
Computational Number Theory and Algebra May 16, 2012

Lecture 9
Lecturers: Markus Bläser, Chandan Saha Scribe: Chandan Saha

In the last class, we mentioned that an irreducible polynomial of degree n over a finite field Fq can be
used to generate the extension field Fqn . This gives us a method to construct large finite fields starting from
small fields. To give you an example as to where such extension fields are useful, recall that in the Reed-
Solomon encoding procedure, we need to use a finite field whose size is at least as large as the codeword
length. On the other hand, in the list decoding phase we need to factor a bivariate polynomial. Given
that bivariate factoring reduces to univariate factoring and that we only know of a deterministic poly-time
factoring algorithm for low-characteristic finite fields, it makes sense to start with a small prime field and
extend it suitably to a sufficiently large finite field. In today’s class, we will see how to generate an irreducible
polynomial over a finite field in random polynomial time. The topics of discussion for today’s class are:

• Generating irreducible polynomials over finite fields,

• Miller-Rabin primality test.

1 Generating irreducible polynomials over finite fields

We want to generate an irreducible polynomial of degree n over a finite field Fq. Recall from the last class that
irreducibility of a given polynomial can be checked in deterministic polynomial time. Now, if we can show
that the density of irreducible polynomials is sufficiently large then we can just pick a random polynomial
of degree n and test if it is irreducible. This should yield an irreducible polynomial with high probability
(provided the density is large). To make this idea formal, we need to estimate the density of irreducible
polynomials of degree n over a finite field Fq.

1.1 Density of irreducible polynomials

Lemma 1 Let I(n, q) be the number of monic irreducible polynomials of degree n over Fq. Then,

qn − 2qn/2

n
≤ I(n, q) ≤ qn

n
.

Proof By Lemma 5 of lecture 7, the factors of the polynomial xqn − x over Fq are exactly those monic
irreducible polynomials (over Fq) whose degree divide n. Let Pd be the product of all monic irreducible
factors of degree d. Then, qn =

∑
d|n deg(Pd). Notice that deg(Pn) = n · I(n, q). Hence, qn = n · I(n, q) +∑

d|n,d<n deg(Pd), implying that I(n, q) ≤ qn/n. This proves the upper bound.
Now, we will use this upper bound to prove the lower bound.

qn = n · I(n, q) +
∑

d|n,d<n

deg(Pd) = n · I(n, q) +
∑

d|n,d<n

d · I(d, q)

≤ n · I(n, q) +
∑

d≤n/2

d · I(d, q)

≤ n · I(n, q) +
∑

d≤n/2

qd (using the upper bound)

⇒ n · I(n, q) ≥ qn − qn/2+1 − 1
q − 1

≥ qn − 2qn/2 (for q > 1)

This proves the lower bound.

9-1

The total number of monic polynomials of degree n is qn. Therefore, the density of monic irreducible
polynomials of degree n is I(n,q)

qn , which lies between 1/2n and 1/n, by the above lemma (assuming q ≥ 16).
This immediately suggests the following randomized algorithm.

Algorithm 1 Generating irreducible polynomial
1. Pick a monic polynomial f of degree n over Fq, uniformly at random.
2. Test if f is irreducible.
3. If not, go to step 1.

Time complexity - Assuming q ≥ 16, f is irreducible with probability at least 1/2n. Therefore, after 2n
iterations the probability that the algorithm hasn’t found an irreducible polynomial is less than 1/e. In other
words, the expected number of iterations taken by the algorithm to pick an irreducible polynomial is O(n).

This gives us a randomized procedure to generate irreducible polynomials. Unfortunately, there’s no
known deterministic polynomial time algorithm for generating irreducible polynomials. However, under the
assumption of the Extended Riemann Hypothesis, such a deterministic algorithm exists [AJ86]. It is also
known that the problem of generating an irreducible polynomial reduces in deterministic polynomial time
to the problem of factoring polynomials over finite fields [Sho88]. No deterministic polynomial factoring
algorithm is known even under the assumption of the Extended Riemann Hypothesis.

2 Miller-Rabin primality test

Distinguishing primes from composite numbers is one of the most fundamental problems in algorithmic
number theory - this is known as the PRIMES problem. Till date, multiple randomized algorithms have
been discovered to solve primality testing. In this section, we will discuss one such algorithm that is widely
used in practice and is popularly known as the Miller-Rabin test [Mil76, Rab80]. It is a classic example of
how randomization is used to design efficient algorithms in number theory.

Let N > 0 be an n-bit odd integer and N − 1 = 2tw, where w is odd.

Algorithm 2 Miller-Rabin primality test
1. Choose a randomly from the range [1, N − 1].
2. If gcd(a,N) 6= 1 return ‘composite’.
3. If aN−1 6= 1 mod N return ‘composite’.
4. If aw = 1 mod N return ‘probably prime’.
5. Else, let 1 ≤ r ≤ t be the smallest possible integer such that a2rw = 1 mod N.

6. If a2r−1w 6= −1 mod N return ‘composite’. Else return ‘probably prime’.

Correctness and success probability - First, it is easy to see that the algorithm always returns ‘probably
prime’ if N is a prime. The reason being, if N is a prime then in step 3 gcd(a,N) = 1 and hence from
Fermat’s little theorem aN−1 = 1 mod N . Also in step 6, since a2rw = 1 mod N for the smallest possible
r ≥ 1, hence a2r−1w = −1 mod N , ZN being a field.

Let N be a composite. If the algorithm reaches step 3, we can assume that a has been chosen uniformly
from Z×N , the set of positive integers coprime to and less than N . Now, if N is not a Carmichael number
1 then the set of integers a such that aN−1 = 1 mod N is a proper subgroup of Z×N under multiplication
modulo N (why?). Therefore, using Lagrange’s theorem, the chance that aN−1 6= 1 mod N is at least 1

2 .
Suppose N is a Carmichael number, which also means that N is square-free (why?). Without loss of

generality assume that N = pq, where p and q are distinct primes. By the Chinese remaindering theorem,
Z×N ∼= F×p ⊕F×q . Let p−1 = 2kw1 and q−1 = 2`w2, where w1 and w2 are odd. And suppose a = βs1 mod p =

1A composite number N is called a Carmichael number, if aN−1 = 1 mod N , for every integer a that is coprime to N .

9-2

γs2 mod q, where β and γ are generators of F×p and F×q respectively. In step 4, if aw = 1 mod N then
βs1w = 1 mod p implying that 2k|s1 as w is odd (why?). Similarly, 2`|s2 if aw = 1 mod N . Since a is
randomly chosen from Z×N , equivalently s1 and s2 are chosen uniformly randomly and independently from
the ranges [1, p− 1] and [1, q − 1] respectively. Therefore,

Pra{aw = 1 mod N} ≤ Prs1,s2{2k|s1 and 2`|s2}

= Prs1{2k|s1} · Prs2{2`|s2} =
1

2k+`
. (why?)

Suppose in step 6, a2r−1w = −1 mod N . Then βs12
r−1w = −1 mod p implying that 2k−r exactly divides

s1 i.e. k − r is the highest power of 2 that divides s1 - we denote this exact division by 2k−r‖s1. Similarly,
2`−r‖s2. Notice that this also implies that r ≤ min{k, `} (why?). For a fixed r ≤ min{k, `},

Prs1,s2{2k−r‖s1 and 2`−r‖s2} =
1

2k+`−2(r−1)
.

By union bound, over all 1 ≤ r ≤ min{k, `} = k (say),

Pra{∃r, 1 ≤ r ≤ t such that a2r−1w = −1 mod N} ≤
k∑

r=1

1
2k+`−2(r−1)

Summing the error probabilities from step 4 and 6 we conclude that Miller-Rabin test succeeds with proba-
bility at least 1− 1

2k+` (4k+2
3) ≥ 1

2 .

Time complexity - Gcd computation in step 2 takes O(MI(n) log n) time. In step 3 we can use repeated
squaring and compute a1 = a2 mod N , a2 = a2

1 = a4 mod N , a3 = a2
2 = a8 mod N and so on till ablog(N−1)c.

Then, we can multiply all those ai’s modulo N for which the ith bit of N−1 in binary is 1. This process takes
O(MI(n) logN) = O(nMI(n)) time. The complexity of steps 4, 5 and 6 are similarly bounded by O(nMI(n))
as r ≤ t ≤ logN ≤ n. Therefore, the overall time complexity of the Miller-Rabin test is O(nMI(n)) = Õ(n2)
bit operations.

Remark - Another well known randomized primality test is the Solovay-Strassen test [SS77]. It is based
upon the quadratic reciprocity theorem.

Deterministic primality test - In a major breakthrough, the first deterministic primality testing algorithm
was given by Agrawal, Kayal and Saxena [AKS04] in 2002. It is famously known as the AKS primality test.
The current best deterministic complexity is due to a version of the AKS-primality test given by Lenstra and
Pomerance [JP05]. Their algorithm has a running time of Õ(n6) bit operations. We’ll discuss this algorithm
in the next few lectures.

Exercises:
1. Prove that a Carmichael number N is square-free, i.e. there’s no prime p such that p2|N .
2. Show that 561 is a Carmichael number.
3. The analysis of the Miller-Rabin test is done by assuming that N = p · q, where p and q are distinct
primes. Show that a similar analysis holds for any general composite N = pe1

1 . . . per
r , where p1, . . . , pr are

distinct primes.
4. Show that for any finite field Fq, the multiplicative group F×q = Fq\{0} is cyclic. Infer that, if β is a
generator of F×q and βk = 1 in Fq then q − 1|k.

References

[AJ86] Leonard M. Adleman and Hendrik W. Lenstra Jr. Finding Irreducible Polynomials over Finite
Fields. In STOC, pages 350–355, 1986.

9-3

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of Mathematics,
160(2):781–793, 2004.

[JP05] Hendrik W. Lenstra Jr. and Carl Pomerance. Primality testing with Gaussian periods, July 2005.
Available from http://www.math.dartmouth.edu/ carlp/PDF/complexity12.pdf.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci., 13(3):300–317,
1976.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12(1):128–138,
1980.

[Sho88] Victor Shoup. New Algorithms for Finding Irreducible Polynomials over Finite Fields. In FOCS,
pages 283–290, 1988.

[SS77] Robert Solovay and Volker Strassen. A Fast Monte-Carlo Test for Primality. SIAM J. Comput.,
6(1):84–85, 1977.

9-4

