% Algebraic Complexity Theory

Lecture |: Course overview;
Arithmetic Circuits

Department of Computer Science,
Indian Institute of Science

About the course

e The broad area of Algorithms & Complexity has two
complementary facets: designing efficient algorithms
for computational problems (upper bounds) and
proving hardness results by studying suitable models
of computation (lower bounds).

About the course

e The broad area of Algorithms & Complexity has two
complementary facets: designing efficient algorithms
for computational problems (upper bounds) and
proving hardness results by studying suitable models
of computation (lower bounds).

* When computational problems have algebraic, linear
algebraic or number theoretic flavor, the two facets
are known as Computer Algebra and Algebraic

Complexity Theory (ACT).

Computer Algebra

e Linear algebraic problems:

.
2
3.
4
5

Computing determinant of a matrix

. Computing inverse of a matrix

Solving a system of linear equations

. Computing characteristic polynomial

Matrix multiplication

Computer Algebra
e Computation with polynomials:

Computing GCD of polynomials
Polynomial interpolation & (multi-point) evaluation

Polynomial factoring

Polynomial multiplication

Solving a polynomial system

o 1 A W N —

Computing Grobner basis of a polynomial ideal

Computer Algebra
e Computation with numbers:

Computing GCD of integers

Integer factoring

.
2
3. Integer multiplication
4. Testing primality

5

Finding short vectors in an integer lattice

Computer Algebra

e References:

Modern Computer Algebra by von zur Gathen &
Gerhard (1999, 2003)

A Computational Introduction to Number Theory
and Algebra by Victor Shoup (2005, 2008)

Algebra and Computation by Madhu Sudan (1999)

4. A Survey of Techniques used in Algebraic and

Number Theoretic Algorithms by Manindra
Agrawal (2005)

Topics in Algebra and Computation by me (201 3)

Towards Algebraic Complexity Theory

e To get a sense of what model of computation we
should study in ACT for examining algebraic problems
& algorithms, let us focus on matrix multiplication.

e Linear algebraic problems:

2
3.
4.
5

Computing determinant of a matrix
Computing inverse of a matrix
Solving a system of linear equations
Computing characteristic polynomial

Matrix multiplication

=

—

Reduce to matrix
multiplication

Towards Algebraic Complexity Theory

e To get a sense of what model of computation we
should study in ACT for examining algebraic problems
& algorithms, let us focus on matrix multiplication.

e Linear algebraic problems:

i~ W N

Computing determinant of a matrix
Computing inverse of a matrix
Solving a system of linear equations
Computing characteristic polynomial

Matrix multiplication

=

Ref.: A survey on
“Computation of
the Inverse and
Determinant of a
Matrix” by Villard
(2002). See also
the wiki page on
“Computational
Complexity of
Mathematical
operations”.

Towards Algebraic Complexity Theory

e To get a sense of what model of computation we
should study in ACT for examining algebraic problems
& algorithms, let us focus on matrix multiplication.

e Linear algebraic problems:

.
2.
3.
4.
5.

Computing determinant of a matrix
Computing inverse of a matrix

Solving a system of linear equations Reference: “Fast
algorithms for the

Computing characteristic polynomial = characteristic
. L) polynomial” by
Matrix multiplication Keller-Gehrig
(1985)

Matrix Multiplication

e Input: Two matrices A = (X;);; ¢ (7 a0d B = (Yi)) € o
* Output: The matrix C =AB = (7)), . ¢ o}

» Easy to see that O(n’) additions and multiplications
are sufficient to compute C.

* Is O(n?) arithmetic operations necessary?

Matrix Multiplication

e Input: Two matrices A = (X;);; ¢ (7 a0d B = (Yi)) € o
* Output: The matrix C =AB = (7)), . ¢ o}

» Easy to see that O(n’) additions and multiplications
are sufficient to compute C.

o Is O(n?) arithmetic operations necessary? No! (Strassen’s9)

e Let’s focus on the n = 2 case. A trivial algorithm uses
8 multiplications and 4 additions.

Matrix Multiplication
o LetA = --,B=-- and C = AB = --

G| 5 Y21 Y22 Z,, Zy

e Strassen (1969). Using /7_ multiplications and |8
additions/subtractions, we can compute C.

Matrix Multiplication
o Leta= BRIEE p - BEEN . C-ap- --

X1 X2 Y21 Y22
Suppose, Then,
© M =X (Y~ Y) * z,=-mytmy+tm;+mg
© My = (X X)) Y, * Z,=m, +m,
© M3 =Xyt Xy) Yy * Z,,=m;+m,
© My =Xy (Yo — i) * Zp,=m—my+tmg—my

* Mg = (X)) X)) (Yt Y2)
* Mg = (X = Xq) (Y21 + ¥Y2)
* My = (X —=Xy) (Y tY)

e Strassen (1969). Using /7 multiplications and |8
additions/subtractions, we can compute C.

Matrix Multiplication
o Leta= BRIEE p - BEEN . C-ap- --

X1 X2 Y21 Y22
Suppose, Then,
© M =X (Y~ Y) * z,=-mytmy+tm;+mg
© My = (X X)) Y, * Z,=m, +m,
© M3 =Xyt Xy) Yy * Z,,=m;+m,
© My =Xy (Yo — i) * Zp,=m—my+tmg—my

* Mg = (X)) X)) (Yt Y2)
* Mg = (X = Xq) (Y21 + ¥Y2)
* My = (X —=Xy) (Y tY)

* Why does this help? Because, the above identities

hold even if x;, y,, and z, are matrices!

Matrix Multiplication
o Leta= BRIEE p - BEEN . C-ap- --

X1 X2 Y21 Y22
Suppose, Then,
© M =X (Y~ Y) * z,=-mytmy+tm;+mg
© My = (X X)) Y, * Z,=m, +m,
© M3 =Xyt Xy) Yy * Z,,=m;+m,
© My =Xy (Yo — i) * Zp,=m—my+tmg—my

* Mg = (X)) X)) (Yt Y2)
* Mg = (X = Xq) (Y21 + ¥Y2)
* My = (X —=Xy) (Y tY)

» So we can apply recursion to multiply two 2 x 2K

matrices, where x;;, y,; and z, are 2! x 2! matrices.

Matrix Multiplication
o LetA = --,B=-- and C = AB = --

2SR50 Y21 Y2 Z; Iy
Suppose, Then,
© M =X (Y~ Y) * z,=-mytmy+tm;+mg
© My = (X X)) Y, * Z,=m, +m,
M3 = (X + Xp) * Y11 * Z,,=m;+m,
My =Xy * (Y21 = Y1) * Zp=m;—my;+ mg—m,
ms = (X +Xp) (Y11 + Y22)

* Mg = (X = Xq) (Y21 + ¥Y2)
* My = (X —=Xy) (Y tY)

e Solving the recursion M(2") = [8:22(«<1) + 7-M(21), we
get M(24) = O(74). Hence, M(n) = O(n'87)= O(n?897-),

Matrix Multiplication

° How many arithmetic operations
(multiplications, divisions, additions, subtractions) are
necessary & sufficient to multiply two n x n matrices?

e Winograd (1971) showed that / multiplications are
required for multiplying two 2 x 2 matrices.

Matrix Multiplication

e Open question: How many arithmetic operations
(multiplications, divisions, additions, subtractions) are
necessary & sufficient to multiply two n x n matrices!?

e Winograd (1971) showed that 7/ multiplications are
required for multiplying two 2 x 2 matrices.

Strassen (1969) O(n28')
Schonhage (1981) O(n2%5)
Coppersmith & Winograd (1987) O(n2376)
Optimized CW (Stothers,Vassilevska Williams, Le Gall..) .
Alman, Duan,Vassilevska Williams, Xu, Xu, Zhou (2024) O(n237134)

Ref. “Algebraic Complexity Theory and Matrix Multiplication” by Le Gall (a tutorial)

Matrix Multiplication

e Open question: How many arithmetic operations
(multiplications, divisions, additions, subtractions) are
necessary & sufficient to multiply two n x n matrices!?

e Winograd (1971) showed that 7/ multiplications are
required for multiplying two 2 x 2 matrices.

Strassen (1969) O(n28')
Schonhage (1981) O(n2%5)
Coppersmith & Winograd (1987) O(n2376)
Optimized CW (Stothers,Vassilevska Williams, Le Gall..) .
Alman, Duan,Vassilevska Williams, Xu, Xu, Zhou (2024) O(n237134)

Ref. See also Lec 3 of “Topics in Complexity Theory” course (2015)

Matrix Multiplication

° How many arithmetic operations
(multiplications, divisions, additions, subtractions) are
necessary & sufficient to multiply two n x n matrices?

o Winograd (19/71) showed that 7 multiplications are
required for multiplying two 2 x 2 matrices.

e Questions and results of the above kind are studied in
Algebraic Complexity Theory using a model a
computation known as arithmetic circuits.

Models of Computation in ACT

* Given the nature of the aforementioned problems, the
basic operations involved in algorithms for these
problems are arithmetic operations such as addition
(+), subtraction (-), multiplication (x), division
(<), k' root finding, and comparison.

Models of Computation in ACT

* Given the nature of the aforementioned problems, the
basic operations involved in algorithms for these
problems are arithmetic operations such as addition
(+), subtraction (-), multiplication (x), division
(<), k' root finding, and comparison.

e Computation models, like TMs and Boolean Circuits,
have been defined to analyze such algorithms, e.g.,

a) real RAM mode
“Computational Geometry” by Shamos (1978)

Models of Computation in ACT

* Given the nature of the aforementioned problems, the
basic operations involved in algorithms for these
problems are arithmetic operations such as addition
(+), subtraction (-), multiplication (x), division
(<), k' root finding, and comparison.

e Computation models, like TMs and Boolean Circuits,
have been defined to analyze such algorithms, e.g.,

a) real RAM mode
b) BSS model

“On a theory of Computation and Complexity over the real numbers:

NP-completeness, recursive functions, and Universal Machines” by Blum,
Shub, Smale (1989)

Models of Computation in ACT

* Given the nature of the aforementioned problems, the
basic operations involved in algorithms for these
problems are arithmetic operations such as addition
(+), subtraction (-), multiplication (x), division
(<), k' root finding, and comparison.

e Computation models, like TMs and Boolean Circuits,
have been defined to analyze such algorithms, e.g.,

a) real RAM mode
b) BSS model
c) Arithmetic Circuits

. : .V :
“Simplest” non-uniform version of the first two models

Models of Computation in ACT

* Given the nature of the aforementioned problems, the
basic operations involved in algorithms for these
problems are arithmetic operations such as addition
(+), subtraction (-), multiplication (x), division
(<), k' root finding, and comparison.

e Computation models, like TMs and Boolean Circuits,
have been defined to analyze such algorithms, e.g.,

a) real RAM mode

root finding and b) BSS model
comparison not allowed
| c) Arithmetic Circuits
W

“Simplest” non-uniform version of the first two models

Arithmetic Circuits

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

The input nodes labelled by x,, ...,x have in-degree O.

Nodes labelled by [F elements also have in-degree 0.
Nodes with out-degree 0 are the output nodes.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

The input nodes labelled by x,, ...,x have in-degree O.

Nodes labelled by [F elements also have in-degree 0.
Nodes with out-degree 0 are the output nodes.

Nodes labelled by =+ have fan-in two.

Edges are labelled by [F elements.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

A node labelled by x. (similarly, aEF) computes x.
(respectively, «). A node labelled by an operation * with
inputs from nodes computing f, ..., f computes

of*.*a f
where «, ..., a_€EIF are the corresponding edge labels.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

A node labelled by x. (similarly, aEF) computes x.
(respectively, «). A node labelled by an operation * with
inputs from nodes computing f, ..., f computes

of*.*a f
where «, ..., a_€EIF are the corresponding edge labels.
Division by O is forbidden.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, .
x,, or field constants.

..,

Naturally, an arithmetic circuit computes a set of
rational functions over [F. A rational function is a ratio of
two polynomials.

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

Size of a circuit is the number of edges in it.

Depth of a circuit is the length of the longest path
from an input to an output node (gate).

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

° An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,

x,, or field constants.
2
? 3X,X3 + X,

3 Size =7
Depth = 2

\X f \X

X

Arithmetic Circuits

* Arith. circuits are algebraic analogs of Bool. circuits.

o An arithmetic circuit over a field [F is a
directed acyclic graph with nodes labelled by
arithmetic operations (+,%,*) or input variables x, ...,
x,, or field constants.

The number of X,+ gates with at least two
children not labelled by field constants is called the non-
scalar complexity of the circuit.

When there are no + gates, non-scalar complexity
is also called multiplicative complexity.

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example |. (Determinant computation)
Let X = (X;);e[n; - Then,

J
det(X) = T (-1 [x40

OES, i€[n]

which is a degree-n polynomial in n? variables with *|
nonzero coefficients.

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 2. (Matrix multiplication)
Let A= (Xp)iiemp B = Vidiepp © TAB = (2,0)0q €)

Then,each z, =) x, 'y, is a quadratic form in the x

. ke([n] . .
and y variables. All nonzero coefficients are |.

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 3. (Solving a linear system)

Xy ¥ Xy, ¥ Xy, T 7 . .
. a linear system in

"y variables

XnIYI t Xn2Y2 ... F Xnn)’n - Zn

Here the inputs are {x; : i,j€[n]}and z|, ..., .

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 3. (Solving a linear system)

Xy ¥ Xy, ¥ Xy, T 7 . .
. a linear system in

"y variables

XnIYI t Xn2Y2 ... F Xnn)’n - Zn |

Let X = (x;); ;e and Z, be an n x n matrix whose £
column is (z,... z,)" and any other (i,j)-th entry is x;.
Then, by Cramer’s rule, y, = det(Z,)/det(X).

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 4. (Polynomial interpolation)
Input. Points (x,z)), ..., (x.,z.) € [F2
Output.f(y)€ Fly] s.t.f(x) = z for all i € [n].
Lagrange interpolation. 7 (y- x.)
fy)= Y z - j € [n]\()
(Y) i € [n] [T (- X;)

j € [n]\i}

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 4. (Polynomial interpolation)
Input. Points (x,z)), ..., (x.,z.) € [F2
Output.f(y)€ Fly] s.t.f(x) = z for all i € [n].
Lagrange interpolation. 7 (y- x.)
fy)= Y z - j € [n]\()
(Y) i € [n] [T (- X;)

j € [n]\i}

Obs. The coefficients of f are rational functions in x

and z variables of degree O(n?).

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 4. (Polynomial interpolation)

Lagrange interpolation. [(y-x)
)= Yz, L0

i € [n]I 1 (xi- %)

j € [nI\()
Define the elementary symmetric polynomial as

ESym,, 4(x) :=s Z() 'DS X

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 4. (Polynomial interpolation)

Lagrange interpolation. [(y-x)
)= Yz, L0

i € [n]I i (X; - Xj)

j € [n]\{i}

Obs.(y =x))...:(y - %) =2 (-1)? - ESym, 4(x) - y™*

d € [0,n]

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 4. (Polynomial interpolation)

Lagrange interpolation. [(y-x)
)= Yz, L0

i € [n]I i (X; - Xj)

j € [n]\{i}

Obs.(y =x))...:(y - %) =2 (-1)? - ESym, 4(x) - y™*

d € [0,n]

More on ESym in later lectures...

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 5. (Polynomial multiplication)
Input.f =x y" +...+ xyand g =z y" +...+ z, € FJ[y]
Output.h=fg=) (> Xz,)y
i €[02n] | € [0,]
Obs.The coefficients of h are polynomials in x and z

variables of degree 2.

Why care about arithmetic circuits!?

e Reason |. For several of the aforementioned
problems, the output is a rational function (often a
polynomial) in the input variables.

e Example 6. (Checking coprimality of polynomials)
Input.f =x y" +...+ xyand g = z_y™ +...+ z, € F[y];
the leading coefficients x_,z_ # 0.
Output. I'if ged (f, g) = |, else o/p 0.

Lemma.The ged (f, g) # | iff the resultant of f and g is 0.
(see Lec 6 of “Topics in Algebra & Computation” (201 3))

Sylvester Matrix and the Resultant

e f=xy'+...+%x,,g=2zy"+...+z, € F[y]; x,z, 7 O.

e Definition. The Sylvester matrix S,(f, g) is as fo

S,(f,g) :=

x, |0 0 z. |0 0
X X, Zonl | Zm

: X, : Z.

Xy | 0 |z, |: 0

0 X x, |0 Z, zZ

: 0 X | 0 Z
0 0 X, |0 0 z,

lows:

(m+n) x (m+n)

Sylvester Matrix and the Resultant

o f=xy"+...+x,,g=2z. y"+...+ z5 € F[y]; x.,z, # 0.

lows:

e Definition.The Sylvester matrix S (f, g) is as fo
x, |0 0 |z, |0 0
Xn-1 | Xn Zonl | Zm
Xn-| : Zi|
— 0 : 0
Sy(f, g) = [X Z0
0 |x x, |0 |z zZ
0 Xn-1 : 0 Znn-
Defn.The resultant
Res, (f, g) := det(S,(f, g)) : S E s
€ Fx,z] o |o % 10 |0 7,
deg(Res,(f,g)) Sm+n | i

(m+n) x (m+n)

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

e For every Boolean function #: {0,1}" — {0,1},
there is a unique multilinear polynomial f €F[x,,...,x]
s.t. #(a) = f(a) for all a € {0,1}".

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

e For every Boolean function #: {0,1}" — {0,1},
there is a unique multilinear polynomial f €F[x,,...,x]
s.t. f(a) = f(a) for all a € {0, }".

e Proof sketch. Let # = T ,Vv..vJ7_ be a DNF
representation of #, where each term 7', has n_literals.
With every 7. associate a multilinear polynomial in a
natural way; e.g., if . = x;,Ax,A7x5, then T, = x(I-
X,)(I-x3). Finally, f = > T.

i € [n]

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

e For every Boolean function #: {0,1}" — {0,1},
there is a unique multilinear polynomial f €F[x,,...,x,]
s.t. #(a) = f(a) for all a € {0,1}".

* Proof sketch. Uniqueness of f can be shown using

induction. It also follows from Combinatorial
Nullstellensatz.

Combinatorial Nullstellensatz

e Theorem (Alon ’99). Let f € F[x,,...,x,] and deg(f) =
t,;+...+ t, where t 2 0. Suppose the coefficient of the
monomial x,%-...- x b in f is nonzero.

Then,if S,..., S, are subsets of [with |S| > t,
thereisapointa €S, x ... xS_ s.t. f(a) # 0.

e That is, S, x ... x S, is a hitting-set for f. More on
hitting-sets and Polynomial Identity Testing (PIT) later.

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

° If f is computable by a size-s arithmetic circuit
over any fixed finite field, or over 7Z with poly(s) bit
integers as edge labels, then # is computable by a
Boolean circuit of size poly(s).

* Assume that the arithmetic circuit has no + gates.

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

° If f is computable by a size-s arithmetic circuit
over any fixed finite field, or over 7Z with poly(s) bit
integers as edge labels, then # is computable by a
Boolean circuit of size poly(s).

* Proof sketch. Over finite fields, replace every field
operation by a constant sized Boolean circuit. Over Z,
reduce the integers labelling the edges modulo 2,
replace a + gate by a D gate, and a x gate by a A gate.

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

° If f is computable by a size-s arithmetic circuit
over any fixed finite field, or over 7Z with poly(s) bit
integers as edge labels, then # is computable by a
Boolean circuit of size poly(s).

o A super-polynomial (i.e., n®(")) lower bound
for Boolean circuits computing # implies a super-
polynomial lower bound for arithmetic circuits
computing f.

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

° If f is computable by a size-s arithmetic circuit
over any fixed finite field, or over 7Z with poly(s) bit
integers as edge labels, then # is computable by a
Boolean circuit of size poly(s).

* In this sense, proving arithmetic circuit lower bound is
a stepping-stone to proving Boolean circuit lower
bound.

Why care about arithmetic circuits!?

° . Boolean circuit lower bounds imply
arithmetic circuit lower bounds. So, it is necessary to
prove arithmetic circuit lower bounds first!

e Open question. (converse) Does arithmetic circuit
lower bound imply Boolean circuit lower bound?

e We don’t know!

o Do not interpret this as “arithmetic circuits
cannot simulate Boolean circuits.”

Arithmetization

o Obs. If #:{0,1}" — {0,1} is computable by a Boolean
circuit of size s, then there’s an arithmetic circuit
(over any field) of size O(s) computing a polynomial h
s.t. #(a) = h(a) for all a € {0, 1}".

e Proof sketch. Replace x,Ax, by x,;x,, x,Vx, by [|-(I-
x)(1-x5),and x; by |-x,.

Arithmetization

o Obs. If #:{0,1}" — {0,1} is computable by a Boolean
circuit of size s, then there’s an arithmetic circuit
(over any field) of size O(s) computing a polynomial h
s.t. #(a) = h(a) for all a € {0, 1}".

e Note. Polynomial h needn’t be f (the unique
multilinear polynomial for #). In particular, deg(h) can

be exponential in s, whereas deg(f) is O(n). s
aY

(9;/@7' —.(}5;7'

Arithmetization

e f #:{0,1}" — {0,1} is computable by a Boolean
circuit of size s, then there’s an arithmetic circuit
(over any field) of size O(s) computing a polynomial h
s.t. #(a) = h(a) for all a € {0, 1}".

° Polynomial h needn’t be f (the unique

multilinear polynomial for #). In particular, deg(h) can
be exponential in s, whereas deg(f) is O(n).

e The absence of poly-size circuits for f doesn’t
necessarily rule out poly-size circuits for a polynomial

h satisfying #(a) = h(a) = f(a) for all a € {0, 1}".

Arithmetization

e f #:{0,1}" — {0,1} is computable by a Boolean
circuit of size s, then there’s an arithmetic circuit
(over any field) of size O(s) computing a polynomial h
s.t. #(a) = h(a) for all a € {0, 1}".

° Polynomial h needn’t be f (the unique
multilinear polynomial for #). In particular, deg(h) can
be exponential in s, whereas deg(f) is O(n).

* So, we're unable to conclude that a super-poly lower
bound for arithmetic circuits computing f implies
super-polynomial lower bound for Boolean circuits
computing 7.

Why prove arithmetic circuit LB?

* As mentioned before, it is a necessary step for
Boolean circuit lower bounds.

e Moreover, proving arithmetic circuit size upper and
lower bounds is an important goal in its own right
from the viewpoint of understanding the complexity
of algebraic problems.

Reading materials

e Matrix multiplication
» Fast Matrix Multiplication (survey) by Blaser (2013)

e Matrix multiplication & models of computations

» Algebraic Complexity Theory (book) by Blurgisser,
Clausen, and Shokrollahi (1997)

» Algebraic Complexity Theory (survey) by von zur
Gathen (1988)

» Algebraic Complexity Theory (survey) by Pippenger
(1981)

Reading materials

e Algebraic Complexity Classes

» Completeness and Reductions in Algebraic Complexity
Theory (habilitation) by Burgisser (2000)

» Algebraic Complexity Classes by Mahajan (201 3)

» Completeness Classes in Algebraic Complexity Theory
by Burgisser (2024)

Reading materials

e Lower bounds and algorithms for arithmetic circuits

» _Partial Derivatives in Arithmetic Complexity and beyond
(survey) by Chen, Kayal, and Wigderson (2010)

» Arithmetic Circuits: A survey of recent results and Open
Questions by Shpilka and Yehudayoff (2009)

Reading materials

e Lower bounds for arithmetic circuits

» A survey of lower bounds in Arithmetic Circuit
Complexity by Saptharishi (and other contributors)

(2021)

e Polynomial Identity Testing

» _Progress on Polynomial Identity Testing: Part | and 2 by
Saxena (2009, 2014)

» Recent advances in Polynomial Identity Testing by
Dutta and Ghosh (2024)

