm is bounded
by a ‘certain’ polynomial in n, m and log A. We leave it as an exercise to find a precise expression for this
‘certain’ polynomial in order notation.

2 Polynomial factoring over finite fields

The problem of computing all the irreducible factors of a given polynomial over a finite field, is one of the
most fundamental problems is algebraic computation. We have seen an application of bi-variate polynomial
factoring in the list decoding algorithm of Reed-Solomon codes in lecture 2. It turns out that the problem of
bi-variate factoring reduces in polynomial time to the univariate factoring problem - we will see this reduction
in a later lecture. At first, we need to understand the complexity of the univariate factoring problem:

Problem 4 (Polynomial factoring) Given the n + 1 coefficients of a degree n univariate polynomial f(x) ∈
Fq[x], where Fq is the finite field with q elements, find all the irreducible factors of f over Fq.

Representation of a finite field Fq- Let p be the characteristic 1 of the finite field Fq, i.e. q = pm for
a prime p and m ∈ N. A finite field Fq is represented by picking an irreducible polynomial h(x) ∈ Fp[x] of
degree m. The ring Fp[x]/(h(x)) is the finite field Fq. (For two different degree-m irreducible polynomials
h1 and h2 in Fp[x], the rings (actually fields) Fp[x]/(h1(x)) and Fp[x]/(h2(x)) are isomorphic.) An element
of the ring Fp[x]/(h(x)) ∼= Fq is a polynomial over Fp of degree less than m.

1the characteristic of a field F is the unique prime number p such that 1 + 1 + . . . p times = 0 in F. We denote it by char(F).

7-2

Cost of an operation in Fq - An operation (addition and multiplication) in Fq is like doing the same
operation (addition and multiplication) in the ring Fp[x]/(h(x)). Hence, an operation in Fq takes O(log2 q)
bit operations (why?).

Note that the input size in Problem 4 is about (n + 1) · log q bits - since an element of Fq can be expressed
using dlog qe + 1 bits. Naturally, we would like to design an algorithm that uses polynomial in n and log q
operations in Fq. Before we proceed, there’s a piece of suggestion for you.

A piece of suggestion - Become familiar with some of the basics of finite fields and polynomials over finite
fields by reading the first two chapters of the book [LN94] (till page-63). This is because, we will be using
several properties of finite fields while describing the polynomial factoring algorithm.

The factoring algorithm is divided into three phases:

• Square-free factoring,

• Distinct degree factoring, and

• Equal degree factoring.

We will discuss each of these phases seperately.

2.1 Square-free factoring

A polynomial f is said to be square-free if there is no polynomial f1 and e ∈ N>1 such that fe
1 divides f . In

other words, f factorizes as f =
∏k

j=1 fj , where every fj is irreducible over the underlying field (which is Fq

in our case), and fi - fj for every i 6= j. We show that if f ∈ Fq[x] is not square-free then a nontrivial factor
of f can be found efficiently - this is called the square-free factoring phase.

Recall the definition of the formal derivate f ′ of a polynomial f from the previous lecture. Let f =∑n
i=0 cix

i, where ci ∈ Fq. Then, f ′ =
∑n

i=1 icix
i−1, which means that f ′ = 0 if and only if for every

coefficient ci 6= 0, p divides i. If f ′ = 0, then f is a polynomial of the form f =
∑

j cjx
pj = (

∑
j cpm−1

j xj)p,

as cq
j = cj (cj being an element of Fq) 2. Thus, g =

∑
j cpm−1

j xj is a factor of f . To compute g, we just

need to compute cpm−1

j for every nonzero coefficients cj of f . This takes a total of O(nm log p) = O(n log q)
operations over Fq by repeated squaring (see exercise 1 in lecture 1).

Suppose, f ′ 6= 0. Let f = fe
1 · h, where e > 1. Then, f ′ = fe−1

1 (eh + f1h
′), which means that gcd(f, f ′)

yields a nontrivial factor of f , as f1 divides both f and f ′. Computing gcd(f, f ′) takes O(M(n) log n)
operations over Fq. Therefore, if f is not square-free then we can find a nontrivial factor of f using polynomial
in n and log q many Fq-operations. (Note: Computing f ′ from f takes O(n) operations over Fq.)

2.2 Distinct degree factoring

At the end of the square-free factoring phase, we can assume that the polynomial at hand, say f , factorizes
as f =

∏k
j=1 fj , where fj is irreducible over Fq and fi - fj , for i 6= j. Suppose that f has two factors f1 and

f2 such that deg(f1) 6= deg(f2). Let deg(f1) = d1 < deg(f2) = d2. If this is the case, then we will show that
a non-trivial factor of f can be retrieved, efficiently - this is called distinct degree factoring. At the heart of
the argument lies the following lemma.

Lemma 5 For any d ≥ 1, xqd − x is the product of all monic irreducible polynomials in Fq[x] whose degree
divides d.

2Here, we are using the property: for any f1, f2 ∈ Fq [x], (f1 + f2)p = fp
1 + fp

2 , where p = char(Fq).

7-3

We leave the proof of this lemma as an excercise. This means that gcd(xqd1 −x, f) yields a nontrivial factor
of f , as f1 divides xqd1 − x whereas f2 doesn’t (by lemma 5). Apparently, it seems that computing the
gcd(xqd1 − x, f) is infeasible as degree of xqd1 − x is qd1 , which can be much larger than n. However, this is
not the case because of the following observation.

Observation 6 Let r = (xqd1 − x) mod f . Then gcd(xqd1 − x, f) = gcd(r, f).

Degree of r is less than n, so computing gcd(r, f) takes O(M(n) log n) operations over Fq. But, how do
we compute r? Use repeated squaring - first, find r′ = xqd1 mod f using repeated squaring in the ring
R = Fq[x]/(f), and then compute r = r′ − x. Computing r′ takes O(n log q) operations in the ring R
(why?). An operation in R takes O(M(n)) operations over Fq (why?). Therefore, we can find r and compute
gcd(r, f) to obtain a nontrivial factor of f using polynomial in n and log q operations over Fq.

At the end of the distinct degree factoring step, we can therefore assume that the polynomial f at hand is
of the form: f =

∏k
j=1 fj , where all fj ’s have the same degree. We will see how to handle this case in the

next class.

Exercises:
1. A polynomial f =

∑n
i=0 fix

i ∈ Z[x] is called a primitive polynomial if gcd(f0, . . . , fn) = 1. Show that if
f and g are primitive polynomials then fg is also a primitive polynomial. Using this, prove Gauss’ lemma:
If a primitive polynomial f ∈ Z[x] factorizes into two polynomials having rational coefficients, then f can
also be factored into two polynomials having integer coefficients. Infer that if f, g ∈ Z[x] are monic, then
h = gcd(f, g) is also a monic polynomial in Z[x].

2. Prove that, if Af = maxi{|fi|} and Ag = maxj{gj} then |Res(f, g)| ≤ (n + 1)m/2(m + 1)n/2Am
f An

g .

3. In the time complexity analysis of Algorithm 1, find a precise expression for the polynomial time bit
complexity in ‘big-Oh’ notation.

4. Prove lemma 5. (Hint: Use induction and the fact that h(xq) = (h(x))q over Fq for any polynomial
h ∈ Fq[x].)

5. While explaining the square-free factoring and the distinct-degree factoring phases, we have hand-waved
to some extent and concluded that these two phases take polynomial in n and log q operations over Fq. Your
job is to find a precise complexity expression (in terms of Fq operations) for these two phases after which we
can assume that f has equal-degree irreducible factors.

References

[GG03] Joachim Von Zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2003.

[LN94] Rudolf Lidl and Harald Neiderreiter. Introduction to finite fields and their applications. Cambridge
University Press, 1994.

7-4

