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About the course
y The broad area of Algorithms & Complexity has two 

complementary facets: designing efficient algorithms 
for computational problems (upper bounds) and 
proving hardness results by studying suitable models 
of computation (lower bounds).



About the course
y The broad area of Algorithms & Complexity has two 

complementary facets: designing efficient algorithms 
for computational problems (upper bounds) and 
proving hardness results by studying suitable models 
of computation (lower bounds).

y When computational problems have algebraic, linear 
algebraic or number theoretic flavor, the two facets 
are known as Computer Algebra and Algebraic 
Complexity Theory (ACT).  



Computer Algebra
y Linear algebraic problems:

1. Computing determinant of a matrix
2. Computing inverse of a matrix
3. Solving a system of linear equations
4. Computing characteristic polynomial
5. Matrix multiplication                 



Computer Algebra
y Computation with polynomials:

1. Computing GCD of polynomials
2. Polynomial interpolation & (multi-point) evaluation
3. Polynomial factoring
4. Polynomial multiplication
5. Solving a polynomial system
6. Computing Gröbner basis of a polynomial ideal               



Computer Algebra
y Computation with numbers:

1. Computing GCD of integers
2. Integer factoring
3. Integer multiplication
4. Testing primality
5. Finding short vectors in an integer lattice



Computer Algebra
y References:

1. Modern Computer Algebra by von zur Gathen & 
Gerhard (1999, 2003)

2. A Computational Introduction to Number Theory 
and Algebra by Victor Shoup (2005, 2008)

3. Algebra and Computation by Madhu Sudan (1999)
4. A Survey of Techniques used in Algebraic and 

Number Theoretic Algorithms by Manindra 
Agrawal (2005)

5. Topics in Algebra and Computation by me (2013)



Towards Algebraic Complexity Theory

y To get a sense of what model of computation we 
should study in ACT for examining algebraic problems 
& algorithms, let us focus on matrix multiplication.

  
y Linear algebraic problems:

1. Computing determinant of a matrix
2. Computing inverse of a matrix
3. Solving a system of linear equations
4. Computing characteristic polynomial
5. Matrix multiplication

Reduce to matrix 
multiplication



Towards Algebraic Complexity Theory

y To get a sense of what model of computation we 
should study in ACT for examining algebraic problems 
& algorithms, let us focus on matrix multiplication.

  
y Linear algebraic problems:

1. Computing determinant of a matrix
2. Computing inverse of a matrix
3. Solving a system of linear equations
4. Computing characteristic polynomial
5. Matrix multiplication

Ref.:  A survey on 
“Computation of 
the Inverse and 
Determinant of a 
Matrix” by Villard 
(2002). See also 
the wiki page on 
“Computational 
Complexity of 
Mathematical 
operations”.



Towards Algebraic Complexity Theory

y To get a sense of what model of computation we 
should study in ACT for examining algebraic problems 
& algorithms, let us focus on matrix multiplication.

  
y Linear algebraic problems:

1. Computing determinant of a matrix
2. Computing inverse of a matrix
3. Solving a system of linear equations
4. Computing characteristic polynomial
5. Matrix multiplication

Reference: “Fast 
algorithms for the 
characteristic 
polynomial” by 
Keller-Gehrig 
(1985)



Matrix Multiplication
y Input:  Two matrices A = (xij)i,j ∈ [n] and B = (ykl)k,l ∈ [n].
y Output:  The matrix C = AB = (zpq)p,q ∈ [n].

y Easy to see that O(n3) additions and multiplications 
are sufficient to compute C. 

y Is O(n3) arithmetic operations necessary?



Matrix Multiplication
y Input:  Two matrices A = (xij)i,j ∈ [n] and B = (ykl)k,l ∈ [n].
y Output:  The matrix C = AB = (zpq)p,q ∈ [n].

y Easy to see that O(n3) additions and multiplications 
are sufficient to compute C. 

y Is O(n3) arithmetic operations necessary?  No! (Strassen’69)

y Let’s focus on the n = 2 case.  A trivial algorithm uses 
8 multiplications and 4 additions.



Matrix Multiplication
y Let A =   , B =             and C = AB = 

y Strassen (1969). Using 7 multiplications and 18 
additions/subtractions, we can compute C.

x11 x12

x21 x22

y11 y12

y21 y22

z11 z12

z21 z22



Matrix Multiplication
y Let A =   , B =             and C = AB = 

y Strassen (1969). Using 7 multiplications and 18 
additions/subtractions, we can compute C.

x11 x12

x21 x22

y11 y12

y21 y22

z11 z12

z21 z22

Suppose,
• m1 = x11 ∙ (y12 – y22)
• m2 = (x11 + x12) ∙ y22
• m3 = (x21 + x22) ∙ y11
• m4 = x22 ∙ (y21 – y11)
• m5 = (x11 + x22) ∙ (y11 + y22)
• m6 = (x12 – x22) ∙ (y21 + y22)
• m7 = (x11 – x21) ∙ (y11 + y12)

Then,
• z11 = - m2 + m4 + m5 + m6
• z12 = m1 + m2
• z21 = m3 + m4
• z22 = m1 – m3 + m5 – m7



Matrix Multiplication
y Let A =   , B =             and C = AB = 

y Why does this help? Because, the above identities 
hold even if xij, ykl and zpq are matrices!

x11 x12

x21 x22

y11 y12

y21 y22

z11 z12

z21 z22

Suppose,
• m1 = x11 ∙ (y12 – y22)
• m2 = (x11 + x12) ∙ y22
• m3 = (x21 + x22) ∙ y11
• m4 = x22 ∙ (y21 – y11)
• m5 = (x11 + x22) ∙ (y11 + y22)
• m6 = (x12 – x22) ∙ (y21 + y22)
• m7 = (x11 – x21) ∙ (y11 + y12)

Then,
• z11 = - m2 + m4 + m5 + m6
• z12 = m1 + m2
• z21 = m3 + m4
• z22 = m1 – m3 + m5 – m7



Matrix Multiplication
y Let A =   , B =             and C = AB = 

y So we can apply recursion to multiply two 2k x 2k 
matrices, where xij, ykl and zpq are 2k-1 x 2k-1 matrices. 

x11 x12

x21 x22

y11 y12

y21 y22

z11 z12

z21 z22

Suppose,
• m1 = x11 ∙ (y12 – y22)
• m2 = (x11 + x12) ∙ y22
• m3 = (x21 + x22) ∙ y11
• m4 = x22 ∙ (y21 – y11)
• m5 = (x11 + x22) ∙ (y11 + y22)
• m6 = (x12 – x22) ∙ (y21 + y22)
• m7 = (x11 – x21) ∙ (y11 + y12)

Then,
• z11 = - m2 + m4 + m5 + m6
• z12 = m1 + m2
• z21 = m3 + m4
• z22 = m1 – m3 + m5 – m7



Matrix Multiplication
y Let A =   , B =             and C = AB = 

y Solving the recursion M(2k) = 18∙22(k-1) + 7∙M(2k-1), we 
get M(2k) = O(7k). Hence, M(n) = O(nlg 7)= O(n2.807..).

x11 x12

x21 x22

y11 y12

y21 y22

z11 z12

z21 z22

Suppose,
• m1 = x11 ∙ (y12 – y22)
• m2 = (x11 + x12) ∙ y22
• m3 = (x21 + x22) ∙ y11
• m4 = x22 ∙ (y21 – y11)
• m5 = (x11 + x22) ∙ (y11 + y22)
• m6 = (x12 – x22) ∙ (y21 + y22)
• m7 = (x11 – x21) ∙ (y11 + y12)

Then,
• z11 = - m2 + m4 + m5 + m6
• z12 = m1 + m2
• z21 = m3 + m4
• z22 = m1 – m3 + m5 – m7



Matrix Multiplication
y Open question: How many arithmetic operations 

(multiplications, divisions, additions, subtractions) are 
necessary & sufficient to multiply two n x n matrices?

y Winograd (1971) showed that 7 multiplications are 
required for multiplying two 2 x 2 matrices.



Matrix Multiplication
y Open question: How many arithmetic operations 

(multiplications, divisions, additions, subtractions) are 
necessary & sufficient to multiply two n x n matrices?

y Winograd (1971) showed that 7 multiplications are 
required for multiplying two 2 x 2 matrices.

References M(n)

Strassen (1969) O(n2.81)

Schönhage (1981) O(n2.55)

Coppersmith & Winograd (1987) O(n2.376)

Optimized CW (Stothers, Vassilevska Williams, Le Gall..) ⋮
Alman, Duan, Vassilevska Williams, Xu, Xu, Zhou (2024) O(n2.37134)

Ref.  “Algebraic Complexity Theory and Matrix Multiplication” by Le Gall (a tutorial) 



Matrix Multiplication
y Open question: How many arithmetic operations 

(multiplications, divisions, additions, subtractions) are 
necessary & sufficient to multiply two n x n matrices?

y Winograd (1971) showed that 7 multiplications are 
required for multiplying two 2 x 2 matrices.

References M(n)

Strassen (1969) O(n2.81)

Schönhage (1981) O(n2.55)

Coppersmith & Winograd (1987) O(n2.376)

Optimized CW (Stothers, Vassilevska Williams, Le Gall..) ⋮
Alman, Duan, Vassilevska Williams, Xu, Xu, Zhou (2024) O(n2.37134)

Ref.  See also Lec 3 of “Topics in Complexity Theory” course (2015) 



Matrix Multiplication
y Open question: How many arithmetic operations 

(multiplications, divisions, additions, subtractions) are 
necessary & sufficient to multiply two n x n matrices?

y Winograd (1971) showed that 7 multiplications are 
required for multiplying two 2 x 2 matrices.

y Questions and results of the above kind are studied in 
Algebraic Complexity Theory using a model a 
computation known as arithmetic circuits.



Models of Computation in ACT
y Given the nature of the aforementioned problems, the 

basic operations involved in algorithms for these 
problems are arithmetic operations such as addition 
(+), subtraction (-), multiplication (x), division 
(÷), kth root finding, and comparison.



Models of Computation in ACT
y Given the nature of the aforementioned problems, the 

basic operations involved in algorithms for these 
problems are arithmetic operations such as addition 
(+), subtraction (-), multiplication (x), division 
(÷), kth root finding, and comparison.

y Computation models, like TMs and Boolean Circuits, 
have been defined to analyze such algorithms, e.g.,

   a)  real RAM model 
 Ref.  “Computational Geometry” by Shamos (1978)



Models of Computation in ACT
y Given the nature of the aforementioned problems, the 

basic operations involved in algorithms for these 
problems are arithmetic operations such as addition 
(+), subtraction (-), multiplication (x), division 
(÷), kth root finding, and comparison.

y Computation models, like TMs and Boolean Circuits, 
have been defined to analyze such algorithms, e.g.,

   a)  real RAM model
   b)  BSS model
 Ref. “On a theory of Computation and Complexity over the real numbers: 
NP-completeness, recursive functions, and Universal Machines” by Blum, 
Shub, Smale (1989)



Models of Computation in ACT
y Given the nature of the aforementioned problems, the 

basic operations involved in algorithms for these 
problems are arithmetic operations such as addition 
(+), subtraction (-), multiplication (x), division 
(÷), kth root finding, and comparison.

y Computation models, like TMs and Boolean Circuits, 
have been defined to analyze such algorithms, e.g.,

   a)  real RAM model
   b)  BSS model
   c)  Arithmetic Circuits
  “Simplest” non-uniform version of the first two models



Models of Computation in ACT
y Given the nature of the aforementioned problems, the 

basic operations involved in algorithms for these 
problems are arithmetic operations such as addition 
(+), subtraction (-), multiplication (x), division 
(÷), kth root finding, and comparison.

y Computation models, like TMs and Boolean Circuits, 
have been defined to analyze such algorithms, e.g.,

   a)  real RAM model
   b)  BSS model
   c)  Arithmetic Circuits
  “Simplest” non-uniform version of the first two models

root finding and 
comparison not allowed



Arithmetic Circuits



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 The input nodes labelled by x1, …,xn have in-degree 0.
   Nodes labelled by 𝔽 elements also have in-degree 0.
 Nodes with out-degree 0 are the output nodes. 



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 The input nodes labelled by x1, …,xn have in-degree 0.
   Nodes labelled by 𝔽 elements also have in-degree 0.
 Nodes with out-degree 0 are the output nodes. 
 Nodes labelled by ÷ have fan-in two.
     Edges are labelled by 𝔽 elements.



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 A node labelled by xi (similarly, 𝛂∈𝔽) computes xi 
(respectively, 𝛂).  A node labelled by an operation * with 
inputs from nodes computing f1, …, fm computes
   𝛂1f1*…* 𝛂mfm
where 𝛂1, …, 𝛂m∈𝔽 are the corresponding edge labels.
 



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 A node labelled by xi (similarly, 𝛂∈𝔽) computes xi 
(respectively, 𝛂).  A node labelled by an operation * with 
inputs from nodes computing f1, …, fm computes
   𝛂1f1*…* 𝛂mfm
where 𝛂1, …, 𝛂m∈𝔽 are the corresponding edge labels.
 Division by 0 is forbidden.



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 Naturally, an arithmetic circuit computes a set of 
rational functions over 𝔽.  A rational function is a ratio of 
two polynomials.



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 Size of a circuit is the number of edges in it.
 Depth of a circuit is the length of the longest path 
from an input to an output node (gate).



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 
+

xx

x2 x3 x1 x1

3

3x2x3 + x1
2

Size = 7
Depth = 2



Arithmetic Circuits
y Arith. circuits are algebraic analogs of Bool. circuits.
y Definition. An arithmetic circuit over a field 𝔽 is a 

directed acyclic graph with nodes labelled by 
arithmetic operations (+,×,÷) or input variables x1, …, 
xn or field constants. 

 The number of ×,÷ gates with at least two 
children not labelled by field constants is called the non-
scalar complexity of the circuit.
 When there are no ÷ gates, non-scalar complexity 
is also called multiplicative complexity.



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 1. (Determinant computation)
   Let X = (xij)i,j∈[n] . Then,
  det(X) =  ∑   (-1)sign(𝞂)  ∏  xi 𝞂(i) ,

   which is a degree-n polynomial in n2 variables with ±1 
nonzero coefficients. 

𝞂∈Sn i∈[n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 2. (Matrix multiplication)
  Let A = (xij)i,j ∈ [n], B = (ykl)k,l ∈ [n], C = AB = (zpq)p,q ∈ [n].
  
 Then, each zpq = ∑ xpk∙ ykq is a quadratic form in the x 
 and y variables.        All nonzero coefficients are 1.k∈[n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 3. (Solving a linear system)
  

 Here the inputs are {xij :  i,j∈[n]} and z1, …, zn.

x11y1 + x12y2 + … + x1nyn = z1
  ⋮
xn1y1 + xn2y2 + … + xnnyn = zn

a linear system in 
y variables



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 3. (Solving a linear system)
  

 Let X = (xij)i,j∈[n] and Z𝓁 be an n x n matrix whose 𝓁th 
   column is (z1… zn)T and any other (i,j)-th entry is xij.  
   Then, by Cramer’s rule,  y𝓁 = det(Z𝓁)/det(X).

x11y1 + x12y2 + … + x1nyn = z1
  ⋮
xn1y1 + xn2y2 + … + xnnyn = zn

a linear system in 
y variables



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 4. (Polynomial interpolation)
 Input.  Points (x1,z1), …, (xn, zn) ∈ 𝔽2.
 Output. f(y)∈ 𝔽[y] s.t. f(xi) = zi for all i ∈ [n].
 Lagrange interpolation.
  f(y) = ∑ zi ∙ 

∏     (y - xj)

∏     (xi - xj)
j ∈ [n]\{i}

j ∈ [n]\{i}
i ∈ [n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 4. (Polynomial interpolation)
 Input.  Points (x1,z1), …, (xn, zn) ∈ 𝔽2.
 Output. f(y)∈ 𝔽[y] s.t. f(xi) = zi for all i ∈ [n].
 Lagrange interpolation.
  f(y) = ∑ zi ∙

   Obs.  The coefficients of f are rational functions in x
 and z variables of degree O(n2). 

∏     (y - xj)

∏     (xi - xj)
j ∈ [n]\{i}

j ∈ [n]\{i}
i ∈ [n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 4. (Polynomial interpolation)
     Lagrange interpolation.
  f(y) = ∑ zi ∙

   Define the elementary symmetric polynomial as
  ESymn,d(x) :=  ∑          ∏   xi

∏     (y - xj)

∏     (xi - xj)
j ∈ [n]\{i}

j ∈ [n]\{i}
i ∈ [n]

S ∈ (   ) [n]
d i ∈ S



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 4. (Polynomial interpolation)
     Lagrange interpolation.
  f(y) = ∑ zi ∙

   
 Obs. (y – x1)∙…∙(y - xn) = ∑     (-1)d ∙ ESymn,d(x) ∙ yn-d

∏     (y - xj)

∏     (xi - xj)
j ∈ [n]\{i}

j ∈ [n]\{i}
i ∈ [n]

d ∈ [0,n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 4. (Polynomial interpolation)
     Lagrange interpolation.
  f(y) = ∑ zi ∙

   
 Obs. (y – x1)∙…∙(y - xn) = ∑     (-1)d ∙ ESymn,d(x) ∙ yn-d

 More on ESym in later lectures…

∏     (y - xj)

∏     (xi - xj)
j ∈ [n]\{i}

j ∈ [n]\{i}
i ∈ [n]

d ∈ [0,n]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 5. (Polynomial multiplication)
     Input. f = xnyn +…+ x0 and g = znyn +…+ z0 ∈ 𝔽[y]

     Output. h = f∙g = ∑       ( ∑     xjzi-j  ) yi 

     Obs. The coefficients of h are polynomials in x and z 
 variables of degree 2.

i ∈ [0,2n] j ∈ [0,i]



Why care about arithmetic circuits?
y Reason 1. For several of the aforementioned 

problems, the output is a rational function (often a 
polynomial) in the input variables. 

y Example 6. (Checking coprimality of polynomials)
     Input. f = xnyn +…+ x0 and g = zmym +…+ z0 ∈ 𝔽[y];
  the leading coefficients xn, zm ≠ 0.
     Output. 1 if gcdy(f, g) = 1, else o/p 0.

  Lemma. The gcdy(f, g) ≠ 1 iff the resultant of f and g is 0.
   (see Lec 6 of “Topics in Algebra & Computation” (2013))



Sylvester Matrix and the Resultant
y f = xnyn +…+ x0 , g = zmym +…+ z0 ∈ 𝔽[y];  xn, zm ≠ 0.
y Definition. The Sylvester matrix Sy(f, g) is as follows:
 

 Sy(f, g)  :=

xn 0 0 zm 0 0

xn-1 xn ⋮ zm-1 zm ⋮
⋮ xn-1 ⋮ ⋮ zm-1 ⋮

x0 ⋮ 0 z0 ⋮ 0

0 x0 ⋱ xn 0 z0 ⋱ zm

⋮ 0 xn-1 ⋮ 0 zm-1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 x0 0 0 z0

m n

(m+n) x (m+n)



Sylvester Matrix and the Resultant
y f = xnyn +…+ x0 , g = zmym +…+ z0 ∈ 𝔽[y];  xn, zm ≠ 0.
y Definition. The Sylvester matrix Sy(f, g) is as follows:
 

 Sy(f, g)  :=

xn 0 0 zm 0 0

xn-1 xn ⋮ zm-1 zm ⋮
⋮ xn-1 ⋮ ⋮ zm-1 ⋮

x0 ⋮ 0 z0 ⋮ 0

0 x0 ⋱ xn 0 z0 ⋱ zm

⋮ 0 xn-1 ⋮ 0 zm-1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 x0 0 0 z0

m n

(m+n) x (m+n)

Defn. The resultant
 Resy(f, g) := det(Sy(f, g))
 ∈ 𝔽[x, z]

 deg(Resy(f, g)) ≤ m+n



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. For every Boolean function 𝒻: {0,1}n ⟶ {0,1}, 
there is a unique multilinear polynomial f ∈𝔽[x1,…,xn] 
s.t. 𝒻(a) = f(a) for all a ∈ {0,1}n.



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. For every Boolean function 𝒻: {0,1}n ⟶ {0,1}, 
there is a unique multilinear polynomial f ∈𝔽[x1,…,xn] 
s.t. 𝒻(a) = f(a) for all a ∈ {0,1}n.

y Proof sketch. Let 𝒻 = 𝒯1∨…∨𝒯m be a DNF 
representation of 𝒻, where each term 𝒯i has n literals. 
With every 𝒯i associate a multilinear polynomial in a 
natural way; e.g., if 𝒯i = x1∧¬x2∧¬x3, then Ti = x1(1-
x2)(1-x3). Finally, f = ∑   Ti. 

i ∈ [n]



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. For every Boolean function 𝒻: {0,1}n ⟶ {0,1}, 
there is a unique multilinear polynomial f ∈𝔽[x1,…,xn] 
s.t. 𝒻(a) = f(a) for all a ∈ {0,1}n.

y Proof sketch. Uniqueness of f can be shown using 
induction. It also follows from Combinatorial 
Nullstellensatz. 



Combinatorial Nullstellensatz
y Theorem (Alon ’99). Let f ∈ 𝔽[x1,…,xn] and deg(f) = 

t1+…+ tn, where ti ≥ 0. Suppose the coefficient of the 
monomial x1

t  ∙…∙ xn
t  in f is nonzero. 

 Then, if S1,…, Sn are subsets of 𝔽 with |Si| > ti, 
 there is a point a ∈ S1 x … x Sn  s.t. f(a) ≠ 0.

y That is, S1 x … x Sn is a hitting-set for f. More on 
hitting-sets and Polynomial Identity Testing (PIT) later.

1 n



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. If f is computable by a size-s arithmetic circuit 
over any fixed finite field, or over ℤ with poly(s) bit 
integers as edge labels, then 𝒻 is computable by a 
Boolean circuit of size poly(s).

y Assume that the arithmetic circuit has no ÷ gates. 



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. If f is computable by a size-s arithmetic circuit 
over any fixed finite field, or over ℤ with poly(s) bit 
integers as edge labels, then 𝒻 is computable by a 
Boolean circuit of size poly(s).

y Proof sketch. Over finite fields, replace every field 
operation by a constant sized Boolean circuit. Over ℤ, 
reduce the integers labelling the edges modulo 2, 
replace a + gate by a ⊕ gate, and a x gate by a ∧ gate. 



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. If f is computable by a size-s arithmetic circuit 
over any fixed finite field, or over ℤ with poly(s) bit 
integers as edge labels, then 𝒻 is computable by a 
Boolean circuit of size poly(s).

y Corollary. A super-polynomial (i.e., n𝛚(1)) lower bound 
for Boolean circuits computing 𝒻 implies a super-
polynomial lower bound for arithmetic circuits 
computing f.



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Obs. If f is computable by a size-s arithmetic circuit 
over any fixed finite field, or over ℤ with poly(s) bit 
integers as edge labels, then 𝒻 is computable by a 
Boolean circuit of size poly(s).

y In this sense, proving arithmetic circuit lower bound is 
a stepping-stone to proving Boolean circuit lower 
bound.



Why care about arithmetic circuits?
y Reason 2. Boolean circuit lower bounds imply 

arithmetic circuit lower bounds. So, it is necessary to 
prove arithmetic circuit lower bounds first!

y Open question. (converse) Does arithmetic circuit 
lower bound imply Boolean circuit lower bound?

y We don’t know!
y Caution. Do not interpret this as “arithmetic circuits 

cannot simulate Boolean circuits.”



Arithmetization
y Obs. If 𝒻: {0,1}n ⟶ {0,1} is computable by a Boolean 

circuit of size s, then there’s an arithmetic circuit 
(over any field) of size O(s) computing a polynomial h 
s.t. 𝒻(a) = h(a) for all a ∈ {0,1}n.

y Proof sketch. Replace x1∧x2 by x1x2, x1∨x2 by 1-(1-
x1)(1-x2), and x1 by 1-x1.



Arithmetization
y Obs. If 𝒻: {0,1}n ⟶ {0,1} is computable by a Boolean 

circuit of size s, then there’s an arithmetic circuit 
(over any field) of size O(s) computing a polynomial h 
s.t. 𝒻(a) = h(a) for all a ∈ {0,1}n.

y Note. Polynomial h needn’t be f (the unique 
multilinear polynomial for 𝒻). In particular, deg(h) can 
be exponential in s, whereas deg(f) is O(n).
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Arithmetization
y Obs. If 𝒻: {0,1}n ⟶ {0,1} is computable by a Boolean 

circuit of size s, then there’s an arithmetic circuit 
(over any field) of size O(s) computing a polynomial h 
s.t. 𝒻(a) = h(a) for all a ∈ {0,1}n.

y Note. Polynomial h needn’t be f (the unique 
multilinear polynomial for 𝒻). In particular, deg(h) can 
be exponential in s, whereas deg(f) is O(n).

y The absence of poly-size circuits for f doesn’t 
necessarily rule out poly-size circuits for a polynomial 
h satisfying 𝒻(a) = h(a) = f(a) for all a ∈ {0,1}n. 



Arithmetization
y Obs. If 𝒻: {0,1}n ⟶ {0,1} is computable by a Boolean 

circuit of size s, then there’s an arithmetic circuit 
(over any field) of size O(s) computing a polynomial h 
s.t. 𝒻(a) = h(a) for all a ∈ {0,1}n.

y Note. Polynomial h needn’t be f (the unique 
multilinear polynomial for 𝒻). In particular, deg(h) can 
be exponential in s, whereas deg(f) is O(n).

y So, we’re unable to conclude that a super-poly lower 
bound for arithmetic circuits computing f implies 
super-polynomial lower bound for Boolean circuits 
computing 𝒻. 



Why prove arithmetic circuit LB?
y As mentioned before, it is a necessary step for 

Boolean circuit lower bounds.

y Moreover, proving arithmetic circuit size upper and 
lower bounds is an important goal in its own right 
from the viewpoint of understanding the complexity 
of algebraic problems.



Reading materials
y Matrix multiplication
➢ Fast Matrix Multiplication (survey) by Bläser (2013)

y Matrix multiplication & models of computations 
➢ Algebraic Complexity Theory (book) by Bürgisser, 

Clausen, and Shokrollahi (1997)
➢ Algebraic Complexity Theory (survey) by von zur 

Gathen (1988)
➢ Algebraic Complexity Theory (survey) by Pippenger 

(1981)



Reading materials

y Algebraic Complexity Classes
➢ Completeness and Reductions in Algebraic Complexity 

Theory (habilitation) by Bürgisser (2000)
 
➢ Algebraic Complexity Classes by Mahajan (2013)

➢ Completeness Classes in Algebraic Complexity Theory 
by Bürgisser (2024)



Reading materials

y Lower bounds and algorithms for arithmetic circuits
➢ Partial Derivatives in Arithmetic Complexity and beyond 

(survey) by Chen, Kayal, and Wigderson (2010)
 
➢Arithmetic Circuits: A survey of recent results and Open 

Questions by Shpilka and Yehudayoff (2009)



Reading materials
y Lower bounds for arithmetic circuits
➢ A survey of lower bounds in Arithmetic Circuit 

Complexity by Saptharishi (and other contributors) 
(2021)

y Polynomial Identity Testing
➢ Progress on Polynomial Identity Testing: Part 1 and 2 by 

Saxena (2009, 2014)
➢ Recent advances in Polynomial Identity Testing by 

Dutta and Ghosh (2024)  


