

Algebraic Complexity Theory

Lecture 3: Classes VP, VBP and VF

Department of Computer Science, Indian Institute of Science

Recap

• In the last lecture, we saw that Det_n can be computed by a circuit of size $O(n^4)$ and depth $O((\log n)^2)$. We also saw that the <u>inverse</u> of an $n \times n$ matrix can be computed by a (multi-output) circuit of size $O(n^4)$ and depth $O((\log n)^2)$. Also, rank computation is in NC.

Recap

- In the last lecture, we saw that Det_n can be computed by a circuit of size $O(n^4)$ and depth $O((\log n)^2)$. We also saw that the <u>inverse</u> of an $n \times n$ matrix can be computed by a (multi-output) circuit of size $O(n^4)$ and depth $O((\log n)^2)$. Also, rank computation is in NC.
- Polynomial families that are computable by circuits of size poly(n) are captured by the algebraic complexity class VP (which stands for Valiant's P).
- VP is also known as AlgP/poly.

Complexity Class VP

Class VP

- A <u>polynomial family</u> $\mathcal{F} = \{f_n\}_{n\geq 1}$ is a countable set of polynomials over a field \mathbb{F} , i.e., f_n has coefficients in \mathbb{F} .
- Definition. (Valiant '79) A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ such that for every $n \geq 1$, f_n has number of variables as well as <u>degree</u> bounded by p(n) and f_n is computable by a circuit of size p(n).
- W.I.o.g. assume that nodes of a circuit have fan-in bounded by 2 (unless the depth is a constant).

Class VP

- A <u>polynomial family</u> $\mathcal{F} = \{f_n\}_{n\geq 1}$ is a countable set of polynomials over a field \mathbb{F} , i.e., f_n has coefficients in \mathbb{F} .
- Definition. (Valiant '79) A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ such that for every $n \geq 1$, f_n has number of variables as well as <u>degree</u> bounded by p(n) and f_n is computable by a circuit of size p(n).
- Valiant called such a family F p-computable.

Class VP

- A <u>polynomial family</u> $\mathcal{F} = \{f_n\}_{n\geq 1}$ is a countable set of polynomials over a field \mathbb{F} , i.e., f_n has coefficients in \mathbb{F} .
- Definition. (Valiant '79) A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ such that for every $n \geq 1$, f_n has number of variables as well as <u>degree</u> bounded by p(n) and f_n is computable by a circuit of size p(n).
- VP is the algebraic analogue of P/poly.
- Question. Why is there a poly(n) degree bound on f_n ?

• The <u>natural polynomials</u> that we have encountered so $far - Det_n$, $ESym_{n,d}$, $PSym_{n,d} - have degrees bounded by <math>poly(n)$, where n is the number of variables.

- The <u>natural polynomials</u> that we have encountered so far Det_n, $ESym_{n,d}$, $PSym_{n,d}$ have degrees bounded by poly(n), where n is the number of variables.
- Recall from Lecture I that there's a unique multilinear polynomial corresponding to every Boolean function. Thus, for Boolean circuit lower bound, it is necessary to prove arithmetic circuit lower bound computing multilinear polynomials. A multilinear polynomial in n variables has degree ≤ n.

• A circuit of size s can compute a polynomial of degree $2^{O(s)}$. We may not be able to evaluate a circuit efficiently if there's no degree restriction. For e.g., x^{2^s} can be computed a circuit of size O(s). At x=2, x^{2^s} has exponential in s bit complexity.

- A circuit of size s can compute a polynomial of degree $2^{O(s)}$. We may not be able to evaluate a circuit efficiently if there's no degree restriction. For e.g., x^{2^s} can be computed a circuit of size O(s). At x=2, x^{2^s} has exponential in s bit complexity.
- Removal of division gates, homogenization of circuits cannot be done efficiently without a degree bound.

 We shall see later that <u>depth reduction</u> of circuits crucially needs a polynomial bound on degree.

For more on degree restriction for VP families:
 Ref.

https://cstheory.stackexchange.com/questions/19261/degree-restriction-for-polynomials-in-mathsfvp

- Class VP_{nb}: Same as VP but with <u>no bound on degree</u>:
 Refs.
 - "Polynômes et coefficients", PhD Thesis, by Malod,
 (2003)
 - 2. "Interpolation in Valiant's Theory", by Koiran & Perifel (2007)

- It follows from Lecture 2 that $Det = \{Det_n\}_{n\geq 1}$ is in VP.
- Repeated squaring gives a circuit of size $O(n \log d)$ and depth $O(\log nd)$ for $PSym_{n,d} = x_1^d + ... + x_n^d$. So, $PSym = \{PSym_{n,poly(n)}\}_{n\geq 1} \in VP$.

- It follows from Lecture 2 that $Det = \{Det_n\}_{n\geq 1}$ is in VP.
- Repeated squaring gives a circuit of size $O(n \log d)$ and depth $O(\log nd)$ for $PSym_{n,d} = x_1^d + ... + x_n^d$. So, $PSym = \{PSym_{n,poly(n)}\}_{n\geq 1} \in VP$.
- Theorem. (Baur & Strassen '83) Any circuit computing $PSym_{n,d}$ has size $\Omega(n \log d)$.
- Proof. We'll see later.

- It follows from Lecture 2 that $Det = \{Det_n\}_{n\geq 1}$ is in VP.
- Repeated squaring gives a circuit of size $O(n \log d)$ and depth $O(\log nd)$ for $PSym_{n,d} = x_1^d + ... + x_n^d$. So, $PSym = \{PSym_{n,poly(n)}\}_{n\geq 1} \in VP$.
- Also, observe that $PSym_{n,d}$ has a depth-2 circuit of size O(nd).

- It follows from Lecture 2 that $Det = \{Det_n\}_{n\geq 1}$ is in VP.
- Repeated squaring gives a circuit of size $O(n \log d)$ and depth $O(\log nd)$ for $PSym_{n,d} = x_1^d + ... + x_n^d$. So, $PSym = \{PSym_{n,poly(n)}\}_{n\geq 1} \in VP$.
- The <u>sum-product polynomial</u> $SP_{s,d} := \sum_{i \in [s]} \prod_{j \in [d]} x_{i,j}$ has sd variables, degree d, and is computable by a circuit of size O(sd) and depth 2. So, $SP = \{SP_{s,d}\}_{s,d \ge 1}$ is in VP.

• The <u>iterated matrix multiplication</u> polynomial IMM_{w,d} is defined as the (I,I)-th entry of the product of d many w x w symbolic matrices $X_1, ..., X_d$, where $X_i = (x_{i,j,k})_{j,k\in[w]}$. It has $w^2(d-2) + 2w$ variables, degree d, and is computable by a circuit of size $O(w^3d)$ and depth $O(\log w \cdot \log d)$. So, IMM = $\{IMM_{w,d}\}_{w,d\geq 1}$ is in VP.

Divide and conquer

• The <u>iterated matrix multiplication</u> polynomial $IMM_{w,d}$ is defined as the (I,I)-th entry of the product of d many w x w symbolic matrices $X_1, ..., X_d$, where $X_i = (x_{i,j,k})_{j,k\in[w]}$. It has $w^2(d-2) + 2w$ variables, degree d, and is computable by a circuit of size $O(w^3d)$ and depth $O(\log w \cdot \log d)$. So, $IMM = \{IMM_{w,d}\}_{w,d\geq 1}$ is in VP.

• Sometimes, $IMM_{w,d}$ is defined as $tr(X_1 \cdot ... \cdot X_d)$.

• The <u>iterated matrix multiplication</u> polynomial $IMM_{w,d}$ is defined as the (I,I)-th entry of the product of d many w x w symbolic matrices $X_1, ..., X_d$, where $X_i = (x_{i,j,k})_{j,k\in[w]}$. It has $w^2(d-2) + 2w$ variables, degree d, and is computable by a circuit of size $O(w^3d)$ and depth $O(\log w \cdot \log d)$. So, $IMM = \{IMM_{w,d}\}_{w,d\geq 1}$ is in VP.

- Sometimes, $IMM_{w,d}$ is defined as $tr(X_1 \cdot ... \cdot X_d)$.
- Is $\mathsf{ESym} = \{\mathsf{ESym}_{\mathsf{n},\mathsf{d}}\}_{\mathsf{n},\mathsf{d}\geq 1}$ in VP ?

- The <u>iterated matrix multiplication</u> polynomial $IMM_{w,d}$ is defined as the (I,I)-th entry of the product of d many w x w symbolic matrices $X_1, ..., X_d$, where $X_i = (x_{i,j,k})_{j,k\in[w]}$. It has $w^2(d-2) + 2w$ variables, degree d, and is computable by a circuit of size $O(w^3d)$ and depth $O(\log w \cdot \log d)$. So, $IMM = \{IMM_{w,d}\}_{w,d\geq 1}$ is in VP.
- Sometimes, $IMM_{w,d}$ is defined as $tr(X_1 \cdot ... \cdot X_d)$.
- Is $\mathsf{ESym} = \{\mathsf{ESym}_{\mathsf{n},\mathsf{d}}\}_{\mathsf{n},\mathsf{d}\geq \mathsf{I}}$ in VP ? Yes. Let's see why...

Circuits computing ESym

- Theorem. $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\mathsf{char}(\mathbb{F}) = 0$ or d .
- Proof. From Newton-Gerard identities (Lecture 2), and Cramer's rule,

 $ESym_{n,d} = I/d! \cdot det$

Pı	I	0	•••	0
P ₂	Pı	2	•••	0
P ₃	P ₂	Pı		0
•	•	•	••	•
Pd	P _{d-1}	•••	P ₂	Pı

- Theorem. $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\mathsf{char}(\mathbb{F}) = 0$ or d .
- Proof. From Newton-Gerard identities (Lecture 2),
- $\mathsf{ESym}_{\mathsf{n},\mathsf{d}} = \mathsf{I}/\mathsf{d}! \cdot \mathsf{det}(\mathsf{M}).$
- Obs. $p_1,...,p_d$ can be computed by a circuit of size O(nd) and depth O(log nd) (why?).
- Hence, by Csanky's theorem, det(M) can be computed by a circuit of size $O(nd + d^4)$ and depth $O(log nd + (log d)^2)$.

- Theorem. $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\mathsf{char}(\mathbb{F}) = 0$ or d .
- Proof. From Newton-Gerard identities (Lecture 2),
- $\mathsf{ESym}_{\mathsf{n},\mathsf{d}} = \mathsf{I}/\mathsf{d}! \cdot \mathsf{det}(\mathsf{M}).$
- Obs. $p_1,...,p_d$ can be computed by a circuit of size O(nd) and depth O(log nd) (why?).
- Homework. Once $p_1, ..., p_d$ are computed, det(M) can be computed by a circuit of size $O(d^2)$. (Use the special structure of M.)

- Theorem. $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\mathsf{char}(\mathbb{F}) = 0$ or d .
- Proof. From Newton-Gerard identities (Lecture 2),
- $\mathsf{ESym}_{\mathsf{n},\mathsf{d}} = \mathsf{I}/\mathsf{d}! \cdot \mathsf{det}(\mathsf{M}).$
- Obs. $p_1,...,p_d$ can be computed by a circuit of size O(nd) and depth O(log nd) (why?).
- Therefore, $\operatorname{\mathsf{ESym}}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\operatorname{\mathsf{char}}(\mathbb{F}) = 0$ or $\mathsf{>d}$.

- Theorem. $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{nd})$ provided $\mathsf{char}(\mathbb{F}) = 0$ or d .
- The merit of this proof is that it yields a circuit of subquadratic size and low depth if d is small, e.g., if $d = n^{1/3}$, the circuit has size $O(n^{4/3})$ and depth $O((\log n)^2)$.
- Question. What about circuits over fields of low char.?

- Theorem. ESym_{n,d} can be computed by a circuit of size O(nd) over <u>any</u> field.
- Proof. Denote $ESym_{n,k}$ as $e_{n,k}$. Observe that

```
e_{n,k} = e_{n-1,k} + x_n \cdot e_{n-1,k-1}
= e_{n-2,k} + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1}
\vdots
= x_k \cdot e_{k-1,k-1} + x_{k+1} \cdot e_{k,k-1} + \dots + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1}
```

- Theorem. ESym_{n,d} can be computed by a circuit of size O(nd) over <u>any</u> field.
- Proof. Denote $ESym_{n,k}$ as $e_{n,k}$. Observe that

```
e_{n,k} = e_{n-1,k} + x_n \cdot e_{n-1,k-1}
= e_{n-2,k} + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1}
\vdots
= x_k \cdot e_{k-1,k-1} + x_{k+1} \cdot e_{k,k-1} + \dots + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1}
```

• This suggests the following dynamic programming approach: For $k \in [2,d]$, compute $e_{k-1,k-1}, \ldots, e_{n-1,k-1}$; then compute x_k : $e_{k-1,k-1}, \ldots, x_n$: $e_{n-1,k-1}$. From these compute $e_{k,k}, \ldots, e_{n,k}$ using O(n) multiplications and additions.

- Theorem. ESym_{n,d} can be computed by a circuit of size O(nd) over <u>any</u> field.
- Proof. Denote $ESym_{n,k}$ as $e_{n,k}$. Observe that

```
\begin{aligned} e_{n,k} &= e_{n-1,k} + x_n \cdot e_{n-1,k-1} \\ &= e_{n-2,k} + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1} \\ &\vdots \\ &= x_k \cdot e_{k-1,k-1} + x_{k+1} \cdot e_{k,k-1} + \dots + x_{n-1} \cdot e_{n-2,k-1} + x_n \cdot e_{n-1,k-1} \end{aligned}
```

 Thus, we use a total of O(nd) multiplications and additions. However, the depth of the circuit is O(d).
 The construction works over <u>any</u> field.

- Theorem. ESym_{n,d} can be computed by a circuit of size O(nd) over <u>any</u> field.
- Two important features of the circuit are:
- I. It is <u>monotone</u>, i.e., there's no negation, and so, no cancellation of monomials generated in the circuit.
- 2. It is <u>skew</u>, i.e., every × gate has at most one child that is not a leaf node.

- Theorem. $ESym_{n,d}$ can be computed by a <u>monotone</u>, <u>skew</u> circuit of size O(nd) & depth O(d) over <u>any</u> field.
- Two important features of the circuit are:
- I. It is *monotone*, i.e., there's no negation, and so, no cancellation of monomials generated in the circuit.
- 2. It is <u>skew</u>, i.e., every × gate has at most one child that is not a leaf node.

 We'll see later that skew circuits form an important subclass of circuits, namely Algebraic Branching Programs. We'll use ABPs to define the class VBP.

- Theorem. $ESym_{n,d}$ can be computed by a <u>monotone</u>, <u>skew</u> circuit of size O(nd) & depth O(d) over <u>any</u> field.
- Two important features of the circuit are:
- I. It is <u>monotone</u>, i.e., there's no negation, and so, no cancellation of monomials generated in the circuit.
- 2. It is <u>skew</u>, i.e., every × gate has at most one child that is not a leaf node.
- Question. Can $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ be computed by a constant depth circuit (like $\mathsf{PSym}_{\mathsf{n},\mathsf{d}}$)?
- A small depth-2 circuit is not possible as ESym has too many monomials. How about a depth-3 circuit?

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a $\mathsf{depth}\text{-}3$ circuit of size $\mathsf{O}(\mathsf{n}^2)$ provided $|\mathbb{F}| > \mathsf{n}$.
- Proof. Observe that

$$f(\mathbf{x}, y) := (I + x_1 y) \cdot ... \cdot (I + x_n y)$$
$$= I + ESym_{n,1}(\mathbf{x})y + ... + ESym_{n,n}(\mathbf{x})y^n$$

- The idea is to use polynomial interpolation.
- Let $\alpha_1, ..., \alpha_{n+1}$ be distinct elements of \mathbb{F} , and V be the Vandermonde matrix $(\alpha_i^j)_{i \in [n+1], j \in [0,n]}$.

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a $\mathsf{depth}\text{-3}$ circuit of size $\mathsf{O}(\mathsf{n}^2)$ provided $|\mathbb{F}| > \mathsf{n}$.
- Proof. Then,

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a $\mathsf{depth}\text{-3}$ circuit of size $\mathsf{O}(\mathsf{n}^2)$ provided $|\mathbb{F}| > \mathsf{n}$.
- Proof. Thus,

$$\mathsf{ESym}_{\mathsf{n},\mathsf{d}} = \beta_{\mathsf{d},\mathsf{I}}\mathsf{f}(\mathbf{x},\alpha_{\mathsf{I}}) + \ldots + \beta_{\mathsf{d},\mathsf{n+I}}\mathsf{f}(\mathbf{x},\alpha_{\mathsf{n+I}}).$$

- $\beta_{d,1}, ..., \beta_{d,n+1}$ are \mathbb{F} -constants dependent only on $\alpha_1, ..., \alpha_{n+1}$.
- The above expression gives a depth-3 circuit of size $O(n^2)$ and top fan-in n+1 for $ESym_{n,d}$ for every d.

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a $\mathsf{depth}\text{-3}$ circuit of size $\mathsf{O}(\mathsf{n}^2)$ provided $|\mathbb{F}| > \mathsf{n}$.
- Question. Does ESym_{n,d} have a depth-3 circuit of size poly(n) over <u>fixed</u> finite fields for every d?

Depth-3 circuits computing ESym

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a $\mathsf{depth}\text{-}3$ circuit of size $\mathsf{O}(\mathsf{n}^2)$ provided $|\mathbb{F}| > \mathsf{n}$.
- Question. Does ESym_{n,d} have a depth-3 circuit of size poly(n) over <u>fixed</u> finite fields for every d? No!
- Can be proved using methods by Grigoriev & Karpinski (1998) and Grigoriev & Razborov (1998).

• Ref. See Theorem 10.2 in the survey https://github.com/dasarpmar/lowerbounds-survey/releases/download/v9.0.3/fancymain.pdf

Depth-3 circuits computing ESym

- Theorem. (Ben-Or) $ESym_{n,d}$ can be computed by a depth-3 circuit of size $O(n^2)$ provided $|\mathbb{F}| > n$.
- Question. Does ESym_{n,d} have a depth-3 circuit of size poly(n) over <u>fixed</u> finite fields for every d? No!
- Question. Does ESym_{n,d} have a <u>constant depth</u> circuit of size poly(n) over <u>fixed</u> finite fields?
- We do not know.

Almost linear size circuit for ESym

- Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{n}(\log \mathsf{d})^2)$ over complex numbers.
- The proof uses Fast Fourier Transform (FFT) for polynomial multiplication.
- Ref. See the first answer to the post https://cstheory.stackexchange.com/questions/33503/monotone-arithmetic-circuit-complexity-of-elementary-symmetric-polynomials

Almost linear size circuit for ESym

• Theorem. (Ben-Or) $\mathsf{ESym}_{\mathsf{n},\mathsf{d}}$ can be computed by a circuit of size $\mathsf{O}(\mathsf{n}(\log \mathsf{d})^2)$ over complex numbers.

• Theorem. (Baur & Strassen '83) Any circuit computing $ESym_{n,n/2}$ has size $\Omega(n \log n)$.

ABPs and class VBP

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in $x_1, ..., x_n$ variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

The <u>size</u> of B is the number of edges in it.

The <u>length</u> of B is the length of the longest path from s to t.

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

The <u>size</u> of B is the number of edges in it.

The <u>length</u> of B is the length of the longest path from s to t. (Obs. The polynomial computed by B has degree at most the length of B.)

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

An ABP B is <u>layered</u> if the nodes can be partitioned into layers $V_0, ..., V_d$, with $V_0 = \{s\}$ and $V_d = \{t\}$, such that every edge is incident between a node in V_i and a node in V_{i+1} for some $i \in [0,d-1]$.

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

The <u>width</u> of a layered ABP B with layers $V_0, ..., V_d$ is $\max_i\{|V_i|\}$.

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

Obs. The polynomial computed by a layered ABP B with layers $V_0, ..., V_d$ has degree at most d.

• Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.

The layered ABP in the figure computes $x_1x_3 - x_1x_2^2$. Its size is 7 and length is 3.

- Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.
- Obs. An ABP of size s and length d can be converted to a layered ABP of size at most sd (simply by splitting an edge into at most d edges).

- Definition. An <u>algebraic branching program</u> (ABP) B is a directed acyclic graph with a source node s and a sink node t. The edges are labelled by <u>affine forms</u> in x₁, ..., x_n variables. The <u>weight</u> of a path is the product of the labels of the edges in the path. The polynomial computed by a node v is the <u>sum of the weights</u> of all paths from s to v. The polynomial computed by B is the one computed by the sink node t.
- Typically, when we talk about an ABP, we mean a layered ABP.

Layered ABP & Matrix Multiplication

• Obs. A layered ABP, with layers $V_0, ..., V_d$, can be equivalently viewed as a sequence of matrix <u>multiplications</u> $M_1 \cdot M_2 \cdot ... \cdot M_d$, where M_i is a $|V_{i-1}| \times M_d$ |V_i|matrix whose entries are affine forms.

Example.

Χ _I	X ₃	•	$x_1 + x_2$	-x ₁
		•		

$x_1 + x_2$	-x ₁
0	1

$$= x_1 x_3 - x_1 x_2^2$$

Layered ABP & Matrix Multiplication

- Obs. A layered ABP, with layers V_0 , ..., V_d , can be **equivalently** viewed as a <u>sequence</u> of <u>matrix</u> <u>multiplications</u> $M_1 \cdot M_2 \cdot ... \cdot M_d$, where M_i is a $|V_{i-1}| \times |V_i|$ matrix whose entries are affine forms.
- Corollary. An n-variate polynomial computable by a layered ABP of width w and length d can be computed by a circuit of size O(w²nd + w³d) & depth O(log w·log d).

Homogenization of ABP

- Definition. An ABP is <u>homogeneous</u> if every node of the ABP computes a homogeneous polynomial.
- Obs. Let p be a degree-d homogeneous polynomial that is computable by a size-s ABP. Then, p is also computable by a homogeneous ABP of size O(ds).
- *Proof sketch*. For every node v computing f, create nodes $v_0, ..., v_d$ that compute $f^{[0]}, f^{[1]}, ..., f^{[d]}$.
- Recall from Lecture | that homogenization of circuits can also be done efficiently.

Class VBP

• Definition. A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VBP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ s.t. for every $n \geq 1$, f_n has number of variables bounded by p(n) and f_n is computable by an ABP of size p(n).

Class VBP

- Definition. A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VBP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ s.t. for every $n \geq 1$, f_n has number of variables bounded by p(n) and f_n is computable by an ABP of size p(n).
- Why is there no degree restriction in the above definition? (unlike the definition of class VP)
- That's because the degree of the polynomial computed by an ABP B is bound by the length of B which in turn is bounded by the size of B.

Class VBP

- Definition. A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VBP if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ s.t. for every $n \geq 1$, f_n has number of variables bounded by p(n) and f_n is computable by an ABP of size p(n).
- It follows from the last corollary that $VBP \subseteq VP$.

- Question. Is VBP strictly contained in VP?
- We do not know.

- Obs. The families IMM, PSym and SP are in VBP.
- Proof. Easy exercise.

- Obs. The families IMM, PSym and SP are in VBP.
- Proof. Easy exercise.
- Theorem. Det is in VBP.
- Proof sketch. Csanky's algorithm gives an ABP of size $O(n^6)$ for Det_n over fields of characteristic 0 or > n. Use Equation 1 in Lecture 2: Compute each p_i using an ABP of size $O(n^4)$. Compute the entries of P using an ABP of size $O(n^5)$. Finally, compute $(I_n + P)^{-1}$ using an ABP of size $O(n^6)$. (Homework: Fill in the details.)

- Obs. The families IMM, PSym and SP are in VBP.
- Proof. Easy exercise.
- Theorem. Det is in VBP.
- Berkowitz's algorithm gives a poly(n) ($O(n^{18})$?) size ABP for Det_n over any field.
- Mahajan & Vinay (1997) gave an $O(n^6)$ size ABP computing Det_n over any field by proving a combinatorial characterization of the determinant.

- Obs. The families IMM, PSym and SP are in VBP.
- Proof. Easy exercise.

Theorem. Det is in VBP.

- Question. Is ESym in VBP?
- Yes, it is. The depth-3 circuit for $ESym_{n,d}$ gives an ABP of size $O(n^2)$ and depth n, provided $|\mathbb{F}| > n$.
- The skew circuit construction for $ESym_{n,d}$ gives an ABP of size O(nd) over any field.

Skew circuits and ABPs

- Obs. Skew circuits are <u>essentially</u> ABPs.
- Proof sketch. If a polynomial is computed by an ABP of size s then it can also be computed by a skew circuit of size O(ns). Conversely, a skew circuit of size s computing a polynomial gives an ABP of size O(s) computing the same polynomial. (Homework: Fill in the details.)

Skew circuits and ABPs

- Obs. Skew circuits are <u>essentially</u> ABPs.
- Proof sketch. If a polynomial is computed by an ABP of size s then it can also be computed by a skew circuit of size O(ns). Conversely, a skew circuit of size s computing a polynomial gives an ABP of size O(s) computing the same polynomial. (Homework: Fill in the details.)
- Thus VBP can be equivalently defined as the class of families of polynomials computable by polynomial size skew circuits.

Formulas and class VF

Arithmetic formulas

 Definition. An arithmetic formula is a circuit whose underlying graph is a <u>tree</u>. In other words, the outdegree of every node is at most one in a formula.

Arithmetic formulas

- Definition. An arithmetic formula is a circuit whose underlying graph is a tree. In other words, the outdegree of every node is at most one in a formula.
- Obs. An n-variate polynomial computable by a formula of size s can be computed by an ABP of size s.
- *Proof sketch*. Induct on the size of the formula: If a node of the formula computes $f_1 + f_2$, attach the ABPs computing f_1 and f_2 in parallel. If a node computes f_1 f₂, attach the corresponding ABPs in series.

Class VF

- Definition. A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VF if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ s.t. for every $n \geq 1$, f_n has number of variables bounded by p(n) and f_n is computable by a formula of size p(n).
- Why is there no degree restriction in the above definition? (unlike the definition of class VP)
- Obs. A formula of size s computes a polynomial of degree at most s.
- Proof sketch. Can be proved by inducting on size.

Class VF

- Definition. A polynomial family $\mathcal{F} = \{f_n\}_{n\geq 1}$ is in class VF if there's a polynomial function $p: \mathbb{N} \to \mathbb{N}$ s.t. for every $n \geq 1$, f_n has number of variables bounded by p(n) and f_n is computable by a formula of size p(n).
- It follows from a previous Obs that $VF \subseteq VBP$.

- Question. Is VF strictly contained in VBP?
- We do not know.

- Obs. The families PSym and SP are in VF.
- Proof. Easy exercise.
- Obs. The family ESym is in VF over infinite fields.
- Proof. Ben-Or's construction of a depth-3 circuit.

- Obs. The families PSym and SP are in VF.
- Proof. Easy exercise.
- Obs. The family ESym is in VF over infinite fields.
- Proof. Ben-Or's construction of a depth-3 circuit.
- Question. Is ESym in VF over any field?
- We do not know.

- Obs. The families PSym and SP are in VF.
- Proof. Easy exercise.
- Obs. The family ESym is in VF over infinite fields.
- Proof. Ben-Or's construction of a depth-3 circuit.
- Question. Is ESym in VF over any field?
- We do not know.

- Question. Are the familes Det and IMM in VF?
- We do not know. We'll see that if yes then $\bigvee BP = \bigvee F$.