Algebraic Complexity Theory

Lecture 3: Classes VP. VBP and VF

Department of Computer Science,
Indian Institute of Science

Recap

* In the last lecture, we saw that Det_ can be computed
by a circuit of size O(n?) and depth O((log n)?). We
also saw that the inverse of an n x n matrix can be
computed by a (multi-output) circuit of size O(n*) and
depth O((log n)?). Also, rank computation is in NC.

Recap

* In the last lecture, we saw that Det_ can be computed
by a circuit of size O(n?) and depth O((log n)?). We
also saw that the inverse of an n x n matrix can be
computed by a (multi-output) circuit of size O(n*) and
depth O((log n)?). Also, rank computation is in NC.

* Polynomial families that are computable by circuits of
size poly(n) are captured by the algebraic complexity
class VP (which stands for Valiant’s P).

e VP is also known as AlgP/poly.

Complexity Class VP

Class VP

* A polynomial family F = {f.} ., is a countable set of
polynomials over a field [, i.e., f has coefficients in F.

0 (Valiant °79) A polynomial family F = {f } .,
is in class VP if there’s a polynomial function p: N — N
such that for every n 2 |, f has number of variables as
well as degree bounded by p(n) and f_ is computable
by a circuit of size p(n).

* W.lo.g. assume that nodes of a circuit have fan-in
bounded by 2 (unless the depth is a constant).

Class VP

* A polynomial family F = {f.} ., is a countable set of
polynomials over a field [, i.e., f has coefficients in F.

0 (Valiant °79) A polynomial family F = {f } .,
is in class VP if there’s a polynomial function p: N — N
such that for every n 2 |, f has number of variables as
well as degree bounded by p(n) and f_ is computable
by a circuit of size p(n).

* Valiant called such a family F p-computable.

Class VP

* A polynomial family F = {f.} ., is a countable set of
polynomials over a field [, i.e., f has coefficients in F.

0 (Valiant °79) A polynomial family F = {f } .,
is in class VP if there’s a polynomial function p: N — N
such that for every n 2 |, f has number of variables as
well as degree bounded by p(n) and f_ is computable
by a circuit of size p(n).

* VP is the algebraic analogue of P/poly.
° Why is there a poly(n) degree bound on f?

Degree restriction for VP families

e The natural polynomials that we have encountered so
far — Det, ESym_, PSym_, — have degrees bounded
by poly(n), where n is the number of variables.

Degree restriction for VP families

e The natural polynomials that we have encountered so
far — Det, ESym_, PSym_, — have degrees bounded
by poly(n), where n is the number of variables.

e Recall from that there’s a unique multilinear
polynomial corresponding to every Boolean function.
Thus, for Boolean circuit lower bound, it is necessary
to prove arithmetic circuit lower bound computing
multilinear polynomials. A multilinear polynomial in n
variables has degree = n.

Degree restriction for VP families

A circuit of size s can compute a polynomial of degree
2°6), We may not be able to evaluate a circuit
efficiently if there’s no degree restriction. For e.g., x*
can be computed a circuit of size O(s). At x=2, x2 has
exponential in s bit complexity.

Degree restriction for VP families

A circuit of size s can compute a polynomial of degree
2°6), We may not be able to evaluate a circuit
efficiently if there’s no degree restriction. For e.g., x*
can be computed a circuit of size O(s). At x=2, x2 has
exponential in s bit complexity.

* Removal of division gates, homogenization of circuits
cannot be done efficiently without a degree bound.

* We shall see later that depth reduction of circuits
crucially needs a polynomial bound on degree.

Degree restriction for VP families

e For more on degree restriction for VP families:

Ref.
https://cstheory.stackexchange.com/questions/ 1 926 | /degr
ee-restriction-for-polynomials-in-mathsfvp

e Class VP, ,:Same as VP but with no bound on degree :

Refs.
I. “Polynébmes et coefficients”, PhD Thesis, by Malod,
(2003)

2. “Interpolation in Valiant’s Theory”, by Koiran & Perifel
(2007)

Examples of families in VP

* |t follows from that Det = {Det_} ., is in VP.

e Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSym, ,= x,9 +...+ x,% So,

PSym - {Psymn,poly(n)}nz | eVP.

Examples of families in VP

* |t follows from that Det = {Det_} ., is in VP.

e Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSym, ,= x,9 +...+ x,% So,

PSym = {Psymn,poly(n)}nz | eVFR

e [heorem. (Baur & Strassen "83) Any circuit computing
PSym, 4 has size £2(n log d).
e Proof. We'll see later.

Examples of families in VP

* |t follows from that Det = {Det } ., is in VP,

e Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSym, ,= x,9 +...+ x,% So,

PSym - {Psymn,poly(n)}nz | eVP.

* Also, observe that PSym, , has a depth-2 circuit of size
O(nd).

Examples of families in VP

* |t follows from that Det = {Det } ., is in VP,

e Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSym, ,= x,9 +...+ x,% So,

PSym = {Psymn,poly(n)}nz I eVFR

e The sum-product polynomial SP, ; :=) i [lieray %;; has
sd variables, degree d, and is computable by a circuit
of size O(sd) and depth 2.So, SP = {SP_ }. 4>, is in VF.

Examples of families in VP

 The iterated matrix multiplication polynomial IMM,, , is
defined as the (I,|)-th entry of the product of d many
w x w symbolic matrices X,, ..., X, where X =
(Xij)ikemy- 1t has w?(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w?3d) and

depth O(log w-log d). So, IMM = {IMM,, 4}, 4= is in VP,

\

Divide and conquer

Examples of families in VP

 The iterated matrix multiplication polynomial IMM,, , is
defined as the (I,|)-th entry of the product of d many
w x w symbolic matrices X,, ..., X, where X =
(Xij)ikemy- 1t has w?(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w?3d) and
depth O(log w-log d). So, IMM = {IMM,, 4}, 4= is in VP,

* Sometimes, IMM_ , is defined as tr(X,-...-X_).

Examples of families in VP

 The iterated matrix multiplication polynomial IMM,, , is
defined as the (I,|)-th entry of the product of d many
w x w symbolic matrices X,, ..., X, where X =
(Xij)ikemy- 1t has w?(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w?3d) and

depth O(log w-log d). So, IMM = {IMM,, 4}, 4= is in VP,

* Sometimes, IMM_ , is defined as tr(X,-...-X_).

o Is ESym = {ESym, 4}, 4=, in VP?

Examples of families in VP

 The iterated matrix multiplication polynomial IMM,, , is
defined as the (I,|)-th entry of the product of d many
w x w symbolic matrices X,, ..., X, where X =
(Xij)ikemy- 1t has w?(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w?3d) and

depth O(log w-log d). So, IMM = {IMM,, 4}, 4= is in VP,

* Sometimes, IMM_ , is defined as tr(X,-...-X_).

o Is ESym = {ESym, 4}, 4=, inVP? Yes. Let’s see why...

Circuits computing ESym

Circuits for ESym over char 0O fields

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) provided char(F) = 0 or > d.

* Proof. From Newton-Gerard identities (), and
Cramer’s rule,

P, || 0 .. 10

P, |PI |2 0

Pz (P2 [P |7 0
ESym, = l/d!-det |} [i |

Pa |Pd1 | P2 | Pi

Circuits for ESym over char 0O fields

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) provided char(F) = 0 or > d.

 Proof. From Newton-Gerard identities (),

e ESym 4= 1/d!- det(M).

e Obs. p),...,p4 can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

e Hence, by Csanky’s theorem, det(M) can be computed
by a circuit of size O(nd + d*) and depth O(log nd +

(log d)?).

Circuits for ESym over char 0O fields

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) provided char(F) = 0 or > d.

* Proof. From Newton-Gerard identities (),
e ESym 4= 1/d!- det(M).

e Obs. p),...,p4 can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

e Homework. Once p,,...,py are computed, det(M) can
be computed by a circuit of size O(d?). (Use the
special structure of M.)

Circuits for ESym over char 0O fields

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) provided char(F) = 0 or > d.

* Proof. From Newton-Gerard identities (),

e ESym 4= 1/d!- det(M).

e Obs. p),...,p4 can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

 Therefore, ESym_, can be computed by a circuit of
size O(nd) provided char(F) = 0 or > d.

Circuits for ESym over char 0O fields

o ESym, 4 can be computed by a circuit of size
O(nd) provided char(F) = 0 or > d.

* The merit of this proof is that it yields a circuit of

subquadratic size and low depth if d is small, e.g., if d =
n'3, the circuit has size O(n*?) and depth O((log n)?).

o What about circuits over fields of low char.?

Circuits for ESym over any field

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) over any field.

e Proof. Denote ESym_, as e . Observe that

€k T €k T Xy ek

- Cn2.k + Xn-1" €n2 k- + X0 Cnat kel

CCrtkel T X € T TX €0 TX e

n-1,k-1

Circuits for ESym over any field

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) over any field.

e Proof. Denote ESym_, as e . Observe that

n,k

(S — €

n,k T Xn. €

n-1,k n-1,k-1

en-2,|< t Xn-l. en-2,|<-| T Xn. €

n-1,k-1

= X €l T X € T T X TX0 € e

e This suggests the following dynamic programming
approach: For ke[2,d], compute e, |, ..., €| . then
compute X,° €|, ---» X," €, .- From these compute

€l - - € Using O(n) multiplications and additions.

» ~n,k

Circuits for ESym over any field

e [heorem.ESym_ 4 can be computed by a circuit of size
O(nd) over any field.

e Proof. Denote ESym_, as e . Observe that

n,k

(S — €

n,k T)(n. €

n-1,k n-1,k-1

€kt X € T X0 €k

= X €l T X € T T X TX0 € e

e Thus, we use a total of O(nd) multiplications and
additions. However, the depth of the circuit is O(d).
The construction works over any field.

Circuits for ESym over any field

o ESym, 4 can be computed by a circuit of size
O(nd) over any field.

* Two important features of the circuit are:

I. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every X gate has at most one child that
is not a leaf node.

Circuits for ESym over any field

° ESym 4 can be computed by a monotone,
skew circuit of size O(nd) & depth O(d) over any field.

* Two important features of the circuit are:

I. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every X gate has at most one child that
is not a leaf node.

* We'll see later that skew circuits form an important
subclass of circuits, namely Algebraic Branching
Programs.We’'ll use ABPs to define the class VBF.

Circuits for ESym over any field

° ESym 4 can be computed by a monotone,
skew circuit of size O(nd) & depth O(d) over any field.

* Two important features of the circuit are:

I. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every X gate has at most one child that
is not a leaf node.

° Can ESym_ , be computed by a constant
depth circuit (like PSym_ ,)?

* A small depth-2 circuit is not possible as ESym has
too many monomials. How about a depth-3 circuit?

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |F| > n.

* Proof. Observe that
fx,y) = (I+x)y) -...- (1+x.y)
=1+ ESyan(x)y + ...+ ESymn,n(x)y”
* The idea is to use polynomidal interpolation.

e Let o, ..., ., be distinct elements of [F,and V be the
Vandermonde matrix (&/)icir+ 17, o -

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |[F| > n.

* Proof. Then,

| f(x, ay)
ESyan f(X, (12)
e | 000
. ¢,)

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |F| > n.

* Proof. Thus,

ESym, 4= Ba O @) + ...+ fgnnf(X apyy).
® fyis oo Pyns) are F-constants dependent only on «,

LR] an+|o

 The above expression gives a depth-3 circuit of size
O(n?) and top fan-in n+| for ESym_, for every d.
o

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |F| > n.

o Question. Does ESym_ 4 have a depth-3 circuit of size
poly(n) over fixed finite fields for every d?

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |F| > n.

e Question. Does ESym_ , have a depth-3 circuit of size
poly(n) over fixed finite fields for every d? No!

e Can be proved using methods by Grigoriev & Karpinski
(1998) and Grigoriev & Razborov (1998).

e Ref. See Theorem 102 in the survey
https://github.com/dasarpmar/lowerbounds-
survey/releases/download/v9.0.3/fancymain.pdf

Depth-3 circuits computing ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
depth-3 circuit of size O(n?) provided |F| > n.

e Question. Does ESym_ , have a depth-3 circuit of size
poly(n) over fixed finite fields for every d? No!

e Question. Does ESym_, have a constant depth circuit
of size poly(n) over fixed finite fields?

* We do not know.

Almost linear size circuit for ESym

° (Ben-Or) ESym_, can be computed by a
circuit of size O(n(log d)?) over complex numbers.

e The proof uses Fast Fourier Transform (FFT) for
polynomial multiplication.

° See the first answer to the post
https://cstheory.stackexchange.com/questions/33503/mon
otone-arithmetic-circuit-complexity-of-elementary-
symmetric-polynomials

Almost linear size circuit for ESym

e Theorem. (Ben-Or) ESym_, can be computed by a
circuit of size O(n(log d)?) over complex numbers.

e [heorem. (Baur & Strassen ‘83) Any circuit computing
ESym, ., has size £2(n log n).

ABPs and class VBP

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

The size of B is the number of edges in it.

The length of B is the length of the longest path
from s to t.

Algebraic Branching Programs

An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

The size of B is the number of edges in it.

The length of B is the length of the longest path
fromstot. (The polynomial computed by B has
degree at most the length of B.)

Algebraic Branching Programs

An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

An ABP B is layered if the nodes can be partitioned
into layers V,, ...,V with V, = {s} and V, = {t}, such
that every edge is incident between a node in V, and a
node inV,,, for some i€[0,d-1].

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

The width of a layered ABP B with layers V, ...,V
is max{|V.|}.

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

The polynomial computed by a layered ABP B
with layersV,, ...,V has degree at most d.

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

The layered ABP
in the figure
computes X ;X; —
X, X, Its size is 7
and length is 3.

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

° An ABP of size s and length d can be converted
to a layered ABP of size at most sd (simply by splitting
an edge into at most d edges).

Algebraic Branching Programs

o An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by dffine forms in x,, ...,
X, variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

e Typically, when we talk about an ABP, we mean a
layered ABP.

Layered ABP & Matrix Multiplication

o Obs. A layered ABPF with layers V, ...,V , can be
equivalently viewed as a sequence of matrix
multiplications ™M,-M,-...-M,, where M. is a |V || x
|V.|matrix whose entries are affine forms.

e Example.
X| + X,

Layered ABP & Matrix Multiplication

° A layered ABP with layers V, ...,V, can be
equivalently viewed as a sequence of matrix
multiplications ™M,-M,-...-M,, where M. is a |V || x
|V.|matrix whose entries are affine forms.

° An n-variate polynomial computable by a
layered ABP of width w and length d can be computed
by a circuit of size O(w?nd + w3d) & depth O(log
w-log d).

Homogenization of ABP

o An ABP is homogeneous if every node of the
ABP computes a homogeneous polynomial.

o Let p be a degree-d homogeneous polynomial
that is computable by a size-s ABP. Then, p is also
computable by a homogeneous ABP of size O(ds).

* Proof sketch. For every node v computing f, create
nodes v,, ..., v, that compute %0 fll1| fld],

* Recall from that homogenization of circuits
can also be done efficiently.

Class VBP

o A polynomial family F = {f } ., is in class
VBP if there’s a polynomial function p: N — N s.t. for
every n = |, f has number of variables bounded by
p(n) and f_is computable by an ABP of size p(n).

Class VBP

o A polynomial family F = {f } ., is in class
VBP if there’s a polynomial function p: N — N s.t. for
every n = |, f has number of variables bounded by
p(n) and f_is computable by an ABP of size p(n).

* Why is there no degree restriction in the above
definition? (unlike the definition of class VP)

e That's because the degree of the polynomial
computed by an ABP B is bound by the length of B
which in turn is bounded by the size of B.

Class VBP

o A polynomial family F = {f } ., is in class
VBP if there’s a polynomial function p: N — N s.t. for
every n = |, f has number of variables bounded by
p(n) and f_is computable by an ABP of size p(n).

o It follows from the last corollary that VBP < VP,

e Question. Is VBP strictly contained in VP?
* We do not know.

Examples of families in VBP

e Obs.The families IMM, PSym and SP are in VBP.

* Proof. Easy exercise.

Examples of families in VBP

e Obs.The families IMM, PSym and SP are in VBP.

* Proof. Easy exercise.

e [heorem.Det is in VBP.

* Proof sketch. Csanky’s algorithm gives an ABP of size
O(n®) for Det, over fields of characteristic 0 or > n.
Use Equation | in : Compute each p. using
an ABP of size O(n*). Compute the entries of P using
an ABP of size O(n>). Finally, compute (I + P)-' using
an ABP of size O(n®). (Homework: Fill in the details.) _

Examples of families in VBP

e Obs.The families IMM, PSym and SP are in VBP.
* Proof. Easy exercise.

e Theorem. Det is in VBP.
e Berkowitz’s algorithm gives a poly(n) (O(n'®)?) size
ABP for Det, over any field.

o Mahajan & Vinay (1997) gave an O(n®) size ABP
computing Det, over any field by proving a
combinatorial characterization of the determinant.

Examples of families in VBP

e Obs.The families IMM, PSym and SP are in VBP.

* Proof. Easy exercise.
e Theorem. Det is in VBP.

e Question. s ESym in VBP?

* Yes, it is. The depth-3 circuit for ESym_, gives an ABP
of size O(n?) and depth n, provided |FF| > n.

e The skew circuit construction for ESym_, gives an
ABP of size O(nd) over any field.

Skew circuits and ABPs

° Skew circuits are essentially ABPs.

* Proof sketch. If a polynomial is computed by an ABP of
size s then it can also be computed by a skew circuit
of size O(ns). Conversely, a skew circuit of size s
computing a polynomial gives an ABP of size Ofs)
computing the same polynomial. (Homework: Fill in

the details.)

Skew circuits and ABPs

° Skew circuits are essentially ABPs.

* Proof sketch. If a polynomial is computed by an ABP of
size s then it can also be computed by a skew circuit
of size O(ns). Conversely, a skew circuit of size s
computing a polynomial gives an ABP of size Ofs)
computing the same polynomial. (Homework: Fill in

the details.)
»

e Thus VBP can be equivalently defined as the class of
families of polynomials computable by polynomial size
skew circuits.

Formulas and class VF

Arithmetic formulas

e Definition. An arithmetic formula is a circuit whose
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

2
3X,X3 + X,

: \G() i)i:::t?iz
/A

Arithmetic formulas

e An arithmetic formula is a circuit whose
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

° An n-variate polynomial computable by a formula
of size s can be computed by an ABP of size s.

* Proof sketch. Induct on the size of the formula: If a
node of the formula computes f, + f,, attach the ABPs
computing f, and f, in parallel. If a node computes f,-

f,, attach the corresponding ABPs in series.
o

Class VF

o A polynomial family F = {f } ., isin class VF
if there’s a polynomial function p: N — N s.t. for every
n 2 |, f has number of variables bounded by p(n) and
f is computable by a formula of size p(n).

* Why is there no degree restriction in the above
definition? (unlike the definition of class VP)

° A formula of size s computes a polynomial of
degree at most s.

e Proof sketch. Can be proved by inducting on size.

Class VF

o A polynomial family F = {f } ., isin class VF
if there’s a polynomial function p: N — N s.t. for every
n 2 |, f has number of variables bounded by p(n) and
f is computable by a formula of size p(n).

¢ It follows from a previous that VF € VBP,

e Question. Is VF strictly contained in VBP?
* We do not know.

Examples of families in VF

e Obs.The families PSym and SP are in VE,
* Proof. Easy exercise.

e Obs.The family ESym is in VF over infinite fields.
* Proof. Ben-Or’s construction of a depth-3 circuit.

Examples of families in VF

e Obs.The families PSym and SP are in VE,

* Proof. Easy exercise.

e Obs.The family ESym is in VF over infinite fields.
* Proof. Ben-Or’s construction of a depth-3 circuit.
e Question. s ESym in VF over any field?

* We do not know.

Examples of families in VF

e Obs.The families PSym and SP are in VE,

* Proof. Easy exercise.

e Obs.The family ESym is in VF over infinite fields.
* Proof. Ben-Or’s construction of a depth-3 circuit.
e Question. s ESym in VF over any field?

* We do not know.

e Question.Are the familes Det and IMM in VF?
* We do not know. We'll see that if yes then VBP =VFE.

