Algebraic Complexity Theory

Lecture 2: Circuits for the Determinant;
Parallel computation of rank

Department of Computer Science,
Indian Institute of Science

Recap

* In the last lecture, we saw examples of problems
wherein the output is a polynomial (or a rational
function) in the input variables.

» Several of these problems involve computation of the
determinant of a matrix.

* We also defined a natural model of computation,
namely arithmetic circuits (a.k.a straight-line programs).

Circuits for the Determinant

The determinant

* Let X = (X;); ;e[- Then,

Det, :=det(X) = 3 (-1)*&@ [T X 4
OES, i€[n]
e Question. How fast can we compute Det !

e The above formula gives an O(n")-size, depth-2 circuit
for Det_ . This circuit has only + and x gates.

The determinant

* Let X = (X;); ;e[- Then,

Detn = det(X) - Z (_|)sign(6) |_| Xi (i)

OES, i€[n]

o How fast can we compute Det ?

e The above formula gives an O(n")-size, depth-2 circuit
for Det_ . This circuit has only + and x gates.

e The classical Gaussian elimination method yields a
circuit of size O(n’) and depth O(n). But the circuit
has +, X, and + gates. Also, division by 0 is forbidden!

The determinant

* Let X = (X;); ;e[- Then,

ij
Detn = det(X) - Z (_|)sign(6) |_| Xi (i)

OES, i€[n]

o How fast can we compute Det ?

e The above formula gives an O(n")-size, depth-2 circuit
for Det_ . This circuit has only + and x gates.

e The classical Gaussian elimination method yields a
circuit of size O(n’) and depth O(n). But the circuit
has +, X, and + gates. Also, division by 0 is forbidden!

° Can we remove -+ gates! If yes, we can
avoid division by O.

Removing division gates

o [heorem. (Strassen 19/3) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

o The n’-variate, degree-n determinant
polynomial Det_ is computable by a poly(n) size circuit
having only + and X gates.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

* Proof sketch. Assume that every gate of C has fan-in at
most 2. If not, transform the circuit appropriately
(using binary trees) to ensure that this condition is
satisfied. The process increases the size of C by a
constant factor.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Observe that a gate of C computes a
rational function. The idea is to keep track of the
numerators and denominators of these rational functions
separately using the following relations:

h\/g, + hy/g, = (h\g, + hyg,)/(g,8,)

h\/g % hylg, = (hihy)/(g,8,)
Only the o/p gate of the resulting circuit is a + gate.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

* Proof sketch. The o/p + gate computes f = h/g, for
some g # 0. Observe that the degree of h and g could
be as high as D = 2°0), Suppose, |IF| > D.

o WEe’'ll handle the small field size case later.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

* Proof sketch. The o/p + gate computes f = h/g, for
some g # 0. Observe that the degree of h and g could
be as high as D = 2°0), Suppose, |F| > D. Then, there’s
a point @ € F¥ sit.c = g(a) # 0,and g(x+a) = c.(l1+g)
for some constant-term-free g€F[x]. We'll focus on
getting a circuit for f(x+a) first and then translate it
back by -a to compute f.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

* Proof sketch. The o/p + gate computes f = h/g, for
some g # 0. Observe that the degree of h and g could
be as high as D = 2°0), Suppose, |F| > D. Then, there’s
a point a € X s.t.c = g(a) # 0,and g(x+a) = c.(I1+g)
for some constant-term-free g€F[x]. We'll focus on
getting a circuit for f(x+a) first and then translate it
back by - to compute f. Reusing symbols, let’s denote
f(x+a) by f, c'h(x+a) by h and g(x+a) by g.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then, f = h/(1+g) = h(l-g+g?-g3+...).

* Notice that the RHS has a power series expression;
cancellation of terms “shrinks” it to a polynomial.

Removing division gates

o [heorem. (Strassen 19/3) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then,f = h/(1+g) = h(l-g+g?-g3+...).

* Note, deg(f) = d & deg(g') = i, as g is constant-term-
free.

* So, it is sufficient to truncate the above series after g°.

Removing division gates

° (Strassen 1973) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then, f = h/(1+g) = h(l-g+g?-g3+...).

* Note, deg(f) = d & deg(g') = i, as g is constant-term-
free.

* So, it is sufficient to truncate the above series after g°.

o Denote the i*" homogeneous component of a
polynomial p by pl], i.e., pll is the sum of the degree-i
monomials of p.

Removing division gates

o [heorem. (Strassen 19/3) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then, f = h/(1+g) = h(l-g+g?-g3+...).

o Let p = h(l-g+g?-g3+...+(-1)¢g9).Then,

f= P[O] + P[I] + .+ p[d]

Removing division gates

o [heorem. (Strassen 19/3) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then, f = h/(1+g) = h(l-g+g?-g3+...).
o Let p = h(l-g+g?-g3+...+(-1)¢g9).Then,
f = P[O] + P[I] + .+ P[d]
* As h and g are computable by circuits of size O(s), p
is computable by a circuit of size poly(sd).

e Can we compute the homogeneous components of p?

Computing homogeneous components

o Lemma. (Strassen 1973) Let p € [F[x] be a degree-d
polynomial that is computable by a size-s circuit
naving + and X gates. Then, pl%, pl'l ..., pld are
computable by a circuit of size O(d?s).

* Proof sketch. For every gate computing a polynomial q,

create d+| gates computing q, gl'), ..., qldl.

Computing homogeneous components

° (Strassen 1973) Let p € [F[x] be a degree-d
polynomial that is computable by a size-s circuit
having + and X gates. Then, pl°, pl'l, ..., pld are
computable by a circuit of size O(d?s).

* Proof sketch. For every gate computing a polynomial q,

create d+| gates computing q, gl'), ..., qldl.

e Homework. Fill in the details. Also, prove a black-box
version of the above lemma (using interpolation).

Removing division gates

o [heorem. (Strassen 19/3) Let f € [F[x] be a degree-d
polynomial that is computable by a size-s circuit C
having +, X, and + gates. Then, f is also computable by a
circuit of size poly(sd) that uses only + and X gates.

e Proof sketch. Then, f = h/(1+g) = h(l-g+g?-g3+...).
o Let p = h(l-g+g?-g3+...+(-1)¢g9).Then,
f = P[O] + P[I] + ...+ P[d]

o Compute pl° plll} .. pldl using the previous lemma
and then compute f using the above equation.

e How to handle small fields?

Handling small fields

o Let [F be a finite field and K be a field extension
of [F of degree k. If f € [F[x] is computable by a size-s
circuit over [, then f is also computable by a circuit of
size O(k?s) over F.

Handling small fields

e Obs. Let [F be a finite field and K be a field extension
of [F of degree k. If f € [F[x] is computable by a size-s
circuit over [, then f is also computable by a circuit of
size O(k?s) over F.

e Proof sketch. Field K = [F[y]/(h(y)), where h(y)EF[y] is
an irreducible polynomial of degree k. A polynomial
g(x) € K[x] can be naturally expressed as

8(X) = go(X) + g/(X)y * ... + g, (X)y*!
where each g(x) € [F[x].

Handling small fields

o Let [F be a finite field and K be a field extension
of [F of degree k. If f € [F[x] is computable by a size-s
circuit over [, then f is also computable by a circuit of
size O(k?s) over F.

* Proof sketch. For every gate computing g(x) € K[x],
create k gates computing g,(x), g,(x), ..., g.,(x) using
the polynomial h(y). -

e Homework. Fill in the details. (Similar to the proof of
the last lemma)

Handling small fields

o Let [F be a finite field and K be a field extension
of [F of degree k. If f € [F[x] is computable by a size-s
circuit over [, then f is also computable by a circuit of
size O(k?s) over F.

° In the proof of Strassen’s theorem, we may have
to work with a field extension of [of degree O(s).

The determinant

* Let X = (X;); ;e[- Then,

Det, :=det(X) = 3 (-1)*8@ [T X 4
OES, i€[n]
e Question. How fast can we compute Det !

e The Gaussian elimination method Yyields a circuit
(having only + and * gates) of size and depth poly(n).

The determinant

* Let X = (X;); ;e[- Then,

ij
Detn = det(X) - Z (_|)sign(a) |_| Xi (i)

OES, i€[n]

e Question. How fast can we compute Det !

e The Gaussian elimination method Yyields a circuit
(having only + and * gates) of size and depth poly(n).

e Valiant, Skyum, Berkowitz, Rackoff ‘83 gave a general
depth-reduction result for circuits. (We'll discuss this later)

e Borodin, von zur Gathen, Hopcroft '82. O(n'?)-size circuit
of fan-in 2 and depth O((log n)?) over any field, using
the above depth reduction result.

The determinant

* Let X = (X;); ;e[- Then,

ij
Detn = det(X) - Z (_|)sign(6) |_| Xi (i)

OES, i€[n]

o How fast can we compute Det ?

e The Gaussian elimination method Yyields a circuit
(having only + and * gates) of size and depth poly(n).

* But there are low-depth circuits for Det_ of significantly
smaller size than what Gaussian elimination provides.

Low depth circuits for det_

e History:
|. Csanky °76. O(n%)-size circuit of depth O((log n)?)
over fields of characteristic O or > n.

o We'll discuss this algorithm in details.

Low depth circuits for det_

e History:
|. Csanky ’76. O(n*)-size circuit of depth O((log n)?)
over fields of characteristic O or > n.
2. Berkowitz ’84. O(n*log n)-size circuit of depth
O((log n)?) over any field.
3. Chistov '84; Pippenger 2022. O(n*log n)-size circuit
of depth O((log n)?) over any field.

* These circuits have fanin bounded by 2.

Low depth circuits for det_

e History:

l.

Csanky °76. O(n*)-size circuit of depth O((log n)?)
over fields of characteristic O or > n.

Berkowitz ’84. O(n*log n)-size circuit of depth
O((log n)?) over any field.

Chistov ’84; Pippenger 2022. O(n*log n)-size circuit
of depth O((log n)?) over any field.

Gupta, Kamath, Kayal, Saptharishi 2013; Tavenas

2013. n®Cn)size (unbounded fanin) depth 3 circuit
over any field. (We'll discuss this result later)

Csanky’s algorithm:The idea

* Focus on n = 2,i.e, X = (X;)epy- Let y,, y, be the
eigenvalues of X. Then, det(X) =y,y,.

o Also, tr(X) = y,+y, and tr(X?) =y, + y,?, where tr(X)
is the trace of X.

Csanky’s algorithm:The idea

* Focus on n = 2,i.e, X = (X;)epy- Let y,, y, be the
eigenvalues of X. Then, det(X) =y,y,.

o Also, tr(X) = y,+y, and tr(X?) = y,? + y,% where tr(X)
is the trace of X.

e Hence, det(X) = V2 (tr(X)? — tr(X?)).

* We can compute det by computing X, X? and then
computing their traces, provided char([F) # 2.

Csanky’s algorithm:The idea

* Focus on n = 2,i.e, X = (X;)epy- Let y,, y, be the
eigenvalues of X. Then, det(X) =y,y,.

o Also, tr(X) = y,+y, and tr(X?) = y,? + y,% where tr(X)
is the trace of X.

e Hence, det(X) = V2 (tr(X)? — tr(X?)).

* We can compute det by computing X, X? and then
computing their traces, provided char([F) # 2.

e Question. For any n, can det(X) be expressed as a
polynomial in tr(X), ..., tr(X")?

Csanky’s algorithm:The idea

* Focus on n = 2,i.e, X = (X;)epy- Let y,, y, be the
eigenvalues of X. Then, det(X) =y,y,.

o Also, tr(X) = y,+y, and tr(X?) = y,? + y,% where tr(X)
is the trace of X.

e Hence, det(X) = V2 (tr(X)? — tr(X?)).

* We can compute det by computing X, X? and then
computing their traces, provided char([F) # 2.

e Question. For any n, can det(X) be expressed as a
polynomial in tr(X), ..., tr(X")? Yes!

e Although the eigenvalues of X are not polynomials in
the entries of X, tr(X) is.

Csanky’s algorithm

o Let X = (x;)ijermy & Y = {Y1»--- Yo} the eigenvalues of X.
e The characteristic polynomial of X,

h(y) = det(yl, - X) = (y - y))--.(y - ¥n)
= y"+s,y™l+...+s,where s, = (-1)-ESym_ (y).

e Each s; is also a polynomial in x = {x;}, c,; of degree i.
* Notice that s = (-l)"det(X). Goal: Circuit for s,...,s..

Csanky’s algorithm

o Let X = (x;)ijermy & Y = {Y1»--- Yo} the eigenvalues of X.
e The characteristic polynomial of X,

h(y) = det(yl, - X) = (y - y))--.(y - ¥n)
= y"+s,y"!+...+s ,where s, = (-1)-ESym_(y).

e Each s; is also a polynomial in x = {x;}, c,; of degree i.
* Notice that s = (-l)"det(X). Goal: Circuit for s,...,s..

o Further, tr(X') = y," +...+ y ' = PSym_(y), the i*" power
symmetric polynomial. Denote PSym _(y) by p..

Csanky’s algorithm

o Let X = (x;)ijermy & Y = {Y1»--- Yo} the eigenvalues of X.
e The characteristic polynomial of X,

h(y) = det(yl, - X) = (y - y))--.(y - ¥n)
= y"+s,y"!+...+s ,where s, = (-1)-ESym_(y).

e Each s; is also a polynomial in x = {x;}, c,; of degree i.
* Notice that s = (-l)"det(X). Goal: Circuit for s,...,s..

o Further, tr(X') = y," +...+ y ' = PSym_(y), the i*" power
symmetric polynomial. Denote PSym _(y) by p..

» Easy to compute p; from X

e Question. Can we compute s,,..., s from p,...,p?

n.

Csanky’s algorithm

o Let X = (x;)ijermy & Y = {Y1»--- Yo} the eigenvalues of X.
e The characteristic polynomial of X,

h(y) = det(yl, - X) = (y - y))--.(y - ¥n)
= y"+s,y"!+...+s ,where s, = (-1)-ESym_(y).

e Each s; is also a polynomial in x = {x;}, c,; of degree i.
* Notice that s = (-l)"det(X). Goal: Circuit for s,...,s..

o Further, tr(X') = y," +...+ y ' = PSym_(y), the i*" power
symmetric polynomial. Denote PSym _(y) by p..

» Easy to compute p; from X

e Question. Can we compute s,..., s, from p,...,p.?
Yes! using Newton lIdentities

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p; = 0; heres,=1.
€[k]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p; = 0; heres,=1.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k = n: As h(y) = sy + siy™ + ... +s =0,

summing over i€[n],we get ns_ + > s_.p. = 0.
i€[n]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s,..p; = 0; heres,=1.
i€[k]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny = {y,...,y.}- €[k]

e Support of a monomial is the number of variables with
nonzero exponents appearing in the monomial.

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p; = 0; heres,=1.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y,}- E[k]

* Wlo.g let m be a monomial in ks +) ., s..p; in the
variables y, := {y,,...,y,}. Let z = yly,.

o Obs. The coefficient of m in ks +) s, _p; is the same as

that in [ksk+z Sk-iPi]z=O' el
i€[Kk]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p; = 0; heres,=1.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y,}- E[k]

* Wlo.g let m be a monomial in ks +) ., s..p; in the
variables y, := {y,,...,y,}. Let z = yly,.

o Obs. The coefficient of m in ks +) s, _p; is the same as

that in I([SI<]Z=O+Z [Sk-i]z=O[Pi]z=0' el
i€[k]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p. = 0; heres,=1I.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .
e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y.} €[k
* Notice that [s],.o = (-1)“ESym,(y,) = si(y,), and
[Pilz=0 = PSYmyi(yi) = Pilyw)-
o Obs. The coefficient of m in ks +) s, _p; is the same as

that in I([SI<]Z=O+Z [Sk-i]z=O[Pi]z=0' el
i€[k]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p. = 0; heres,=1I.
i€[K]

e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y.} IE[k]

* Notice that [s],.o = (-1)“ESym,(y,) = si(y,), and
[Pilz=0 = PSymy i(yi) = Piy.)-

o Obs. The coefficient of m in ks +) s, _p; is the same as
that in ks, (y,)+> s.(y)pi(y)- "

i€[k]

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p. = 0; heres,=1I.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .
e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y.} €[k
* Notice that [s],.o = (-1)“ESym,(y,) = si(y,), and
[Pilz=0 = PSYmyi(yi) = Pilyw)-
o Obs. The coefficient of m in ks +) s, _p; is the same as

that in ksk(Yk)-l-Z Sk-i(Yk)Pi(Yk)' el
€[k —- 0 by Case k=n

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,
ks, + > s..p; = 0; heres,=1.
€[]
e Proof. Polynomial h(y) = sgy" + s, y™' + ... + s .

e Case k < n: Every monomial in ks, +) s .p. has support
at most kiny ={y,,...,y,}- E[k]

» Therefore, the coefficient of m in ks +) s, .p. is 0. As
m is chosen arbitrarily, Elk]

ksk + Z S1-iPi = 0.
i€[k] 0

Newton ldentities

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s,..p; = 0; heres,=1.
€[k]

e Ref. See the wiki page on Newton ldentities for more
on the power symmetric, the elementary symmetric, and
the complete homogeneous symmetric polynomial.

Csanky’s algorithm

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p. = 0; heres,=1I.

i€[k]

I 0 0 S| P
P 2 0 S P2
P2 | Pi 0 >3 = P3
Pn-1 Pn2 | P n Sh Pn

Csanky’s algorithm

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p. = 0; heres,=1I.

i€[k]

I 0 0 S| P

p,/2 |1 0 S, P,/2
P2/3 | pi/3 0 >3 = P33
Pn-I/n Pn-Z/n P|/n I Sn Pn/n

Provided char(FF) > n.

Csanky’s algorithm

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p; = 0; heres,=1.
€[k]

|, + F, where P is a nilpotent matrix, i.e.,P" = 0

° I 0 0 .. 10 S| P
p,/2 |1 0 - 10 S, P,/2
P2/3 | pi/3 0 >3 = P33
Poi/N | Pao/n | ... PI/n | S, pn/n

Csanky’s algorithm

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p. = 0; heres,=1I.

i€[k]

* s P
27 P./2
S3 = - (I_+P)! .| P3f3

S p,/n

Csanky’s algorithm

e Theorem. (Girard 1629, Newton 1666) For k < n,

ks, + > s..p. = 0; heres,=1I.

i€[k]
o S| P|
S, P,/2
-1 Pn- /3
>3 = - (I,-P+ p2 - 'Pn I) . B3 -- Equation |

S p,/n

Csanky’s algorithm

° Given an n x n matrix A, we can compute AZ,
...,A" using a circuit of size O(n*) & depth O((log n)?).

* Proof sketch. The circuit has O(log n) stages. In the first
stage compute AZ, in the second compute A3, A% in the
third compute A>, A% A’ A8 and so on. The i*" stage
involves 2! matrix multiplications.

Csanky’s algorithm

° Given an n x n matrix A, we can compute AZ,
...,A" using a circuit of size O(n*) & depth O((log n)?).

* Proof sketch. The circuit has O(log n) stages. In the first
stage compute AZ, in the second compute A3, A% in the
third compute A>, A% A’ A8 and so on. The i*" stage
involves 2! matrix multiplications.

° Multiplication of two n x n matrices can be
computed using a circuit of size O(n’®) and depth
O(log n). So, the overall size of the circuit is O(n*) and
its depth is O((log n)?).

Csanky’s algorithm

o Claim. Given an n x n matrix A, we can compute A?,
...,A" using a circuit of size O(n*) & depth O((log n)?).
o Algorithm/Circuit. Input: X = (X;);ien]
|. Compute X?, ..., X",
2. Compute p, ..., p,.
3. Compute P?,..., P!,
4. Compute (I + P)'ands,,...,s, using Equation I.

Csanky’s algorithm

o Claim. Given an n x n matrix A, we can compute A?,
...,A" using a circuit of size O(n*) & depth O((log n)?).
o Algorithm/Circuit. Input: X = (X;);ien]
|. Compute X?, ..., X", (circuit size O(n*) & depth O((log n)?))
2. Compute py, ..., P, (circuit size O(n?) & depth O(log n))
3. Compute P?,..., P! (circuit size O(n*) & depth O((log n)?))
4. Compute (I + P)'ands,,...,s, using Equation I.

(circuit size O(n®) & depth O(log n))

Csanky’s algorithm

o Claim. Given an n x n matrix A, we can compute A?,
...,A" using a circuit of size O(n*) & depth O((log n)?).
o Algorithm/Circuit. Input: X = (X;);ien]
|. Compute X?, ..., X",
2. Compute p, ..., p,.
3. Compute P?,..., P!,
4. Compute (I + P)'ands,,...,s, using Equation I.

o Corollary. Det, can be computed by a circuit of size
O(n*) and depth O((log n)?), provided char(F) > n.

Computing inverse of a matrix

o As y'+s y™I+. . +s_is the characteristic polynomial of X,
by the Cayley-Hamilton theorem, X"+ s X!+ . +s =
0.

* Hence, X-! = -s “(X™I + 5 X2+ [+5s_).

o Corollary. X-' can be computed by a circuit of size
O(n%) and depth O((log n)?), provided char(F) > n.

e The above circuit has only one + gate at the top.

Parallel computation of rank

Schwartz-Zippel lemma

° Let f(x,, ..., %)
7 0 be a multivariate polynomial of (total) degree at
most d over a field [F. Let S € [be finite,and (a,, ...,
a,) € S" such that each a is chosen independently
and uniformly at random from S.Then,

Pr [f(a,...,a,) =0] = d/|S|.

(@p-..-,,) €, S"

* Proof sketch. Roots are far fewer than non-roots. Use
induction on the number of variables.

Linear independence of polynomials

° Let f,(x), ..., f_(x) € [F[x] be [F-linearly
independent n-variate, deg-d polynomials. Then, the
determinant of the following matrix is non-zero.

fio¢p) [fa(x)) | .o fn (X))

fi(xy) |[faxz) |--- fn(X2)

fi(Xm) | £2(Xm) | --- fn(Xim)

Here, x|, ..., X, are disjoint sets of n variables.

e Proof sketch. Use induction on m and the Schwartz-
Zippel lemma.

Linear independence of polynomials

o Corollary I. Let f(x), ..., f_(x) € F[x] be F-linearly
independent n-variate, deg-d polynomials. Then, the
determinant of the following matrix is non-zero w.h.p.

fi@) |f(a) |- fn(a))

fi(@a) |[f(a) |--- fn(az)

fi(am) | (@) | --- fn(am)

Here,a, ...,a_ € _S",where S C [F and |S| = 10md.

* Proof sketch. Use the Schwartz-Zippel lemma.

Rank computation in NC

e Remark. If the input matrix is rectangular, pad it up
with zeroes to make it a square matrix.

e Notation. Let [M]. be the principal i x i submatrix of a
matrix M.Let S € [F and |S| = 20n.

o Algorithm. Input: A = (3;);ie[n
|. Pick X €.S™"andY €_5™".
2. Compute d. = det([XAY]) for i€[n].
3. Output r = max{{i : d. # 0}, 0}.

Rank computation in NC

e Remark. If the input matrix is rectangular, pad it up
with zeroes to make it a square matrix.

e Notation. Let [M]. be the principal i x i submatrix of a
matrix M.Let S € [F and |S| = 20n.

e Algorithm. Input: A = (a)); e[-
|. Pick X €.S™"andY €_5™".
2. Compute d. = det([XAY]) for i€[n].
3. Output r = max{{i : d. # 0}, 0}. _

.. all in NC

Rank computation in NC

e [heorem. (Borodin, Gathen, Hopcroft ‘62) The algorithm
outputs the rank of A with probability at least 0.9.

 Proof sketch. Define linear forms f,(x), ..., f_(x) whose
coefficient vectors are the columns of A. Use
Corollary | to argue that the first r rows of XA are
linearly independent w.p. =2 0.95, where r = rank(A).

Rank computation in NC

e [heorem. (Borodin, Gathen, Hopcroft ‘62) The algorithm
outputs the rank of A with probability at least 0.9.

 Proof sketch. Define linear forms f,(x), ..., f_(x) whose
coefficient vectors are the columns of A. Use
Corollary | to argue that the first r rows of XA are
linearly independent w.p. =2 0.95, where r = rank(A).

e Define linear forms g,(x), ..., g.(x) whose coefficient
vectors are the first r rows of XA.Use Corollary | to
argue that [XAY]_ has rank r w.p. 2 0.95.

