Computational	Number	Theory	and	Algebra
---------------	--------	--------	-----	---------

May 14, 2012

Scribe: Chandan Saha

Lecture 8

Lecturers: Markus Bläser, Chandan Saha

In the previous lecture, we started our discussion on factoring polynomials over finite fields and showed that after the square-free factoring and the distinct-degree factoring steps, we are left with factoring a polynomial that splits into *equal-degree* irreducible factors. We will see how to handle this equal-degree factoring case, today. Today's topics of discussion are:

- Equal-degree factoring.
- Reducing polynomial factoring to root finding,
- Testing irreducibility of a polynomial.

1 Equal-degree factoring over finite fields

We are now left with the task of factoring a square-free polynomial $f = f_1 \dots f_k$ over a finite field \mathbb{F}_q such that all the irreducible factors $f_i \in \mathbb{F}_q[x]$ have the same degree, say, d (i.e., $dk = n = \deg(f)$). This step is called equal-degree factoring. The key to solving this case lies in understanding the structure of the ring $\mathcal{R} = \frac{\mathbb{F}_q[x]}{(f)}$. By the Chinese remaindering theorem, \mathcal{R} has the following structure,

$$\mathcal{R} = \frac{\mathbb{F}_q[x]}{(f)} \cong \bigoplus_{i=1}^k \frac{\mathbb{F}_q[x]}{(f_i)} \cong \underbrace{\mathbb{F}_{q^d} \oplus \mathbb{F}_{q^d} \oplus \ldots \oplus \mathbb{F}_{q^d}}_{k \text{ times}}.$$
 (1)

Since, f_i is irreducible of degree d, the ring $\frac{\mathbb{F}_q[x]}{(f_i)}$ is (isomorphic to) the finite field \mathbb{F}_{q^d} . So, basically \mathcal{R} is a direct sum of k finite fields \mathbb{F}_{q^d} . We call these k fields as the k components of \mathcal{R} . At this point, we would need a few basic facts about finite fields.

Definition 1 An element a in a finite field \mathbb{F}_q is called a quadratic residue if there exists an element $b \in \mathbb{F}_q$ such that $b^2 = a$ in \mathbb{F}_q . Otherwise, a is called a quadratic non-residue.

Lemma 2 Let \mathbb{F}_q be the finite field containing q elements. Then, $\frac{q-1}{2}$ elements of $\mathbb{F}_q^{\times} = \mathbb{F}_q \setminus \{0\}$ are quadratic residues, and the remaining $\frac{q-1}{2}$ elements of \mathbb{F}_q^{\times} are quadratic non-residues.

Lemma 3 An element $a \in \mathbb{F}_q^{\times}$ is a quadratic residue if and only if $a^{\frac{q-1}{2}} = 1$, otherwise a is a quadratic non-residue in which case $a^{\frac{q-1}{2}} = -1$ in \mathbb{F}_q .

We leave the proofs of the above lemmas as an exercise. Keeping in mind the correspondence between \mathcal{R} and the k component fields \mathbb{F}_{q^d} (in Equation (1)), we will use the notation $A = (a_1, \ldots, a_k) \in \mathcal{R}$ to mean that an element $A \in \mathcal{R}$ (which can be treated as a polynomial over \mathbb{F}_q of degree less than n) has the direct sum representation (a_1, \ldots, a_k) , where $a_i = A \mod f_i$ belongs to the i^{th} component field \mathbb{F}_{q^d} . We say that a_1, \ldots, a_k are the components of A. Now notice one thing: Picking an element in \mathcal{R} uniformly at random, is like picking an element in each of the k component fields \mathbb{F}_{q^d} independently and uniformly at random. Let A be an element of \mathcal{R} chosen uniformly at random, and $A = (a_1, \ldots, a_k)$ be its direct sum representation. Suppose that none of the $a_i = 0$, $1 \le i \le k$. Since, $a_i \ne 0$ is a random element of $\mathbb{F}_{q^d}^{\times}$, by Lemma 2 with probability 1/2 it is a quadratic residue and with probability 1/2 it's a non-residue. Therefore, assuming

that $a_i \neq 0$ for all $1 \leq i \leq k$, each of the k components of $B \stackrel{def}{=} A^{\frac{q^d-1}{2}} = (a_1^{\frac{q^d-1}{2}}, \dots, a_k^{\frac{q^d-1}{2}}) \in \mathcal{R}$ is either 1 or -1 (by Lemma 3). Moreover, the probability that all the components are 1 or -1 is at most $1/2^{k-1} < 1/2$ (assuming that f is not irreducible) (why?). Therefore, with probability $1-1/2^{k-1}$, some but not all components of B+1 are zero. What does this mean?

Lemma 4 If $E = (e_1, \ldots, e_k) \in \mathcal{R}$ is such that some but not all $e_i \in \mathbb{F}_{q^d}$ are zero, then gcd(E, f) yields a proper factor of f.

Proof An element $E \in \mathcal{R}$ is a polynomial over \mathbb{F}_q of degree less than $n = \deg(f)$. If $e_i = E \mod f_i = 0$ then it means that the polynomial E is divisible by f_i . Hence, $\gcd(E, f)$ yields a proper factor of f since not all e_i 's are zero.

By Lemma 4, it follows that gcd(B+1, f) is a proper factor of f with probability at least $1-1/2^{k-1}$, under the assumption that none of the a_i 's is zero. Let's get rid of this assumption that none of the a_i 's is zero: If the random element $A \neq 0$ and some $a_i = 0$ then gcd(A, f) is a proper factor of f (again, by lemma 4). Therefore, if $A \neq 0$, we get a proper factor of f with probability $1-1/2^{k-1} > 1/2$ (assuming that f in not irreducible). This suggests the following algorithm, which is due to Cantor and Zassenhaus [CZ].

Algorithm 1 Equal-degree factoring

- 1. Pick an element $A \neq 0$ in $\mathcal R$ uniformly at random.
- 2. If $gcd(A, f) \neq 1$, return this gcd.
- 3. Else, let $B = A^{\frac{q^d-1}{2}} \mod f$.
- 4. If gcd(B+1,f)=1 or f, return 'failure'.

Time complexity - We leave the task of finding the exact time complexity of this algorithm as an excercise, noting that it is polynomial in n and $\log q$.

Since, the failure probability of the algorithm is less than 1/2, we can repeat this algorithm independently for m times, to bring down the failure probability to less that $1/2^m$.

2 Reducing equal-degree factoring to root finding

It follows from Algorithm 1 that the problem of polynomial factoring over finite fields admits a randomized polynomial time algorithm. What about a deterministic algorithm? It turns out that if the finite field \mathbb{F}_q is small in size (say, q = 5 or 7) then it is indeed possible to factor f deterministically ¹. This is done by reducing the equal-degree factoring problem to a root finding problem over \mathbb{F}_q . We continue to use the same notations as before. We would need the following lemma, the proof of which is left as an exercise.

Lemma 5 The roots of the polynomial $x^q - x$ over \mathbb{F}_{q^d} are exactly the elements of the finite field \mathbb{F}_q , which is contained in \mathbb{F}_{q^d} .

Let $g \in \mathcal{R} \setminus \mathbb{F}_q$ be such that $g^q = g$ in \mathcal{R} . First, we need to show that such a g exists in \mathcal{R} . By the isomorphism given in Equation (1) (and by Lemma 5), any g whose direct-sum representation belongs to $\bigoplus_{i=1}^k \mathbb{F}_q$ satisfies the condition $g^q = g \mod f$. Also, if f is not irreducible then such a $g \notin \mathbb{F}_q$ exists (why?). This means, there exists $c_i, c_j \in \mathbb{F}_q$ ($i \neq j$) such that $c_i = g \mod f_i$, $c_j = g \mod f_j$ and $c_i \neq c_j$. This also implies that there is a $c \in \mathbb{F}_q$ such that $\gcd(g - c, f)$ yields a non-trivial factor of f. For instance, for $c = c_i$, f_i divides $\gcd(g - c, f)$ but f_j does not.

How to find a $g \in \mathcal{R}$ that satisfies $g^q = g$? Solving a system of linear equations comes to our rescue again. To compute g, start with a generic element $g = \sum_{i=0}^{n-1} g_i x^i \in \mathcal{R}$, where $n = \deg(f)$ and g_i 's are variables, and solve for $g_i \in \mathbb{F}_q$ such that $\sum_{i=0}^{n-1} g_i x^{qi} = \sum_{i=0}^{n-1} g_i x^i \mod f$. Solving this equation reduces to solving a system of linear equations in the g_i 's. This reduction follows once we compute x^{qi} rem f for all i and equate the coefficients of x^j , for $0 \le j \le n-1$, from both sides of the equation. Now all we need to do, while solving the linear equations, is to choose a solution for the g_i 's such that $\sum_{i=0}^{n-1} g_i x^i \notin \mathbb{F}_q$ (which just means that not all of g_1, \ldots, g_{n-1} are zero). Take $g = \sum_{i=0}^{n-1} g_i x^i$ for that choices of the g_i 's. Taking into account that

¹in fact, it is possible to factor f in time poly(n, p), where $p = char(\mathbb{F}_q)$.

 x^{qi} rem f can be computed using repeated squaring, we conclude that g can be found in time polynomial in n and $\log g$.

The only task that remains is to find a $c \in \mathbb{F}_q$ such that $\gcd(g-c,f)$ gives a nontrivial factor of f. This is where the problem gets reduced to root finding. The fact that $\gcd(g-c,f) \neq 1$ means resultant of the polynomials $g-c = \sum_{i=1}^{n-1} g_i x^i + (g_0-c)$ and f is zero over \mathbb{F}_q . This means, we need to solve for a $y \in \mathbb{F}_q$ such that $h(y) = \operatorname{Res}_x(\sum_{i=1}^{n-1} g_i x^i + (g_0-y), f) = 0$, treating g_0-y as the constant term of the polynomial g-y. We can find h by computing the determinant of the Sylvester matrix, $S(\sum_{i=1}^{n-1} g_i x^i + (g_0-y), f)$, of g-y and f. Although there are entries in S containing variable g, we can find g by in polynomial time using interpolation (how? see excercise 3). In this way, factoring polynomial g root of the polynomial g.

Algorithm 2 Equal-degree factoring to root finding

- 1. Using linear algebra, find a $g \in \mathbb{F}_q[x]$ such that $g^q = g \mod f$ and $g \notin \mathbb{F}_q$.
- 2. If no such g exists then declare ' \hat{f} is irreducible'.
- 3. Compute polynomial $h(y) = \operatorname{Res}_x(g-y,f)$ and find a root c of h(y).
- 4. Find a nontrivial factor $\widetilde{f}=\gcd(g-c,f)$ of f .
- 5. Repeat the above process to factor \tilde{f} and $\frac{f}{\tilde{t}}$.

Time complexity - It follows from our discussion that, apart from the root finding task in step 3 of Algorithm 2 all the other steps run in polynomial time. To find a root of the polynomial h(y), first compute the polynomial $\tilde{h} = \gcd(y^q - y, h)$ which splits completely over \mathbb{F}_q into linear factors. Any root of \tilde{h} is also a root of h and vice versa, and so the problem reduces to finding a root of \tilde{h} . (Once again, we would like to note that $\gcd(y^q - y, h)$ is computed by first computing $y^q \mod h$ using repeated squaring.) Now, observe that we are back to the equal-degree factoring case where degree of each irreducible factor is d = 1. At this point, we can either invoke the randomized Algorithm 1, or we can try the obvious brute-force deterministic algorithm: Go over all elements of \mathbb{F}_q to find a root of \tilde{h} . The latter strategy gives us a deterministic algorithm that runs in $\operatorname{poly}(n,q)$ time, which is fine if $q = n^{O(1)}$.

In fact, root finding over \mathbb{F}_q reduces to root finding over \mathbb{F}_p , where p is the characteristic of the field \mathbb{F}_q , in time polynomial in n and $\log q$. This was shown by Berlekamp [Ber67, Ber70] (refer to chapter 4 of the book by Lidl and Neiderreiter [LN94]). Which means, if the characteristic of the field is small then even if q is large, we are still factor f deterministically. In particular, a degree-n polynomial over \mathbb{F}_{2^m} can be factored deterministically in time polynomial in n and m. What if the characteristic p is also large? To find a deterministic root finding algorithm over \mathbb{F}_p that runs in time polynomial in the degree n and $\log p$, is a major open problem in computational algebra.

3 Testing irreducibility of a polynomial over a finite field

Suppose, we want to design an algorithm to check if a polynomial f of degree n is irreducible over \mathbb{F}_q . If we could factor f then we could also check if f is irreducible. But, unfortunately, we still do not have a 'complete' factoring algorithm that runs in deterministic polynomial time. However, one might guess that checking if f is irreducible is perhaps an easier problem than actually finding the factors of f. This is indeed true - for irreducibility checking, we do have a deterministic polynomial time algorithm. The key to this lies in Lemma 5 of the previous lecture and the distinct-degree factoring step. For your convenience, we state the lemma here again.

Lemma 5 of Lecture 7: For any d > 1, $x^{q^d} - x$ is the product of all monic irreducible polynomials in $\mathbb{F}_q[x]$ whose degree divides d.

This immediately suggests the following irreducibility test.

Algorithm 3 Irreducibility test over a finite field

- 1. Check if $gcd(x^{q^n}-x,f)=f$. If not, declare 'f is reducible'.
- 2. Find all prime factors of $n = \deg(f)$.
- 3. For every prime factor t of n, check if $\gcd(x^{q^{n/t}}-x,f) \neq 1$.
- 4. If there is a prime factor t, such that $gcd(x^{q^{n/t}}-x,f)\neq 1$, declare 'f is reducible'.
- 5. Otherwise, 'f is irreducible'.

Correctness and time complexity - We leave it as an exercise to check the correctness of this algorithm and show that it runs in time polynomial in n and $\log q$.

Exercises:

- 1. Prove Lemma 2, 3 and 5.
- 2. Show that the finite field $\mathbb{F}_{q^{d_1}}$ is contained in the finite field $\mathbb{F}_{q^{d_2}}$ if and only if d_1 divides d_2 .
- 3. Let M be an $m \times m$ matrix whose entries are polynomials over \mathbb{F}_q with degree bounded by d. Show that $\det(M)$, which is also a polynomial over \mathbb{F}_q , can be computed in time polynomial in m, d and $\log q$.
- 4. Work out the exact time complexity of Algorithm 1 and Algorithm 2 (barring step 3) in terms of n and $\log q$.
- 5. Prove the correctness of Algorithm 3 and find its time complexity in terms of n and $\log q$.

References

- [Ber67] Elwyn Berlekamp. Factoring Polynomials Over Finite Fields. *Bell System Technical Journal*, 46:1853–1859, 1967.
- [Ber70] E. R. Berlekamp. Factoring Polynomials Over Large Finite Fields. *Mathematics of Computation*, 24(111):713–735, 1970.
- [CZ] David G. Cantor and Hans Zassenhaus. A New Algorithm for Factoring Polynomials Over Finite fields. *Mathematics of Computation*, 36(154):587–592.
- [LN94] Rudolf Lidl and Harald Neiderreiter. *Introduction to finite fields and their applications*. Cambridge University Press, 1994.