
Computational Number Theory and Algebra May 14, 2012

Lecture 8
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the previous lecture, we started our discussion on factoring polynomials over finite fields and showed
that after the square-free factoring and the distinct-degree factoring steps, we are left with factoring a
polynomial that splits into equal-degree irreducible factors. We will see how to handle this equal-degree
factoring case, today. Today’s topics of discussion are:

• Equal-degree factoring,

• Reducing polynomial factoring to root finding,

• Testing irreducibility of a polynomial.

1 Equal-degree factoring over finite fields

We are now left with the task of factoring a square-free polynomial f = f1 . . . fk over a finite field Fq such
that all the irreducible factors fi ∈ Fq[x] have the same degree, say, d (i.e., dk = n = deg(f)). This step
is called equal-degree factoring. The key to solving this case lies in understanding the structure of the ring
R = Fq [x]

(f) . By the Chinese remaindering theorem, R has the following structure,

R =
Fq[x]
(f)

∼= ⊕k
i=1

Fq[x]
(fi)

∼= Fqd ⊕ Fqd ⊕ . . .⊕ Fqd︸ ︷︷ ︸
k times

. (1)

Since, fi is irreducible of degree d, the ring Fq [x]
(fi)

is (isomorphic to) the finite field Fqd . So, basically R is a
direct sum of k finite fields Fqd . We call these k fields as the k components of R. At this point, we would
need a few basic facts about finite fields.

Definition 1 An element a in a finite field Fq is called a quadratic residue if there exists an element b ∈ Fq

such that b2 = a in Fq. Otherwise, a is called a quadratic non-residue.

Lemma 2 Let Fq be the finite field containing q elements. Then, q−1
2 elements of F×q = Fq\{0} are quadratic

residues, and the remaining q−1
2 elements of F×q are quadratic non-residues.

Lemma 3 An element a ∈ F×q is a quadratic residue if and only if a
q−1
2 = 1, otherwise a is a quadratic

non-residue in which case a
q−1
2 = −1 in Fq.

We leave the proofs of the above lemmas as an exercise. Keeping in mind the correspondence between R
and the k component fields Fqd (in Equation (1)), we will use the notation A = (a1, . . . , ak) ∈ R to mean
that an element A ∈ R (which can be treated as a polynomial over Fq of degree less than n) has the direct
sum representation (a1, . . . , ak), where ai = A mod fi belongs to the ith component field Fqd . We say that
a1, . . . , ak are the components of A. Now notice one thing: Picking an element in R uniformly at random, is
like picking an element in each of the k component fields Fqd independently and uniformly at random. Let
A be an element of R chosen uniformly at random, and A = (a1, . . . , ak) be its direct sum representation.
Suppose that none of the ai = 0, 1 ≤ i ≤ k. Since, ai 6= 0 is a random element of F×

qd , by Lemma 2 with
probability 1/2 it is a quadratic residue and with probability 1/2 it’s a non-residue. Therefore, assuming

that ai 6= 0 for all 1 ≤ i ≤ k, each of the k components of B
def
= A

qd−1
2 = (a

qd−1
2

1 , . . . , a
qd−1

2
k ) ∈ R is

either 1 or −1 (by Lemma 3). Moreover, the probability that all the components are 1 or −1 is at most
1/2k−1 < 1/2 (assuming that f is not irreducible) (why?). Therefore, with probability 1− 1/2k−1, some but
not all components of B + 1 are zero. What does this mean?

8-1



Lemma 4 If E = (e1, . . . , ek) ∈ R is such that some but not all ei ∈ Fqd are zero, then gcd(E, f) yields a
proper factor of f .

Proof An element E ∈ R is a polynomial over Fq of degree less than n = deg(f). If ei = E mod fi = 0
then it means that the polynomial E is divisible by fi. Hence, gcd(E, f) yields a proper factor of f since
not all ei’s are zero.

By Lemma 4, it follows that gcd(B + 1, f) is a proper factor of f with probability at least 1− 1/2k−1, under
the assumption that none of the ai’s is zero. Let’s get rid of this assumption that none of the ai’s is zero:
If the random element A 6= 0 and some ai = 0 then gcd(A, f) is a proper factor of f (again, by lemma 4).
Therefore, if A 6= 0, we get a proper factor of f with probability 1− 1/2k−1 > 1/2 (assuming that f in not
irreducible). This suggests the following algorithm, which is due to Cantor and Zassenhaus [CZ].

Algorithm 1 Equal-degree factoring
1. Pick an element A 6= 0 in R uniformly at random.
2. If gcd(A, f) 6= 1, return this gcd.

3. Else, let B = A
qd−1

2 mod f.
4. If gcd(B + 1, f) = 1 or f, return ‘failure’.

Time complexity - We leave the task of finding the exact time complexity of this algorithm as an excercise,
noting that it is polynomial in n and log q.

Since, the failure probability of the algorithm is less than 1/2, we can repeat this algorithm independently
for m times, to bring down the failure probability to less that 1/2m.

2 Reducing equal-degree factoring to root finding

It follows from Algorithm 1 that the problem of polynomial factoring over finite fields admits a randomized
polynomial time algorithm. What about a deterministic algorithm? It turns out that if the finite field Fq

is small in size (say, q = 5 or 7) then it is indeed possible to factor f deterministically 1. This is done by
reducing the equal-degree factoring problem to a root finding problem over Fq. We continue to use the same
notations as before. We would need the following lemma, the proof of which is left as an exercise.

Lemma 5 The roots of the polynomial xq − x over Fqd are exactly the elements of the finite field Fq, which
is contained in Fqd .

Let g ∈ R\Fq be such that gq = g in R. First, we need to show that such a g exists in R. By the
isomorphism given in Equation (1) (and by Lemma 5), any g whose direct-sum representation belongs to
⊕k

i=1Fq satisfies the condition gq = g mod f . Also, if f is not irreducible then such a g 6∈ Fq exists (why?).
This means, there exists ci, cj ∈ Fq (i 6= j) such that ci = g mod fi, cj = g mod fj and ci 6= cj . This also
implies that there is a c ∈ Fq such that gcd(g− c, f) yields a non-trivial factor of f . For instance, for c = ci,
fi divides gcd(g − c, f) but fj does not.

How to find a g ∈ R that satisfies gq = g? Solving a system of linear equations comes to our rescue again.
To compute g, start with a generic element g =

∑n−1
i=0 gix

i ∈ R, where n = deg(f) and gi’s are variables,
and solve for gi ∈ Fq such that

∑n−1
i=0 gix

qi =
∑n−1

i=0 gix
i mod f . Solving this equation reduces to solving a

system of linear equations in the gi’s. This reduction follows once we compute xqi rem f for all i and equate
the coefficients of xj , for 0 ≤ j ≤ n−1, from both sides of the equation. Now all we need to do, while solving
the linear equations, is to choose a solution for the gi’s such that

∑n−1
i=0 gix

i 6∈ Fq (which just means that
not all of g1, . . . , gn−1 are zero). Take g =

∑n−1
i=0 gix

i for that choices of the gi’s. Taking into account that

1in fact, it is possible to factor f in time poly(n, p), where p = char(Fq).

8-2



xqi rem f can be computed using repeated squaring, we conclude that g can be found in time polynomial in
n and log q.

The only task that remains is to find a c ∈ Fq such that gcd(g − c, f) gives a nontrivial factor of f . This
is where the problem gets reduced to root finding. The fact that gcd(g − c, f) 6= 1 means resultant of the
polynomials g − c =

∑n−1
i=1 gix

i + (g0 − c) and f is zero over Fq. This means, we need to solve for a y ∈ Fq

such that h(y) = Resx(
∑n−1

i=1 gix
i + (g0 − y), f) = 0, treating g0 − y as the constant term of the polynomial

g − y. We can find h by computing the determinant of the Sylvester matrix, S(
∑n−1

i=1 gix
i + (g0 − y), f), of

g− y and f . Although there are entries in S containing variable y, we can find det(S) = h(y) in polynomial
time using interpolation (how? see excercise 3). In this way, factoring polynomial f(x) reduces to finding a
root of the polynomial h(y) ∈ Fq[y].

Algorithm 2 Equal-degree factoring to root finding
1. Using linear algebra, find a g ∈ Fq[x] such that gq = g mod f and g 6∈ Fq.
2. If no such g exists then declare ‘f is irreducible’.
3. Compute polynomial h(y) = Resx(g − y, f) and find a root c of h(y).
4. Find a nontrivial factor f̃ = gcd(g − c, f) of f.
5. Repeat the above process to factor f̃ and f

f̃
.

Time complexity - It follows from our discussion that, apart from the root finding task in step 3 of
Algorithm 2 all the other steps run in polynomial time. To find a root of the polynomial h(y), first compute
the polynomial h̃ = gcd(yq − y, h) which splits completely over Fq into linear factors. Any root of h̃ is also
a root of h and vice versa, and so the problem reduces to finding a root of h̃. (Once again, we would like to
note that gcd(yq − y, h) is computed by first computing yq mod h using repeated squaring.) Now, observe
that we are back to the equal-degree factoring case where degree of each irreducible factor is d = 1. At this
point, we can either invoke the randomized Algorithm 1, or we can try the obvious brute-force deterministic
algorithm: Go over all elements of Fq to find a root of h̃. The latter strategy gives us a deterministic
algorithm that runs in poly(n, q) time, which is fine if q = nO(1).

In fact, root finding over Fq reduces to root finding over Fp, where p is the characteristic of the field Fq,
in time polynomial in n and log q. This was shown by Berlekamp [Ber67, Ber70] (refer to chapter 4 of the
book by Lidl and Neiderreiter [LN94]). Which means, if the characteristic of the field is small then even
if q is large, we are still factor f deterministically. In particular, a degree-n polynomial over F2m can be
factored deterministically in time polynomial in n and m. What if the characteristic p is also large? To find
a deterministic root finding algorithm over Fp that runs in time polynomial in the degree n and log p, is a
major open problem in computational algebra.

3 Testing irreducibility of a polynomial over a finite field

Suppose, we want to design an algorithm to check if a polynomial f of degree n is irreducible over Fq. If
we could factor f then we could also check if f is irreducible. But, unfortunately, we still do not have a
‘complete’ factoring algorithm that runs in deterministic polynomial time. However, one might guess that
checking if f is irreducible is perhaps an easier problem than actually finding the factors of f . This is indeed
true - for irreducibility checking, we do have a deterministic polynomial time algorithm. The key to this lies
in Lemma 5 of the previous lecture and the distinct-degree factoring step. For your convenience, we state
the lemma here again.

Lemma 5 of Lecture 7: For any d > 1, xqd −x is the product of all monic irreducible polynomials in Fq[x]
whose degree divides d.

This immediately suggests the following irreducibility test.

8-3



Algorithm 3 Irreducibility test over a finite field

1. Check if gcd(xqn − x, f) = f. If not, declare ‘f is reducible’.
2. Find all prime factors of n = deg(f).
3. For every prime factor t of n, check if gcd(xqn/t − x, f) 6= 1.
4. If there is a prime factor t, such that gcd(xqn/t−x, f) 6= 1, declare ‘f is reducible’.
5. Otherwise, ‘f is irreducible’.

Correctness and time complexity - We leave it as an exercise to check the correctness of this algorithm
and show that it runs in time polynomial in n and log q.

Exercises:
1. Prove Lemma 2, 3 and 5.
2. Show that the finite field Fqd1 is contained in the finite field Fqd2 if and only if d1 divides d2.
3. Let M be an m×m matrix whose entries are polynomials over Fq with degree bounded by d. Show that
det(M), which is also a polynomial over Fq, can be computed in time polynomial in m, d and log q.
4. Work out the exact time complexity of Algorithm 1 and Algorithm 2 (barring step 3) in terms of n and
log q.
5. Prove the correctness of Algorithm 3 and find its time complexity in terms of n and log q.

References

[Ber67] Elwyn Berlekamp. Factoring Polynomials Over Finite Fields. Bell System Technical Journal,
46:1853–1859, 1967.

[Ber70] E. R. Berlekamp. Factoring Polynomials Over Large Finite Fields. Mathematics of Computation,
24(111):713–735, 1970.

[CZ] David G. Cantor and Hans Zassenhaus. A New Algorithm for Factoring Polynomials Over Finite
fields. Mathematics of Computation, 36(154):587–592.

[LN94] Rudolf Lidl and Harald Neiderreiter. Introduction to finite fields and their applications. Cambridge
University Press, 1994.

8-4


