

Algebraic Complexity Theory

Lecture 2: Circuits for the Determinant;
Parallel computation of rank

Department of Computer Science, Indian Institute of Science

Recap

- In the last lecture, we saw examples of problems wherein the output is a <u>polynomial</u> (or a <u>rational</u> <u>function</u>) in the input variables.
- Several of these problems involve computation of the <u>determinant</u> of a matrix.

• We also defined a natural model of computation, namely <u>arithmetic circuits</u> (a.k.a <u>straight-line programs</u>).

Circuits for the Determinant

- Let $X = (x_{ij})_{i,j \in [n]}$. Then, $Det_n := det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)},$
- Question. How fast can we compute Det_n?
- The above formula gives an $O(n^n)$ -size, depth-2 circuit for Det_n . This circuit has only + and × gates.

- Let $X = (x_{ij})_{i,j \in [n]}$. Then, $Det_n := det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)},$
- Question. How fast can we compute Det_n?
- The above formula gives an $O(n^n)$ -size, depth-2 circuit for Det_n . This circuit has only + and × gates.
- The classical <u>Gaussian elimination</u> method yields a circuit of size $O(n^3)$ and depth O(n). But the circuit has +, \times , and \div gates. Also, division by 0 is forbidden!

- Question. How fast can we compute Det_n?
- The above formula gives an $O(n^n)$ -size, depth-2 circuit for Det_n . This circuit has only + and × gates.
- The classical <u>Gaussian elimination</u> method yields a circuit of size $O(n^3)$ and depth O(n). But the circuit has +, \times , and \div gates. Also, division by 0 is forbidden!
- Question. Can we remove ÷ gates? If yes, we can avoid division by 0.

Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Corollary. The n^2 -variate, degree-n determinant polynomial Det_n is computable by a poly(n) size circuit having only + and × gates.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Assume that every gate of C has fan-in at most 2. If not, transform the circuit appropriately (using binary trees) to ensure that this condition is satisfied. The process increases the size of C by a constant factor.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Observe that a gate of C computes a rational function. The idea is to keep track of the numerators and denominators of these rational functions separately using the following relations:
 - $h_1/g_1 + h_2/g_2 = (h_1g_2 + h_2g_1)/(g_1g_2)$
 - $> h_1/g_1 \times h_2/g_2 = (h_1h_2)/(g_1g_2)$

Only the o/p gate of the resulting circuit is a \div gate.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. The o/p \div gate computes f = h/g, for some $g \neq 0$. Observe that the degree of h and g could be as high as $D = 2^{O(s)}$. Suppose, $|\mathbb{F}| > D$.

We'll handle the small field size case later.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. The o/p ÷ gate computes f = h/g, for some $g \neq 0$. Observe that the degree of h and g could be as high as $D = 2^{O(s)}$. Suppose, $|\mathbb{F}| > D$. Then, there's a point $\alpha \in \mathbb{F}^{|\mathbf{x}|}$ s.t. $\mathbf{c} = g(\alpha) \neq 0$, and $g(\mathbf{x} + \alpha) = \mathbf{c}.(\mathbf{I} + g)$ for some constant-term-free $g \in \mathbb{F}[\mathbf{x}]$. We'll focus on getting a circuit for $f(\mathbf{x} + \alpha)$ first and then translate it back by $-\alpha$ to compute f.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. The o/p \div gate computes f = h/g, for some $g \neq 0$. Observe that the degree of h and g could be as high as $D = 2^{O(s)}$. Suppose, $|\mathbb{F}| > D$. Then, there's a point $\alpha \in \mathbb{F}^{|\mathbf{x}|}$ s.t. $\mathbf{c} = g(\alpha) \neq 0$, and $g(\mathbf{x} + \alpha) = \mathbf{c}.(1 + g)$ for some constant-term-free $g \in \mathbb{F}[\mathbf{x}]$. We'll focus on getting a circuit for $f(\mathbf{x} + \alpha)$ first and then translate it back by $-\alpha$ to compute f. Reusing symbols, let's denote $f(\mathbf{x} + \alpha)$ by f, $\mathbf{c}^{-1}h(\mathbf{x} + \alpha)$ by h and $g(\mathbf{x} + \alpha)$ by g.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Notice that the RHS has a power series expression; cancellation of terms "shrinks" it to a polynomial.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Note, $deg(f) \le d \& deg(g^i) \ge i$, as g is constant-term-free.
- So, it is sufficient to truncate the above series after g^d .

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Note, $deg(f) \le d \& deg(g^i) \ge i$, as g is constant-term-free.
- So, it is sufficient to truncate the above series after g^d .
- Notation. Denote the ith homogeneous component of a polynomial p by p^[i], i.e., p^[i] is the sum of the degree-i monomials of p.

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Let $p = h(I-g+g^2-g^3+...+(-I)^dg^d)$. Then, $f = p^{[0]} + p^{[1]} + ... + p^{[d]}$

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Let $p = h(I-g+g^2-g^3+...+(-I)^dg^d)$. Then, $f = p^{[0]} + p^{[1]} + ... + p^{[d]}$
- As h and g are computable by circuits of size O(s), p is computable by a circuit of size poly(sd).
- Can we compute the homogeneous components of p?

Computing homogeneous components

- Lemma. (Strassen 1973) Let $p \in \mathbb{F}[x]$ be a degree-d polynomial that is computable by a size-s circuit having + and × gates. Then, $p^{[0]}$, $p^{[1]}$, ..., $p^{[d]}$ are computable by a circuit of size $O(d^2s)$.
- Proof sketch. For every gate computing a polynomial q, create d+1 gates computing q^[0], q^[1], ..., q^[d].

Computing homogeneous components

- Lemma. (Strassen 1973) Let $p \in \mathbb{F}[x]$ be a degree-d polynomial that is computable by a size-s circuit having + and × gates. Then, $p^{[0]}$, $p^{[1]}$, ..., $p^{[d]}$ are computable by a circuit of size $O(d^2s)$.
- *Proof sketch*. For every gate computing a polynomial **q**, create **d+1** gates computing **q**^[0], **q**^[1], ..., **q**^[d].
- Homework. Fill in the details. Also, prove a <u>black-box</u> version of the above lemma (using interpolation).

- Theorem. (Strassen 1973) Let f ∈ F[x] be a degree-d polynomial that is computable by a size-s circuit C having +, ×, and ÷ gates. Then, f is also computable by a circuit of size poly(sd) that uses only + and × gates.
- Proof sketch. Then, $f = h/(1+g) = h(1-g+g^2-g^3+...)$.
- Let $p = h(I-g+g^2-g^3+...+(-I)^dg^d)$. Then, $f = p^{[0]} + p^{[1]} + ... + p^{[d]}$
- Compute $p^{[0]}$, $p^{[1]}$, ..., $p^{[d]}$ using the previous lemma and then compute f using the above equation.
- How to handle small fields?

• Obs. Let \mathbb{F} be a finite field and \mathbb{K} be a field extension of \mathbb{F} of degree k. If $f \in \mathbb{F}[x]$ is computable by a size-s circuit over \mathbb{K} , then f is also computable by a circuit of size $O(k^2s)$ over \mathbb{F} .

- Obs. Let \mathbb{F} be a finite field and \mathbb{K} be a field extension of \mathbb{F} of degree k. If $f \in \mathbb{F}[x]$ is computable by a size-s circuit over \mathbb{K} , then f is also computable by a circuit of size $O(k^2s)$ over \mathbb{F} .
- Proof sketch. Field $\mathbb{K} \cong \mathbb{F}[y]/(h(y))$, where $h(y) \in \mathbb{F}[y]$ is an irreducible polynomial of degree k. A polynomial $g(x) \in \mathbb{K}[x]$ can be naturally expressed as

$$g(\mathbf{x}) = g_0(\mathbf{x}) + g_1(\mathbf{x})y + ... + g_{k-1}(\mathbf{x})y^{k-1}$$

where each $g_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$.

- Obs. Let \mathbb{F} be a finite field and \mathbb{K} be a field extension of \mathbb{F} of degree k. If $f \in \mathbb{F}[x]$ is computable by a size-s circuit over \mathbb{K} , then f is also computable by a circuit of size $O(k^2s)$ over \mathbb{F} .
- Proof sketch. For every gate computing $g(x) \in \mathbb{K}[x]$, create k gates computing $g_0(x)$, $g_1(x)$, ..., $g_{k-1}(x)$ using the polynomial h(y).
- Homework. Fill in the details. (Similar to the proof of the last lemma)

- Obs. Let \mathbb{F} be a finite field and \mathbb{K} be a field extension of \mathbb{F} of degree k. If $f \in \mathbb{F}[x]$ is computable by a size-s circuit over \mathbb{K} , then f is also computable by a circuit of size $O(k^2s)$ over \mathbb{F} .
- Note. In the proof of Strassen's theorem, we may have to work with a field extension of \mathbb{F} of degree O(s).

- Let $X = (x_{ij})_{i,j \in [n]}$. Then, $Det_n := det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)},$
- Question. How fast can we compute Det_n?
- The <u>Gaussian elimination</u> method yields a circuit (having only + and \times gates) of size and depth poly(n).

- Question. How fast can we compute Det_n?
- The <u>Gaussian elimination</u> method yields a circuit (having only + and \times gates) of size and depth poly(n).
- Valiant, Skyum, Berkowitz, Rackoff '83 gave a general depth-reduction result for circuits. (We'll discuss this later)
- Borodin, von zur Gathen, Hopcroft '82. O(n¹⁵)-size circuit of fan-in 2 and depth O((log n)²) over any field, using the above depth reduction result.

- Let $X = (x_{ij})_{i,j \in [n]}$. Then, $Det_n := det(X) = \sum_{\sigma \in S_n} (-1)^{sign(\sigma)} \prod_{i \in [n]} x_{i \sigma(i)},$
- Question. How fast can we compute Det_n?
- The <u>Gaussian elimination</u> method yields a circuit (having only + and \times gates) of size and depth poly(n).
- But there are low-depth circuits for Det_n of significantly smaller size than what Gaussian elimination provides.

Low depth circuits for det_n

- History:
 - 1. Csanky '76. $O(n^4)$ -size circuit of depth $O((\log n)^2)$ over fields of characteristic 0 or > n.

We'll discuss this algorithm in details.

Low depth circuits for det_n

• History:

- 1. Csanky '76. $O(n^4)$ -size circuit of depth $O((\log n)^2)$ over fields of characteristic 0 or > n.
- 2. Berkowitz '84. $O(n^4 \log n)$ -size circuit of depth $O((\log n)^2)$ over <u>any</u> field.
- 3. Chistov '84; Pippenger 2022. $O(n^4 log n)$ -size circuit of depth $O((log n)^2)$ over <u>any</u> field.
- These circuits have fanin bounded by 2.

Low depth circuits for det_n

• History:

- 1. Csanky '76. $O(n^4)$ -size circuit of depth $O((\log n)^2)$ over fields of characteristic 0 or > n.
- 2. Berkowitz '84. $O(n^4 \log n)$ -size circuit of depth $O((\log n)^2)$ over <u>any</u> field.
- 3. Chistov '84; Pippenger 2022. $O(n^4 log n)$ -size circuit of depth $O((log n)^2)$ over <u>any</u> field.
- Gupta, Kamath, Kayal, Saptharishi 2013; Tavenas 2013. n^{O(√n)}-size (unbounded fanin) depth 3 circuit over any field. (We'll discuss this result later)

- Focus on n = 2, i.e., $X = (x_{ij})_{i,j \in [2]}$. Let y_1 , y_2 be the eigenvalues of X. Then, $det(X) = y_1y_2$.
- Also, $tr(X) = y_1 + y_2$ and $tr(X^2) = y_1^2 + y_2^2$, where tr(X) is the <u>trace</u> of X.

- Focus on n = 2, i.e., $X = (x_{ij})_{i,j \in [2]}$. Let y_1 , y_2 be the eigenvalues of X. Then, $det(X) = y_1y_2$.
- Also, $tr(X) = y_1 + y_2$ and $tr(X^2) = y_1^2 + y_2^2$, where tr(X) is the <u>trace</u> of X.
- Hence, $det(X) = \frac{1}{2} \cdot (tr(X)^2 tr(X^2))$.
- We can compute det by computing X, X^2 and then computing their traces, provided char(\mathbb{F}) $\neq 2$.

- Focus on n = 2, i.e., $X = (x_{ij})_{i,j \in [2]}$. Let y_1 , y_2 be the eigenvalues of X. Then, $det(X) = y_1y_2$.
- Also, $tr(X) = y_1 + y_2$ and $tr(X^2) = y_1^2 + y_2^2$, where tr(X) is the <u>trace</u> of X.
- Hence, $det(X) = \frac{1}{2} \cdot (tr(X)^2 tr(X^2))$.
- We can compute det by computing X, X^2 and then computing their traces, provided char(\mathbb{F}) $\neq 2$.
- Question. For any n, can det(X) be expressed as a polynomial in tr(X), ..., tr(Xⁿ)?

- Focus on n = 2, i.e., $X = (x_{ij})_{i,j \in [2]}$. Let y_1, y_2 be the eigenvalues of X. Then, $det(X) = y_1y_2$.
- Also, $tr(X) = y_1 + y_2$ and $tr(X^2) = y_1^2 + y_2^2$, where tr(X) is the <u>trace</u> of X.
- Hence, $det(X) = \frac{1}{2} \cdot (tr(X)^2 tr(X^2))$.
- We can compute det by computing X, X^2 and then computing their traces, provided char(\mathbb{F}) $\neq 2$.
- Question. For any n, can det(X) be expressed as a polynomial in tr(X), ..., tr(Xⁿ)? Yes!
- Although the eigenvalues of X are not polynomials in the entries of X, tr(Xi) is.

Csanky's algorithm

- Let $X = (x_{ij})_{i,j \in [n]} & y = \{y_1, \dots, y_n\}$ the eigenvalues of X.
- The <u>characteristic polynomial</u> of X,

- Each s_i is also a polynomial in $\mathbf{x} = \{x_{ij}\}_{i,j \in [n]}$ of degree i.
- Notice that $s_n = (-1)^n det(X)$. Goal: Circuit for $s_1, ..., s_n$.

- Let $X = (x_{ij})_{i,j \in [n]} & y = \{y_1, \dots, y_n\}$ the eigenvalues of X.
- The <u>characteristic polynomial</u> of X,

- Each s_i is also a polynomial in $x = \{x_{ij}\}_{i,j \in [n]}$ of degree i.
- Notice that $s_n = (-1)^n det(X)$. Goal: Circuit for $s_1, ..., s_n$.
- Further, $tr(X^i) = y_1^i + ... + y_n^i = PSym_{n,i}(y)$, the i^{th} power symmetric polynomial. Denote $PSym_{n,i}(y)$ by p_i .

- Let $X = (x_{ij})_{i,j \in [n]} & y = \{y_1, \dots, y_n\}$ the eigenvalues of X.
- The <u>characteristic polynomial</u> of X,

- Each s_i is also a polynomial in $x = \{x_{ij}\}_{i,j \in [n]}$ of degree i.
- Notice that $s_n = (-1)^n det(X)$. Goal: Circuit for $s_1, ..., s_n$.
- Further, $tr(X^i) = y_1^i + ... + y_n^i = PSym_{n,i}(y)$, the i^{th} power symmetric polynomial. Denote $PSym_{n,i}(y)$ by p_i .
- Easy to compute p_i from Xⁱ.
- Question. Can we compute $s_1, ..., s_n$ from $p_1, ..., p_n$?

- Let $X = (x_{ij})_{i,j \in [n]} & y = \{y_1, \dots, y_n\}$ the eigenvalues of X.
- The <u>characteristic polynomial</u> of X,

- Each s_i is also a polynomial in $x = \{x_{ij}\}_{i,j \in [n]}$ of degree i.
- Notice that $s_n = (-1)^n det(X)$. Goal: Circuit for $s_1, ..., s_n$.
- Further, $tr(X^i) = y_1^i + ... + y_n^i = PSym_{n,i}(y)$, the i^{th} power symmetric polynomial. Denote $PSym_{n,i}(y)$ by p_i .
- Easy to compute p_i from Xⁱ.
- Question. Can we compute $s_1,..., s_n$ from $p_1,...,p_n$?

 Yes!

 using Newton Identities

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k = n: As $h(y_i) = s_0 y_i^n + s_1 y_i^{n-1} + ... + s_n = 0$, summing over $i \in [n]$, we get $ns_n + \sum_{i \in [n]} s_{n-i} p_i = 0$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + \dots + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- <u>Support</u> of a monomial is the number of variables with nonzero exponents appearing in the monomial.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- W.l.o.g let m be a monomial in $ks_k + \sum_{i \in [k]} s_{k-i}p_i$ in the variables $\mathbf{y}_k := \{y_1, \dots, y_k\}$. Let $\mathbf{z} = \mathbf{y} \setminus \mathbf{y}_k$.
- Obs. The coefficient of m in $ks_k + \sum_{i \in [k]} s_{k-i}p_i$ is the same as that in $[ks_k + \sum_{i \in [k]} s_{k-i}p_i]_{z=0}$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + \dots + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- W.l.o.g let m be a monomial in $ks_k + \sum_{i \in [k]} s_{k-i}p_i$ in the variables $\mathbf{y}_k := \{y_1, \dots, y_k\}$. Let $\mathbf{z} = \mathbf{y} \setminus \mathbf{y}_k$.
- Obs. The coefficient of m in $ks_k + \sum s_{k-i}p_i$ is the same as that in $k[s_k]_{z=0} + \sum_{i \in [k]} [s_{k-i}]_{z=0} [p_i]_{z=0}$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- Notice that $[s_i]_{z=0} = (-1)^i \cdot ESym_{k,i}(\mathbf{y}_k) = s_i(\mathbf{y}_k)$, and $[p_i]_{z=0} = PSym_{k,i}(\mathbf{y}_k) = p_i(\mathbf{y}_k)$.
- Obs. The coefficient of m in $ks_k + \sum_{i \in [k]} s_{k-i}p_i$ is the same as that in $k[s_k]_{z=0} + \sum_{i \in [k]} [s_{k-i}]_{z=0}[p_i]_{z=0}$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- Notice that $[s_i]_{z=0} = (-1)^i \cdot ESym_{k,i}(\mathbf{y}_k) = s_i(\mathbf{y}_k)$, and $[p_i]_{z=0} = PSym_{k,i}(\mathbf{y}_k) = p_i(\mathbf{y}_k)$.
- Obs. The coefficient of m in $ks_k + \sum s_{k-i}p_i$ is the same as that in $ks_k(\mathbf{y}_k) + \sum_{i \in [k]} s_{k-i}(\mathbf{y}_k)p_i(\mathbf{y}_k)$.

- Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.
- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- Notice that $[s_i]_{z=0} = (-1)^i \cdot ESym_{k,i}(\mathbf{y}_k) = s_i(\mathbf{y}_k)$, and $[p_i]_{z=0} = PSym_{k,i}(\mathbf{y}_k) = p_i(\mathbf{y}_k)$.
- Obs. The coefficient of m in $ks_k + \sum s_{k-i}p_i$ is the same as that in $ks_k(\mathbf{y}_k) + \sum s_{k-i}(\mathbf{y}_k)p_i(\mathbf{y}_k)$. $s_{k-i}(\mathbf{y}_k) = 0$ by Case k = n

• Theorem. (Girard 1629, Newton 1666) For $k \le n$,

$$ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$$
; here $s_0 = 1$.

- Proof. Polynomial $h(y) = s_0 y^n + s_1 y^{n-1} + ... + s_n$.
- Case k < n: Every monomial in $ks_k + \sum s_{k-i}p_i$ has $\underline{support}$ at most k in $\mathbf{y} = \{y_1, \dots, y_n\}$.
- Therefore, the coefficient of m in ks_k+∑ s_{k-i}p_i is 0. As m is chosen arbitrarily,

$$ks_k + \sum_{i \in [k]} s_{k-i} p_i = 0.$$

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

 Ref. See the wiki page on <u>Newton Identities</u> for more on the power symmetric, the elementary symmetric, and the complete homogeneous symmetric polynomial.

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

•	I	0	0	•••	0
	Pı	2	0	•••	0
	P ₂	Pı	3	•••	0
	•	•	•	••	•••
	P _{n-I}	P _{n-2}	•••	Pı	n

s _I	
s ₂	
S ₃	
•	
s _n	

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

• I 0 0 ... 0 $p_{1}/2$ I 0 ... 0 $p_{2}/3$ $p_{1}/3$ I ... 0 p_{2}/n ... p_{1}/n I

s₁
s₂
s₃
:

 $= -\frac{P_1}{P_2/2}$ $= \frac{P_3/3}{P_n/n}$

Provided char(\mathbb{F}) > n.

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

•	_	0	0	•••	0
	P ₁ /2		0	•••	0
	p ₂ /3	P ₁ /3		•••	0
	•••	•••	•••	*	•
	p _{n-I} /n	p _{n-2} /n	•••	p _I /n	_

s _I			Pı
s ₂			p ₂ /2
s ₃	=	_	P ₃ /3
•			:
s _n			p _n /n

 $I_n + P$, where P is a nilpotent matrix, i.e., $P^n = 0$

• Theorem. (Girard 1629, Newton 1666) For $k \le n$, $ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$; here $s_0 = 1$.

• Theorem. (Girard 1629, Newton 1666) For k ≤ n,

$$ks_k + \sum_{i \in [k]} s_{k-i}p_i = 0$$
; here $s_0 = 1$.

- Claim. Given an $n \times n$ matrix A, we can compute A^2 , ..., A^n using a circuit of size $O(n^4)$ & depth $O((\log n)^2)$.
- *Proof sketch*. The circuit has O(log n) stages. In the first stage compute A^2 , in the second compute A^3 , A^4 , in the third compute A^5 , A^6 , A^7 A^8 , and so on. The ith stage involves 2^{i-1} matrix multiplications.

- Claim. Given an $n \times n$ matrix A, we can compute A^2 , ..., A^n using a circuit of size $O(n^4)$ & depth $O((\log n)^2)$.
- *Proof sketch*. The circuit has O(log n) stages. In the first stage compute A², in the second compute A³, A⁴, in the third compute A⁵, A⁶, A⁷ A⁸, and so on. The ith stage involves 2ⁱ⁻¹ matrix multiplications.
- Multiplication of two $n \times n$ matrices can be computed using a circuit of size $O(n^3)$ and depth $O(\log n)$. So, the overall size of the circuit is $O(n^4)$ and its depth is $O((\log n)^2)$.

- Claim. Given an $n \times n$ matrix A, we can compute A^2 , ..., A^n using a circuit of size $O(n^4)$ & depth $O((\log n)^2)$.
- Algorithm/Circuit. Input: $X = (x_{ij})_{i,j \in [n]}$
 - I. Compute $X^2, ..., X^n$.
 - 2. Compute $p_1, ..., p_n$.
 - 3. Compute P^2, \ldots, P^{n-1} .
 - 4. Compute $(I_n + P)^{-1}$ and $s_1, ..., s_n$ using Equation 1.

- Claim. Given an $n \times n$ matrix A, we can compute A^2 , ..., A^n using a circuit of size $O(n^4)$ & depth $O((\log n)^2)$.
- Algorithm/Circuit. Input: $X = (x_{ij})_{i,j \in [n]}$
 - 1. Compute X^2 , ..., X^n . (circuit size $O(n^4)$ & depth $O((\log n)^2)$)
 - 2. Compute $p_1, ..., p_n$. (circuit size $O(n^2)$ & depth $O(\log n)$)
 - 3. Compute P^2, \ldots, P^{n-1} . (circuit size $O(n^4)$ & depth $O((\log n)^2)$)
 - 4. Compute $(I_n + P)^{-1}$ and s_1, \dots, s_n using Equation 1.

(circuit size $O(n^3)$ & depth $O(\log n)$)

- Claim. Given an $n \times n$ matrix A, we can compute A^2 , ..., A^n using a circuit of size $O(n^4)$ & depth $O((\log n)^2)$.
- Algorithm/Circuit. Input: $X = (x_{ij})_{i,j \in [n]}$
 - I. Compute $X^2, ..., X^n$.
 - 2. Compute $p_1, ..., p_n$.
 - 3. Compute P^2, \ldots, P^{n-1} .
 - 4. Compute $(I_n + P)^{-1}$ and $s_1, ..., s_n$ using Equation 1.
- Corollary. Det_n can be computed by a circuit of size $O(n^4)$ and depth $O((\log n)^2)$, provided char(\mathbb{F}) > n.

Computing inverse of a matrix

• As $y^n+s_1y^{n-1}+...+s_n$ is the characteristic polynomial of X, by the <u>Cayley-Hamilton theorem</u>, $X^n+s_1X^{n-1}+...+s_n=0$.

• Hence, $X^{-1} = -s_n^{-1}(X^{n-1} + s_1X^{n-2} + ... + s_{n-1}).$

- Corollary. X⁻¹ can be computed by a circuit of size $O(n^4)$ and depth $O((\log n)^2)$, provided char(F) > n.
- The above circuit has <u>only one</u> ÷ gate at the top.

Parallel computation of rank

Schwartz-Zippel lemma

• Lemma. (Schwartz 1980, Zippel 1979) Let $f(x_1, ..., x_n) \neq 0$ be a multivariate polynomial of (total) degree at most d over a field \mathbb{F} . Let $S \subseteq \mathbb{F}$ be finite, and $(a_1, ..., a_n) \in S^n$ such that each a_i is chosen independently and uniformly at random from S. Then,

$$\Pr_{(a_1,...,a_n)\in_r S^n} [f(a_1,...,a_n) = 0] \le d/|S|.$$

 Proof sketch. Roots are far fewer than non-roots. Use induction on the number of variables.

(Homework)

Linear independence of polynomials

• Lemma I. Let $f_1(x)$, ..., $f_m(x) \in \mathbb{F}[x]$ be \mathbb{F} -linearly independent n-variate, deg-d polynomials. Then, the determinant of the following matrix is <u>non-zero</u>.

$f_I(x_I)$	$f_2(\mathbf{x_I})$	•••	$f_m(\mathbf{x_I})$
$f_1(x_2)$	$f_2(\mathbf{x_2})$	•••	$f_m(\mathbf{x_2})$
$f_I(\mathbf{x}_m)$	$f_2(\mathbf{x_m})$	•••	$f_m(\mathbf{x_m})$

Here, $x_1, ..., x_m$ are disjoint sets of n variables.

 Proof sketch. Use induction on m and the Schwartz-Zippel lemma. (Homework)

Linear independence of polynomials

• Corollary I. Let $f_1(x)$, ..., $f_m(x) \in \mathbb{F}[x]$ be \mathbb{F} -linearly independent n-variate, deg-d polynomials. Then, the determinant of the following matrix is <u>non-zero</u> w.h.p.

$f_I(a_I)$	$f_2(\mathbf{a_I})$	•••	$f_m(a_I)$
$f_1(a_2)$	$f_2(\mathbf{a_2})$	• • •	$f_m(a_2)$
$f_I(a_m)$	$f_2(\mathbf{a}_m)$	•••	$f_m(a_m)$

Here, $\mathbf{a}_1, ..., \mathbf{a}_m \in_{\mathbf{r}} S^n$, where $S \subseteq \mathbb{F}$ and |S| = 10md.

• Proof sketch. Use the Schwartz-Zippel lemma.

- Remark. If the input matrix is rectangular, pad it up with zeroes to make it a square matrix.
- Notation. Let $[M]_i$ be the <u>principal i x i submatrix</u> of a matrix M. Let $S \subseteq \mathbb{F}$ and |S| = 20n.
- Algorithm. Input: $A = (a_{ij})_{i,j \in [n]}$
 - 1. Pick $X \in_r S^{n\times n}$ and $Y \in_r S^{n\times n}$.
 - 2. Compute $d_i = det([XAY]_i)$ for $i \in [n]$.
 - 3. Output $r = max\{\{i : d_i \neq 0\}, 0\}$.

- Remark. If the input matrix is rectangular, pad it up with zeroes to make it a square matrix.
- Notation. Let $[M]_i$ be the <u>principal i x i submatrix</u> of a matrix M. Let $S \subseteq \mathbb{F}$ and |S| = 20n.
- Algorithm. Input: $A = (a_{ij})_{i,j \in [n]}$
 - I. Pick $X \in_r S^{n\times n}$ and $Y \in_r S^{n\times n}$.
 - 2. Compute $d_i = det([XAY]_i)$ for $i \in [n]$.
 - 3. Output $r = max\{\{i : d_i \neq 0\}, 0\}$.

all in NC

- Theorem. (Borodin, Gathen, Hopcroft '82) The algorithm outputs the rank of A with probability at least 0.9.
- Proof sketch. Define linear forms $f_1(x), ..., f_n(x)$ whose coefficient vectors are the columns of A. Use Corollary I to argue that the first r rows of XA are linearly independent w.p. ≥ 0.95 , where r = rank(A).

- Theorem. (Borodin, Gathen, Hopcroft '82) The algorithm outputs the rank of A with probability at least 0.9.
- Proof sketch. Define linear forms $f_1(x), ..., f_n(x)$ whose coefficient vectors are the columns of A. Use Corollary I to argue that the first r rows of XA are linearly independent w.p. ≥ 0.95 , where r = rank(A).
- Define linear forms $g_1(x)$, ..., $g_r(x)$ whose coefficient vectors are the first r rows of XA. Use Corollary I to argue that [XAY]_r has rank r w.p. ≥ 0.95 .