
Algebraic Complexity Theory

Lecture 2: Circuits for the Determinant;

Parallel computation of rank

Department of Computer Science,
Indian Institute of Science

Recap

 In the last lecture, we saw examples of problems
wherein the output is a polynomial (or a rational
function) in the input variables.

 Several of these problems involve computation of the
determinant of a matrix.

 We also defined a natural model of computation,
namely arithmetic circuits (a.k.a straight-line programs).

Circuits for the Determinant

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The above formula gives an O(nn)-size, depth-2 circuit
for Detn. This circuit has only + and × gates.

𝞂∈Sn i∈[n]

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The above formula gives an O(nn)-size, depth-2 circuit
for Detn. This circuit has only + and × gates.

 The classical Gaussian elimination method yields a
circuit of size O(n3) and depth O(n). But the circuit
has +, ×, and ÷ gates. Also, division by 0 is forbidden!

𝞂∈Sn i∈[n]

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The above formula gives an O(nn)-size, depth-2 circuit
for Detn. This circuit has only + and × gates.

 The classical Gaussian elimination method yields a
circuit of size O(n3) and depth O(n). But the circuit
has +, ×, and ÷ gates. Also, division by 0 is forbidden!

 Question. Can we remove ÷ gates? If yes, we can
avoid division by 0.

𝞂∈Sn i∈[n]

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Corollary. The n2-variate, degree-n determinant
polynomial Detn is computable by a poly(n) size circuit
having only + and × gates.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Assume that every gate of C has fan-in at
most 2. If not, transform the circuit appropriately
(using binary trees) to ensure that this condition is
satisfied. The process increases the size of C by a
constant factor.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Observe that a gate of C computes a
rational function. The idea is to keep track of the
numerators and denominators of these rational functions
separately using the following relations:

➢ h1/g1 + h2/g2 = (h1g2 + h2g1)/(g1g2)

➢ h1/g1 × h2/g2 = (h1h2)/(g1g2)

Only the o/p gate of the resulting circuit is a ÷ gate.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. The o/p ÷ gate computes f = h/g, for
some g ≠ 0. Observe that the degree of h and g could
be as high as D = 2O(s). Suppose, |𝔽| > D.

 We’ll handle the small field size case later.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. The o/p ÷ gate computes f = h/g, for
some g ≠ 0. Observe that the degree of h and g could
be as high as D = 2O(s). Suppose, |𝔽| > D. Then, there’s
a point 𝜶 ∈ 𝔽|x| s.t. c = g(𝜶) ≠ 0, and g(x+𝜶) = c.(1+ℊ)
for some constant-term-free ℊ∈𝔽[x]. We’ll focus on
getting a circuit for f(x+𝜶) first and then translate it
back by -𝜶 to compute f.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. The o/p ÷ gate computes f = h/g, for
some g ≠ 0. Observe that the degree of h and g could
be as high as D = 2O(s). Suppose, |𝔽| > D. Then, there’s
a point 𝜶 ∈ 𝔽|x| s.t. c = g(𝜶) ≠ 0, and g(x+𝜶) = c.(1+ℊ)
for some constant-term-free ℊ∈𝔽[x]. We’ll focus on
getting a circuit for f(x+𝜶) first and then translate it
back by -𝜶 to compute f. Reusing symbols, let’s denote
f(x+𝜶) by f, c-1h(x+𝜶) by h and g(x+𝜶) by g.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Notice that the RHS has a power series expression;
cancellation of terms “shrinks” it to a polynomial.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Note, deg(f) ≤ d & deg(ℊi) ≥ i, as ℊ is constant-term-
free.

 So, it is sufficient to truncate the above series after ℊd.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Note, deg(f) ≤ d & deg(ℊi) ≥ i, as ℊ is constant-term-
free.

 So, it is sufficient to truncate the above series after ℊd.

 Notation. Denote the ith homogeneous component of a
polynomial p by p[i], i.e., p[i] is the sum of the degree-i
monomials of p.

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Let p = h(1-ℊ+ℊ2-ℊ3+…+(-1)dℊd). Then,

 f = p[0] + p[1] + … + p[d]

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Let p = h(1-ℊ+ℊ2-ℊ3+…+(-1)dℊd). Then,

 f = p[0] + p[1] + … + p[d]

 As h and ℊ are computable by circuits of size O(s), p
is computable by a circuit of size poly(sd).

 Can we compute the homogeneous components of p?

Computing homogeneous components

 Lemma. (Strassen 1973) Let p ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit
having + and × gates. Then, p[0], p[1], …, p[d] are
computable by a circuit of size O(d2s).

 Proof sketch. For every gate computing a polynomial q,
create d+1 gates computing q[0], q[1], …, q[d].

Computing homogeneous components

 Lemma. (Strassen 1973) Let p ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit
having + and × gates. Then, p[0], p[1], …, p[d] are
computable by a circuit of size O(d2s).

 Proof sketch. For every gate computing a polynomial q,
create d+1 gates computing q[0], q[1], …, q[d].

 Homework. Fill in the details. Also, prove a black-box
version of the above lemma (using interpolation).

Removing division gates

 Theorem. (Strassen 1973) Let f ∈ 𝔽[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, ×, and ÷ gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and × gates.

 Proof sketch. Then, f = h/(1+ℊ) = h(1-ℊ+ℊ2-ℊ3+…).

 Let p = h(1-ℊ+ℊ2-ℊ3+…+(-1)dℊd). Then,

 f = p[0] + p[1] + … + p[d]

 Compute p[0], p[1], …, p[d] using the previous lemma
and then compute f using the above equation.

 How to handle small fields?

Handling small fields

 Obs. Let 𝔽 be a finite field and 𝕂 be a field extension
of 𝔽 of degree k. If f ∈ 𝔽[x] is computable by a size-s
circuit over 𝕂, then f is also computable by a circuit of
size O(k2s) over 𝔽.

Handling small fields

 Obs. Let 𝔽 be a finite field and 𝕂 be a field extension
of 𝔽 of degree k. If f ∈ 𝔽[x] is computable by a size-s
circuit over 𝕂, then f is also computable by a circuit of
size O(k2s) over 𝔽.

 Proof sketch. Field 𝕂 ≅ 𝔽[y]/(h(y)), where h(y)∈𝔽[y] is
an irreducible polynomial of degree k. A polynomial
g(x) ∈ 𝕂[x] can be naturally expressed as

 g(x) = g0(x) + g1(x)y + … + gk-1(x)yk-1

 where each gi(x) ∈ 𝔽[x].

Handling small fields

 Obs. Let 𝔽 be a finite field and 𝕂 be a field extension
of 𝔽 of degree k. If f ∈ 𝔽[x] is computable by a size-s
circuit over 𝕂, then f is also computable by a circuit of
size O(k2s) over 𝔽.

 Proof sketch. For every gate computing g(x) ∈ 𝕂[x],
create k gates computing g0(x), g1(x), …, gk-1(x) using
the polynomial h(y).

 Homework. Fill in the details. (Similar to the proof of
the last lemma)

Handling small fields

 Obs. Let 𝔽 be a finite field and 𝕂 be a field extension
of 𝔽 of degree k. If f ∈ 𝔽[x] is computable by a size-s
circuit over 𝕂, then f is also computable by a circuit of
size O(k2s) over 𝔽.

 Note. In the proof of Strassen’s theorem, we may have
to work with a field extension of 𝔽 of degree O(s).

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The Gaussian elimination method yields a circuit
(having only + and × gates) of size and depth poly(n).

𝞂∈Sn i∈[n]

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The Gaussian elimination method yields a circuit
(having only + and × gates) of size and depth poly(n).

 Valiant, Skyum, Berkowitz, Rackoff ’83 gave a general
depth-reduction result for circuits. (We’ll discuss this later)

 Borodin, von zur Gathen, Hopcroft ’82. O(n15)-size circuit
of fan-in 2 and depth O((log n)2) over any field, using
the above depth reduction result.

𝞂∈Sn i∈[n]

The determinant

 Let X = (xij)i,j∈[n] . Then,

 Detn := det(X) = ∑ (-1)sign(𝞂) ∏ xi 𝞂(i) ,

 Question. How fast can we compute Detn?

 The Gaussian elimination method yields a circuit
(having only + and × gates) of size and depth poly(n).

 But there are low-depth circuits for Detn of significantly
smaller size than what Gaussian elimination provides.

𝞂∈Sn i∈[n]

Low depth circuits for detn

 History:

1. Csanky ’76. O(n4)-size circuit of depth O((log n)2)
over fields of characteristic 0 or > n.

 We’ll discuss this algorithm in details.

Low depth circuits for detn

 History:

1. Csanky ’76. O(n4)-size circuit of depth O((log n)2)
over fields of characteristic 0 or > n.

2. Berkowitz ’84. O(n4log n)-size circuit of depth
O((log n)2) over any field.

3. Chistov ’84; Pippenger 2022. O(n4log n)-size circuit
of depth O((log n)2) over any field.

 These circuits have fanin bounded by 2.

Low depth circuits for detn

 History:

1. Csanky ’76. O(n4)-size circuit of depth O((log n)2)
over fields of characteristic 0 or > n.

2. Berkowitz ’84. O(n4log n)-size circuit of depth
O((log n)2) over any field.

3. Chistov ’84; Pippenger 2022. O(n4log n)-size circuit
of depth O((log n)2) over any field.

4. Gupta, Kamath, Kayal, Saptharishi 2013; Tavenas
2013. nO(√n)-size (unbounded fanin) depth 3 circuit
over any field. (We’ll discuss this result later)

Csanky’s algorithm: The idea

 Focus on n = 2, i.e., X = (xij)i,j∈[2]. Let y1, y2 be the
eigenvalues of X. Then, det(X) = y1y2.

 Also, tr(X) = y1+y2 and tr(X2) = y1
2 + y2

2, where tr(X)
is the trace of X.

Csanky’s algorithm: The idea

 Focus on n = 2, i.e., X = (xij)i,j∈[2]. Let y1, y2 be the
eigenvalues of X. Then, det(X) = y1y2.

 Also, tr(X) = y1+y2 and tr(X2) = y1
2 + y2

2, where tr(X)
is the trace of X.

 Hence, det(X) = ½⋅(tr(X)2 – tr(X2)).

 We can compute det by computing X, X2 and then
computing their traces, provided char(𝔽) ≠ 2.

Csanky’s algorithm: The idea

 Focus on n = 2, i.e., X = (xij)i,j∈[2]. Let y1, y2 be the
eigenvalues of X. Then, det(X) = y1y2.

 Also, tr(X) = y1+y2 and tr(X2) = y1
2 + y2

2, where tr(X)
is the trace of X.

 Hence, det(X) = ½⋅(tr(X)2 – tr(X2)).

 We can compute det by computing X, X2 and then
computing their traces, provided char(𝔽) ≠ 2.

 Question. For any n, can det(X) be expressed as a
polynomial in tr(X), …, tr(Xn)?

Csanky’s algorithm: The idea

 Focus on n = 2, i.e., X = (xij)i,j∈[2]. Let y1, y2 be the
eigenvalues of X. Then, det(X) = y1y2.

 Also, tr(X) = y1+y2 and tr(X2) = y1
2 + y2

2, where tr(X)
is the trace of X.

 Hence, det(X) = ½⋅(tr(X)2 – tr(X2)).

 We can compute det by computing X, X2 and then
computing their traces, provided char(𝔽) ≠ 2.

 Question. For any n, can det(X) be expressed as a
polynomial in tr(X), …, tr(Xn)? Yes!

 Although the eigenvalues of X are not polynomials in
the entries of X, tr(Xi) is.

Csanky’s algorithm

 Let X = (xij)i,j∈[n] & y = {y1,…, yn} the eigenvalues of X.

 The characteristic polynomial of X,

 h(y) = det(yIn - X) = (y - y1)⋅…⋅(y - yn)

 = yn+s1y
n-1+…+sn, where si = (-1)i⋅ESymn,i(y).

 Each si is also a polynomial in x = {xij}i,j∈[n] of degree i.

 Notice that sn = (-1)ndet(X). Goal: Circuit for s1,…, sn.

Csanky’s algorithm

 Let X = (xij)i,j∈[n] & y = {y1,…, yn} the eigenvalues of X.

 The characteristic polynomial of X,

 h(y) = det(yIn - X) = (y - y1)⋅…⋅(y - yn)

 = yn+s1y
n-1+…+sn, where si = (-1)i⋅ESymn,i(y).

 Each si is also a polynomial in x = {xij}i,j∈[n] of degree i.

 Notice that sn = (-1)ndet(X). Goal: Circuit for s1,…, sn.

 Further, tr(Xi) = y1
i +…+ yn

i = PSymn,i(y), the ith power
symmetric polynomial. Denote PSymn,i(y) by pi.

Csanky’s algorithm

 Let X = (xij)i,j∈[n] & y = {y1,…, yn} the eigenvalues of X.

 The characteristic polynomial of X,

 h(y) = det(yIn - X) = (y - y1)⋅…⋅(y - yn)

 = yn+s1y
n-1+…+sn, where si = (-1)i⋅ESymn,i(y).

 Each si is also a polynomial in x = {xij}i,j∈[n] of degree i.

 Notice that sn = (-1)ndet(X). Goal: Circuit for s1,…, sn.

 Further, tr(Xi) = y1
i +…+ yn

i = PSymn,i(y), the ith power
symmetric polynomial. Denote PSymn,i(y) by pi.

 Easy to compute pi from Xi.

 Question. Can we compute s1,…, sn from p1,…,pn?

Csanky’s algorithm

 Let X = (xij)i,j∈[n] & y = {y1,…, yn} the eigenvalues of X.

 The characteristic polynomial of X,

 h(y) = det(yIn - X) = (y - y1)⋅…⋅(y - yn)

 = yn+s1y
n-1+…+sn, where si = (-1)i⋅ESymn,i(y).

 Each si is also a polynomial in x = {xij}i,j∈[n] of degree i.

 Notice that sn = (-1)ndet(X). Goal: Circuit for s1,…, sn.

 Further, tr(Xi) = y1
i +…+ yn

i = PSymn,i(y), the ith power
symmetric polynomial. Denote PSymn,i(y) by pi.

 Easy to compute pi from Xi.

 Question. Can we compute s1,…, sn from p1,…,pn?
Yes! using Newton Identities

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.
i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k = n: As h(yi) = s0yi
n + s1yi

n-1 + … + sn = 0,
summing over i∈[n], we get nsn + ∑ sn-ipi = 0.

i∈[k]

i∈[n]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 Support of a monomial is the number of variables with
nonzero exponents appearing in the monomial.

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 W.l.o.g let m be a monomial in ksk+∑i∈[k] sk-ipi in the
variables yk := {y1,…, yk}. Let z = y\yk.

 Obs. The coefficient of m in ksk+∑ sk-ipi is the same as
that in [ksk+∑ sk-ipi]z=0.

i∈[k]

i∈[k]

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 W.l.o.g let m be a monomial in ksk+∑i∈[k] sk-ipi in the
variables yk := {y1,…, yk}. Let z = y\yk.

 Obs. The coefficient of m in ksk+∑ sk-ipi is the same as
that in k[sk]z=0+∑ [sk-i]z=0[pi]z=0.

i∈[k]

i∈[k]

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 Notice that [si]z=0 = (-1)i⋅ESymk,i(yk) = si(yk), and
[pi]z=0 = PSymk,i(yk) = pi(yk).

 Obs. The coefficient of m in ksk+∑ sk-ipi is the same as
that in k[sk]z=0+∑ [sk-i]z=0[pi]z=0.

i∈[k]

i∈[k]

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 Notice that [si]z=0 = (-1)i⋅ESymk,i(yk) = si(yk), and
[pi]z=0 = PSymk,i(yk) = pi(yk).

 Obs. The coefficient of m in ksk+∑ sk-ipi is the same as
that in ksk(yk)+∑ sk-i(yk)pi(yk).

i∈[k]

i∈[k]

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 Notice that [si]z=0 = (-1)i⋅ESymk,i(yk) = si(yk), and
[pi]z=0 = PSymk,i(yk) = pi(yk).

 Obs. The coefficient of m in ksk+∑ sk-ipi is the same as
that in ksk(yk)+∑ sk-i(yk)pi(yk).

i∈[k]

i∈[k]

i∈[k]

i∈[k] = 0 by Case k = n

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Proof. Polynomial h(y) = s0y
n + s1y

n-1 + … + sn.

 Case k < n: Every monomial in ksk+∑ sk-ipi has support
at most k in y = {y1,…, yn}.

 Therefore, the coefficient of m in ksk+∑ sk-ipi is 0. As
m is chosen arbitrarily,

 ksk + ∑ sk-ipi = 0.

i∈[k]

i∈[k]

i∈[k]

i∈[k]

Newton Identities

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.

 Ref. See the wiki page on Newton Identities for more
on the power symmetric, the elementary symmetric, and
the complete homogeneous symmetric polynomial.

i∈[k]

Csanky’s algorithm

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.



i∈[k]

1 0 0 ⋯ 0

p1 2 0 ⋯ 0

p2 p1 3 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮
pn-1 pn-2 ⋯ p1 n

s1

s2

s3⋮
sn

p1

p2

p3⋮
pn

= −∙

Csanky’s algorithm

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.



i∈[k]

1 0 0 ⋯ 0

p1/2 1 0 ⋯ 0

p2/3 p1/3 1 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮
pn-1/n pn-2/n ⋯ p1/n 1

s1

s2

s3⋮
sn

p1

p2/2

p3/3⋮
pn/n

= −∙

Provided char(𝔽) > n.

Csanky’s algorithm

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.



i∈[k]

1 0 0 ⋯ 0

p1/2 1 0 ⋯ 0

p2/3 p1/3 1 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮
pn-1/n pn-2/n ⋯ p1/n 1

s1

s2

s3⋮
sn

p1

p2/2

p3/3⋮
pn/n

= −∙

In + P, where P is a nilpotent matrix, i.e., Pn = 0
=

Csanky’s algorithm

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.



i∈[k]

s1

s2

s3⋮
sn

p1

p2/2

p3/3⋮
pn/n

= − ∙(In + P)-1

Csanky’s algorithm

 Theorem. (Girard 1629, Newton 1666) For k ≤ n,

 ksk + ∑ sk-ipi = 0; here s0 = 1.



i∈[k]

s1

s2

s3⋮
sn

p1

p2/2

p3/3⋮
pn/n

= − ∙(In - P + P2 -…+(-1)n-1Pn-1) -- Equation 1

Csanky’s algorithm

 Claim. Given an n x n matrix A, we can compute A2,
…, An using a circuit of size O(n4) & depth O((log n)2).

 Proof sketch. The circuit has O(log n) stages. In the first
stage compute A2, in the second compute A3, A4, in the
third compute A5, A6, A7 A8, and so on. The ith stage
involves 2i-1 matrix multiplications.

Csanky’s algorithm

 Claim. Given an n x n matrix A, we can compute A2,
…, An using a circuit of size O(n4) & depth O((log n)2).

 Proof sketch. The circuit has O(log n) stages. In the first
stage compute A2, in the second compute A3, A4, in the
third compute A5, A6, A7 A8, and so on. The ith stage
involves 2i-1 matrix multiplications.

 Multiplication of two n x n matrices can be
computed using a circuit of size O(n3) and depth
O(log n). So, the overall size of the circuit is O(n4) and
its depth is O((log n)2).

Csanky’s algorithm

 Claim. Given an n x n matrix A, we can compute A2,
…, An using a circuit of size O(n4) & depth O((log n)2).

 Algorithm/Circuit. Input: X = (xij)i,j∈[n]

1. Compute X2, …, Xn.

2. Compute p1, …, pn.

3. Compute P2,…, Pn-1.

4. Compute (In + P)-1 and s1,…, sn using Equation 1.

Csanky’s algorithm

 Claim. Given an n x n matrix A, we can compute A2,
…, An using a circuit of size O(n4) & depth O((log n)2).

 Algorithm/Circuit. Input: X = (xij)i,j∈[n]

1. Compute X2, …, Xn. (circuit size O(n4) & depth O((log n)2))

2. Compute p1, …, pn. (circuit size O(n2) & depth O(log n))

3. Compute P2,…, Pn-1. (circuit size O(n4) & depth O((log n)2))

4. Compute (In + P)-1 and s1,…, sn using Equation 1.

 (circuit size O(n3) & depth O(log n))

Csanky’s algorithm

 Claim. Given an n x n matrix A, we can compute A2,
…, An using a circuit of size O(n4) & depth O((log n)2).

 Algorithm/Circuit. Input: X = (xij)i,j∈[n]

1. Compute X2, …, Xn.

2. Compute p1, …, pn.

3. Compute P2,…, Pn-1.

4. Compute (In + P)-1 and s1,…, sn using Equation 1.

 Corollary. Detn can be computed by a circuit of size
O(n4) and depth O((log n)2), provided char(𝔽) > n.

Computing inverse of a matrix

 As yn+s1y
n-1+…+sn is the characteristic polynomial of X,

by the Cayley-Hamilton theorem, Xn + s1X
n-1+…+sn =

0.

 Hence, X-1 = -sn
-1(Xn-1 + s1X

n-2 + … + sn-1).

 Corollary. X-1 can be computed by a circuit of size
O(n4) and depth O((log n)2), provided char(𝔽) > n.

 The above circuit has only one ÷ gate at the top.

Parallel computation of rank

Schwartz-Zippel lemma

 Lemma. (Schwartz 1980, Zippel 1979) Let f(x1, …, xn)
≠ 0 be a multivariate polynomial of (total) degree at
most d over a field 𝔽. Let S ⊆ 𝔽 be finite, and (a1, …,
an) ∈ Sn such that each ai is chosen independently
and uniformly at random from S. Then,

 Pr [f(a1, …, an) = 0] ≤ d/|S|.

 Proof sketch. Roots are far fewer than non-roots. Use
induction on the number of variables.

 (Homework)

(a1, …, an) ∈r S
n

Linear independence of polynomials

 Lemma 1. Let f1(x), …, fm(x) ∈ 𝔽[x] be 𝔽-linearly
independent n-variate, deg-d polynomials. Then, the
determinant of the following matrix is non-zero.

 Here, x1, …, xm are disjoint sets of n variables.

 Proof sketch. Use induction on m and the Schwartz-
Zippel lemma. (Homework)

f1(x1) f2(x1) … fm(x1)

f1(x2) f2(x2) … fm(x2)

f1(xm) f2(xm) … fm(xm)

Linear independence of polynomials

 Corollary 1. Let f1(x), …, fm(x) ∈ 𝔽[x] be 𝔽-linearly
independent n-variate, deg-d polynomials. Then, the
determinant of the following matrix is non-zero w.h.p.

 Here, a1, …, am ∈r S
n, where S ⊆ 𝔽 and |S| = 10md.

 Proof sketch. Use the Schwartz-Zippel lemma.

f1(a1) f2(a1) … fm(a1)

f1(a2) f2(a2) … fm(a2)

f1(am) f2(am) … fm(am)

Rank computation in NC

 Remark. If the input matrix is rectangular, pad it up
with zeroes to make it a square matrix.

 Notation. Let [M]i be the principal i x i submatrix of a
matrix M. Let S ⊆ 𝔽 and |S| = 20n.

 Algorithm. Input: A = (aij)i,j∈[n]

1. Pick X ∈r S
nxn and Y ∈r S

nxn.

2. Compute di = det([XAY]i) for i∈[n].

3. Output r = max{{i : di ≠ 0}, 0}.

Rank computation in NC

 Remark. If the input matrix is rectangular, pad it up
with zeroes to make it a square matrix.

 Notation. Let [M]i be the principal i x i submatrix of a
matrix M. Let S ⊆ 𝔽 and |S| = 20n.

 Algorithm. Input: A = (aij)i,j∈[n]

1. Pick X ∈r S
nxn and Y ∈r S

nxn.

2. Compute di = det([XAY]i) for i∈[n].

3. Output r = max{{i : di ≠ 0}, 0}.

all in NC

Rank computation in NC

 Theorem. (Borodin, Gathen, Hopcroft ‘82) The algorithm
outputs the rank of A with probability at least 0.9.

 Proof sketch. Define linear forms f1(x), …, fn(x) whose
coefficient vectors are the columns of A. Use
Corollary 1 to argue that the first r rows of XA are
linearly independent w.p. ≥ 0.95, where r = rank(A).

Rank computation in NC

 Theorem. (Borodin, Gathen, Hopcroft ‘82) The algorithm
outputs the rank of A with probability at least 0.9.

 Proof sketch. Define linear forms f1(x), …, fn(x) whose
coefficient vectors are the columns of A. Use
Corollary 1 to argue that the first r rows of XA are
linearly independent w.p. ≥ 0.95, where r = rank(A).

 Define linear forms g1(x), …, gr(x) whose coefficient
vectors are the first r rows of XA. Use Corollary 1 to
argue that [XAY]r has rank r w.p. ≥ 0.95.

