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Recap

 In the last lecture, we saw that Detn can be computed 
by a circuit of size O(n4) and depth O((log n)2). We 
also saw that the inverse of an n x n matrix can be 
computed by a (multi-output) circuit of size O(n4) and 
depth O((log n)2).  Also, rank computation is in NC.



Recap

 In the last lecture, we saw that Detn can be computed 
by a circuit of size O(n4) and depth O((log n)2). We 
also saw that the inverse of an n x n matrix can be 
computed by a (multi-output) circuit of size O(n4) and 
depth O((log n)2).  Also, rank computation is in NC.

 Polynomial families that are computable by circuits of 
size poly(n) are captured by the algebraic complexity 
class VP (which stands for Valiant’s P). 

 VP is also known as AlgP/poly. 



Complexity Class VP



Class VP

 A polynomial family 𝓕 = {fn}n≥1 is a countable set of 
polynomials over a field 𝔽, i.e., fn has coefficients in 𝔽. 

 

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VP if there’s a polynomial function p: N → N
such that for every n ≥ 1, fn has number of variables as 
well as degree bounded by p(n) and fn is computable 
by a circuit of size p(n).

 W.l.o.g. assume that nodes of a circuit have fan-in 
bounded by 2 (unless the depth is a constant). 
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 Valiant called such a family 𝓕 p-computable.



Class VP

 A polynomial family 𝓕 = {fn}n≥1 is a countable set of 
polynomials over a field 𝔽, i.e., fn has coefficients in 𝔽. 

 

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VP if there’s a polynomial function p: N → N
such that for every n ≥ 1, fn has number of variables as 
well as degree bounded by p(n) and fn is computable 
by a circuit of size p(n). 

 VP is the algebraic analogue of P/poly. 

 Question. Why is there a poly(n) degree bound on fn? 



Degree restriction for VP families

 The natural polynomials that we have encountered so 
far – Detn, ESymn,d, PSymn,d – have degrees bounded 
by poly(n), where n is the number of variables.



Degree restriction for VP families

 The natural polynomials that we have encountered so 
far – Detn, ESymn,d, PSymn,d – have degrees bounded 
by poly(n), where n is the number of variables.

 Recall from Lecture 1 that there’s a unique multilinear 
polynomial corresponding to every Boolean function. 
Thus, for Boolean circuit lower bound, it is necessary 
to prove arithmetic circuit lower bound computing 
multilinear polynomials. A multilinear polynomial in n 
variables has degree ≤ n.



Degree restriction for VP families

 A circuit of size s can compute a polynomial of degree 
2O(s). We may not be able to evaluate a circuit 
efficiently if there’s no degree restriction. For e.g., x2 
can be computed a circuit of size O(s). At x=2, x2 has 
exponential in s bit complexity.  
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Degree restriction for VP families

 A circuit of size s can compute a polynomial of degree 
2O(s). We may not be able to evaluate a circuit 
efficiently if there’s no degree restriction. For e.g., x2 
can be computed a circuit of size O(s). At x=2, x2 has 
exponential in s bit complexity.   

 Removal of division gates, homogenization of circuits 
cannot be done efficiently without a degree bound.

 We shall see later that depth reduction of circuits 
crucially needs a polynomial bound on degree. 

s
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Degree restriction for VP families

 For more on degree restriction for  VP families:

Ref. 
https://cstheory.stackexchange.com/questions/19261/degr
ee-restriction-for-polynomials-in-mathsfvp

 Class VPnb: Same as VP but with no bound on degree :

Refs. 

1. “Polynômes et coefficients”, PhD Thesis, by Malod, 
(2003)

2. “Interpolation in Valiant’s Theory”, by Koiran & Perifel 
(2007)



Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d) 
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So, 

PSym = {PSymn,poly(n)}n≥1∈VP.



Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d) 
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So, 

PSym = {PSymn,poly(n)}n≥1∈VP.

 Theorem. (Baur & Strassen ’83) Any circuit computing 
PSymn,d has size 𝛺(n log d). 

 Proof.  We’ll see later.



Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d) 
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So, 

PSym = {PSymn,poly(n)}n≥1∈VP.

 Also, observe that PSymn,d has a depth-2 circuit of size 
O(nd).  



Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d) 
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So, 

PSym = {PSymn,poly(n)}n≥1∈VP.

 The sum-product polynomial SPs,d := ∑i∈[s] ∏j∈[d] xi,j has 
sd variables, degree d, and is computable by a circuit 
of size O(sd) and depth 2. So, SP = {SPs,d}s,d≥1 is in VP. 



Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is 
defined as the (1,1)-th entry of the product of d many 
w x w symbolic matrices X1, …, Xd, where Xi = 
(xi,j,k)j,k∈[w].  It has w2(d-2) + 2w variables, degree d,  
and is computable by a circuit of size O(w3d) and 
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

Divide and conquer
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Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is 
defined as the (1,1)-th entry of the product of d many 
w x w symbolic matrices X1, …, Xd, where Xi = 
(xi,j,k)j,k∈[w].  It has w2(d-2) + 2w variables, degree d,  
and is computable by a circuit of size O(w3d) and 
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

 Sometimes, IMMw,d is defined as tr(X1∙…∙Xd).

 Is ESym = {ESymn,d}n,d≥1 in VP? 



Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is 
defined as the (1,1)-th entry of the product of d many 
w x w symbolic matrices X1, …, Xd, where Xi = 
(xi,j,k)j,k∈[w].  It has w2(d-2) + 2w variables, degree d,  
and is computable by a circuit of size O(w3d) and 
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

 Sometimes, IMMw,d is defined as tr(X1∙…∙Xd).

 Is ESym = {ESymn,d}n,d≥1 in VP?  Yes.  Let’s see why…



Circuits computing ESym



Circuits for ESym over char 0 fields

 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2), and 
Cramer’s rule,

   

 ESymn,d =   1/d! ∙ det       

p1 1 0 ⋯ 0

p2 p1 2 ⋯ 0

p3 p2 p1
⋯ 0⋮ ⋮ ⋮ ⋱ ⋮

pd pd-1 ⋯ p2 p1

M



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d =   1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size 
O(nd) and depth O(log nd)  (why?).

 Hence, by Csanky’s theorem, det(M) can be computed 
by a circuit of size O(nd + d4) and depth O(log nd + 
(log d)2).

Circuits for ESym over char 0 fields



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d =   1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size 
O(nd) and depth O(log nd)  (why?).

 Homework. Once p1,…,pd are computed, det(M) can 
be computed by a circuit of size O(d2).  (Use the 
special structure of M.)

Circuits for ESym over char 0 fields



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d =   1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size 
O(nd) and depth O(log nd)  (why?).

 Therefore, ESymn,d can be computed by a circuit of 
size O(nd) provided char(𝔽) = 0 or > d.

Circuits for ESym over char 0 fields



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) provided char(𝔽) = 0 or > d.

 The merit of this proof is that it yields a circuit of 
subquadratic size and low depth if d is small, e.g., if d = 
n1/3, the circuit has size O(n4/3) and depth O((log n)2).

 Question. What about circuits over fields of low char.?

Circuits for ESym over char 0 fields



Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that  

 en,k  =  en-1,k + xn∙ en-1,k-1

 =  en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 =  xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1



Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that  

 en,k  =  en-1,k + xn∙ en-1,k-1

 =  en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 =  xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 This suggests the following dynamic programming 
approach: For k∈[2,d], compute ek-1,k-1, …, en-1,k-1; then 
compute xk∙ ek-1,k-1, …, xn∙ en-1,k-1. From these compute 
ek,k, …, en,k using O(n) multiplications and additions.



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that  

   en,k  =  en-1,k + xn∙ en-1,k-1

 =  en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 =  xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 Thus, we use a total of O(nd) multiplications and 
additions. However, the depth of the circuit is O(d). 
The construction works over any field.

Circuits for ESym over any field



 Theorem. ESymn,d can be computed by a circuit of size 
O(nd) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no 
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that 
is not a leaf node.

Circuits for ESym over any field



 Theorem. ESymn,d can be computed by a monotone, 
skew circuit of size O(nd) & depth O(d) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no 
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that 
is not a leaf node.

 We’ll see later that skew circuits form an important 
subclass of circuits, namely Algebraic Branching 
Programs. We’ll use ABPs to define the class VBP.

Circuits for ESym over any field



 Theorem. ESymn,d can be computed by a monotone, 
skew circuit of size O(nd) & depth O(d) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no 
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that 
is not a leaf node. 

 Question. Can ESymn,d be computed by a constant 
depth circuit (like PSymn,d)?

 A small depth-2 circuit is not possible as ESym has 
too many monomials. How about a depth-3 circuit?

Circuits for ESym over any field



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof.  Observe that 

 f(x, y) := (1+x1y) ∙…∙ (1+xny)

   = 1 + ESymn,1(x)y + … + ESymn,n(x)yn 

 The idea is to use polynomial interpolation.

 Let 𝛼1, …, 𝛼n+1 be distinct elements of 𝔽, and V be the 
Vandermonde matrix (𝛼i

j)i∈[n+1], j∈[0,n] .

Depth-3 circuits computing ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof.  Then,

Depth-3 circuits computing ESym

1

ESymn,1

ESymn,2⋮
ESymn,n

f(x, 𝛼1)

f(x, 𝛼2)

f(x, 𝛼3)⋮
f(x, 𝛼n+1)

=  V-1 ∙



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof.  Thus, 

 ESymn,d =  𝛽d,1f(x, 𝛼1) + … + 𝛽d,n+1f(x, 𝛼n+1). 

 𝛽d,1, …, 𝛽d,n+1 are 𝔽-constants dependent only on 𝛼1, 
…, 𝛼n+1. 

 The above expression gives a depth-3 circuit of size 
O(n2) and top fan-in n+1 for ESymn,d for every d. 

Depth-3 circuits computing ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size 
poly(n) over fixed finite fields for every d?  

Depth-3 circuits computing ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size 
poly(n) over fixed finite fields for every d?  No!

 Can be proved using methods by Grigoriev & Karpinski 
(1998) and Grigoriev & Razborov (1998).

 Ref. See Theorem 10.2 in the survey 
https://github.com/dasarpmar/lowerbounds-
survey/releases/download/v9.0.3/fancymain.pdf

Depth-3 circuits computing ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size 
poly(n) over fixed finite fields for every d? No!

 Question. Does ESymn,d have a constant depth circuit 
of size poly(n) over fixed finite fields?  

 We do not know. 

Depth-3 circuits computing ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a 
circuit of size O(n(log d)2) over complex numbers.

 The proof uses Fast Fourier Transform (FFT) for 
polynomial multiplication.

 Ref. See the first answer to the post 
https://cstheory.stackexchange.com/questions/33503/mon
otone-arithmetic-circuit-complexity-of-elementary-
symmetric-polynomials 

Almost linear size circuit for ESym



 Theorem. (Ben-Or) ESymn,d can be computed by a 
circuit of size O(n(log d)2) over complex numbers.

 Theorem. (Baur & Strassen ‘83) Any circuit computing 
ESymn,n/2 has size 𝛺(n log n).

Almost linear size circuit for ESym



ABPs and class VBP



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 The size of B is the number of edges in it. 

 The length of B is the length of the longest path 
from s to t.

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 The size of B is the number of edges in it. 

 The length of B is the length of the longest path 
from s to t.   (Obs. The polynomial computed by B has 
degree at most the length of B.)

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 An ABP B is layered if the nodes can be partitioned 
into layers V0, …,Vd, with V0 = {s} and Vd = {t}, such 
that every edge is incident between a node in Vi and a 
node in Vi+1 for some i∈[0,d-1]. 

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 The width of a layered ABP B with layers V0, …,Vd 
is maxi{|Vi|}. 

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 

Obs. The polynomial computed by a layered ABP B 
with layers V0, …,Vd has degree at most d. 

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

Algebraic Branching Programs

s t

x1

x1 + x2

x1 - x2

-x1

x1
x3

1

The layered ABP 
in the figure 
computes x1x3 – 
x1x2

2. Its size is 7 
and length is 3.



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 Obs. An ABP of size s and length d can be converted 
to a layered ABP of size at most sd (simply by splitting 
an edge into at most d edges).

Algebraic Branching Programs



 Definition. An algebraic branching program (ABP) B is a 
directed acyclic graph with a source node s and a sink 
node t. The edges are labelled by affine forms in x1, …, 
xn variables. The weight of a path is the product of the 
labels of the edges in the path. The polynomial 
computed by a node v is the sum of the weights of all 
paths from s to v. The polynomial computed by B is 
the one computed by the sink node t.  

 Typically, when we talk about an ABP, we mean a 
layered ABP.

Algebraic Branching Programs



 Obs. A layered ABP, with layers V0, …,Vd, can be 
equivalently viewed as a sequence of matrix 
multiplications M1∙M2∙…∙Md, where Mi is a |Vi-1| x 
|Vi|matrix whose entries are affine forms. 

 Example. 

Layered ABP & Matrix Multiplication

s t

x1

x1 + x2

x1 - x2

-x1

x1
x3

1

x1 x3 x1+ x2 -x1

0 1

x1-x2

x1

∙ ∙

=  x1x3 – x1x2
2



 Obs. A layered ABP, with layers V0, …,Vd, can be 
equivalently viewed as a sequence of matrix 
multiplications M1∙M2∙…∙Md, where Mi is a |Vi-1| x 
|Vi|matrix whose entries are affine forms. 

 Corollary.  An n-variate polynomial computable by a 
layered ABP of width w and length d can be computed 
by a circuit of size O(w2nd + w3d) & depth O(log 
w∙log d).  

Layered ABP & Matrix Multiplication



 Definition. An ABP is homogeneous if every node of the 
ABP computes a homogeneous polynomial.

 Obs. Let p be a degree-d homogeneous polynomial 
that is computable by a size-s ABP. Then, p is also 
computable by a homogeneous ABP of size O(ds).

 Proof sketch. For every node v computing f, create 
nodes v0, …, vd that compute f[0], f[1], …, f[d].

 Recall from Lecture 1 that homogenization of circuits 
can also be done efficiently.

Homogenization of ABP



 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class 
VBP if there’s a polynomial function p: N → N s.t. for 
every n ≥ 1, fn has number of variables bounded by 
p(n) and fn is computable by an ABP of size p(n). 

Class VBP



 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class 
VBP if there’s a polynomial function p: N → N s.t. for 
every n ≥ 1, fn has number of variables bounded by 
p(n) and fn is computable by an ABP of size p(n). 

 Why is there no degree restriction in the above 
definition? (unlike the definition of class VP)

 That’s because the degree of the polynomial 
computed by an ABP B is bound by the length of B 
which in turn is bounded by the size of B. 

Class VBP



 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class 
VBP if there’s a polynomial function p: N → N s.t. for 
every n ≥ 1, fn has number of variables bounded by 
p(n) and fn is computable by an ABP of size p(n). 

 It follows from the last corollary that VBP ⊆ VP. 

 Question. Is VBP strictly contained in VP? 

 We do not know.

Class VBP



 Obs. The families IMM, PSym and SP are in VBP. 

 Proof. Easy exercise.

Examples of families in VBP



 Obs. The families IMM, PSym and SP are in VBP. 

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Proof sketch. Csanky’s algorithm gives an ABP of size 
O(n6) for Detn over fields of characteristic 0 or > n. 
Use Equation 1 in Lecture 2: Compute each pi using 
an ABP of size O(n4). Compute the entries of P using 
an ABP of size O(n5). Finally, compute (In + P)-1 using 
an ABP of size O(n6).  (Homework: Fill in the details.) 

Examples of families in VBP



 Obs. The families IMM, PSym and SP are in VBP. 

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Berkowitz’s algorithm gives a poly(n) (O(n18)?) size 
ABP for Detn over any field.

 Mahajan & Vinay (1997) gave an O(n6) size ABP 
computing Detn over any field by proving a 
combinatorial characterization of the determinant.  

Examples of families in VBP



 Obs. The families IMM, PSym and SP are in VBP. 

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Question. Is ESym in VBP? 

 Yes, it is. The depth-3 circuit for ESymn,d gives an ABP 
of size O(n2) and depth n, provided |𝔽| > n.

 The skew circuit construction for ESymn,d gives an 
ABP of size O(nd) over any field.

Examples of families in VBP



 Obs. Skew circuits are essentially ABPs.

 Proof sketch. If a polynomial is computed by an ABP of 
size s then it can also be computed by a skew circuit 
of size O(ns). Conversely, a skew circuit of size s 
computing a polynomial gives an ABP of size O(s) 
computing the same polynomial.  (Homework: Fill in 
the details.)

Skew circuits and ABPs



 Obs. Skew circuits are essentially ABPs.

 Proof sketch. If a polynomial is computed by an ABP of 
size s then it can also be computed by a skew circuit 
of size O(ns). Conversely, a skew circuit of size s 
computing a polynomial gives an ABP of size O(s) 
computing the same polynomial.  (Homework: Fill in 
the details.)

 Thus VBP can be equivalently defined as the class of 
families of polynomials computable by polynomial size 
skew circuits.

Skew circuits and ABPs



Formulas and class VF



 Definition. An arithmetic formula is a circuit whose 
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

Arithmetic formulas
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 Definition. An arithmetic formula is a circuit whose 
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

 Obs. An n-variate polynomial computable by a formula 
of size s can be computed by an ABP of size s.

 Proof sketch. Induct on the size of the formula: If a 
node of the formula computes f1 + f2, attach the ABPs 
computing f1 and f2 in parallel. If a node computes f1∙ 
f2, attach the corresponding ABPs in series.   

Arithmetic formulas



 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class VF 
if there’s a polynomial function p: N → N s.t. for every 
n ≥ 1, fn has number of variables bounded by p(n) and 
fn is computable by a formula of size p(n). 

 Why is there no degree restriction in the above 
definition? (unlike the definition of class VP)

 Obs. A formula of size s computes a polynomial of 
degree at most s. 

 Proof sketch. Can be proved by inducting on size.

Class VF



 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class VF 
if there’s a polynomial function p: N → N s.t. for every 
n ≥ 1, fn has number of variables bounded by p(n) and 
fn is computable by a formula of size p(n). 

 It follows from a previous Obs that VF ⊆ VBP. 

 Question. Is VF strictly contained in VBP? 

 We do not know.

Class VF



 Obs. The families PSym and SP are in VF. 

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields. 

 Proof. Ben-Or’s construction of a depth-3 circuit.

Examples of families in VF



 Obs. The families PSym and SP are in VF. 

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields. 

 Proof. Ben-Or’s construction of a depth-3 circuit.

 Question. Is ESym in VF over any field?

 We do not know.

Examples of families in VF



 Obs. The families PSym and SP are in VF. 

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields. 

 Proof. Ben-Or’s construction of a depth-3 circuit.

 Question. Is ESym in VF over any field?

 We do not know.

 Question. Are the familes Det and IMM in VF?

 We do not know. We’ll see that if yes then VBP = VF.

Examples of families in VF


