
Algebraic Complexity Theory

Lecture 3: Classes VP, VBP and VF

Department of Computer Science,
Indian Institute of Science

Recap

 In the last lecture, we saw that Detn can be computed
by a circuit of size O(n4) and depth O((log n)2). We
also saw that the inverse of an n x n matrix can be
computed by a (multi-output) circuit of size O(n4) and
depth O((log n)2). Also, rank computation is in NC.

Recap

 In the last lecture, we saw that Detn can be computed
by a circuit of size O(n4) and depth O((log n)2). We
also saw that the inverse of an n x n matrix can be
computed by a (multi-output) circuit of size O(n4) and
depth O((log n)2). Also, rank computation is in NC.

 Polynomial families that are computable by circuits of
size poly(n) are captured by the algebraic complexity
class VP (which stands for Valiant’s P).

 VP is also known as AlgP/poly.

Complexity Class VP

Class VP

 A polynomial family 𝓕 = {fn}n≥1 is a countable set of
polynomials over a field 𝔽, i.e., fn has coefficients in 𝔽.

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1
is in class VP if there’s a polynomial function p: N → N
such that for every n ≥ 1, fn has number of variables as
well as degree bounded by p(n) and fn is computable
by a circuit of size p(n).

 W.l.o.g. assume that nodes of a circuit have fan-in
bounded by 2 (unless the depth is a constant).

Class VP

 A polynomial family 𝓕 = {fn}n≥1 is a countable set of
polynomials over a field 𝔽, i.e., fn has coefficients in 𝔽.

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1
is in class VP if there’s a polynomial function p: N → N
such that for every n ≥ 1, fn has number of variables as
well as degree bounded by p(n) and fn is computable
by a circuit of size p(n).

 Valiant called such a family 𝓕 p-computable.

Class VP

 A polynomial family 𝓕 = {fn}n≥1 is a countable set of
polynomials over a field 𝔽, i.e., fn has coefficients in 𝔽.

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1
is in class VP if there’s a polynomial function p: N → N
such that for every n ≥ 1, fn has number of variables as
well as degree bounded by p(n) and fn is computable
by a circuit of size p(n).

 VP is the algebraic analogue of P/poly.

 Question. Why is there a poly(n) degree bound on fn?

Degree restriction for VP families

 The natural polynomials that we have encountered so
far – Detn, ESymn,d, PSymn,d – have degrees bounded
by poly(n), where n is the number of variables.

Degree restriction for VP families

 The natural polynomials that we have encountered so
far – Detn, ESymn,d, PSymn,d – have degrees bounded
by poly(n), where n is the number of variables.

 Recall from Lecture 1 that there’s a unique multilinear
polynomial corresponding to every Boolean function.
Thus, for Boolean circuit lower bound, it is necessary
to prove arithmetic circuit lower bound computing
multilinear polynomials. A multilinear polynomial in n
variables has degree ≤ n.

Degree restriction for VP families

 A circuit of size s can compute a polynomial of degree
2O(s). We may not be able to evaluate a circuit
efficiently if there’s no degree restriction. For e.g., x2
can be computed a circuit of size O(s). At x=2, x2 has
exponential in s bit complexity.

s

s

Degree restriction for VP families

 A circuit of size s can compute a polynomial of degree
2O(s). We may not be able to evaluate a circuit
efficiently if there’s no degree restriction. For e.g., x2
can be computed a circuit of size O(s). At x=2, x2 has
exponential in s bit complexity.

 Removal of division gates, homogenization of circuits
cannot be done efficiently without a degree bound.

 We shall see later that depth reduction of circuits
crucially needs a polynomial bound on degree.

s

s

Degree restriction for VP families

 For more on degree restriction for VP families:

Ref.
https://cstheory.stackexchange.com/questions/19261/degr
ee-restriction-for-polynomials-in-mathsfvp

 Class VPnb: Same as VP but with no bound on degree :

Refs.

1. “Polynômes et coefficients”, PhD Thesis, by Malod,
(2003)

2. “Interpolation in Valiant’s Theory”, by Koiran & Perifel
(2007)

Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So,

PSym = {PSymn,poly(n)}n≥1∈VP.

Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So,

PSym = {PSymn,poly(n)}n≥1∈VP.

 Theorem. (Baur & Strassen ’83) Any circuit computing
PSymn,d has size 𝛺(n log d).

 Proof. We’ll see later.

Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So,

PSym = {PSymn,poly(n)}n≥1∈VP.

 Also, observe that PSymn,d has a depth-2 circuit of size
O(nd).

Examples of families in VP

 It follows from Lecture 2 that Det = {Detn}n≥1 is in VP.

 Repeated squaring gives a circuit of size O(n log d)
and depth O(log nd) for PSymn,d = x1

d +…+ xn
d. So,

PSym = {PSymn,poly(n)}n≥1∈VP.

 The sum-product polynomial SPs,d := ∑i∈[s] ∏j∈[d] xi,j has
sd variables, degree d, and is computable by a circuit
of size O(sd) and depth 2. So, SP = {SPs,d}s,d≥1 is in VP.

Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is
defined as the (1,1)-th entry of the product of d many
w x w symbolic matrices X1, …, Xd, where Xi =
(xi,j,k)j,k∈[w]. It has w2(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w3d) and
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

Divide and conquer

Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is
defined as the (1,1)-th entry of the product of d many
w x w symbolic matrices X1, …, Xd, where Xi =
(xi,j,k)j,k∈[w]. It has w2(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w3d) and
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

 Sometimes, IMMw,d is defined as tr(X1∙…∙Xd).

Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is
defined as the (1,1)-th entry of the product of d many
w x w symbolic matrices X1, …, Xd, where Xi =
(xi,j,k)j,k∈[w]. It has w2(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w3d) and
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

 Sometimes, IMMw,d is defined as tr(X1∙…∙Xd).

 Is ESym = {ESymn,d}n,d≥1 in VP?

Examples of families in VP

 The iterated matrix multiplication polynomial IMMw,d is
defined as the (1,1)-th entry of the product of d many
w x w symbolic matrices X1, …, Xd, where Xi =
(xi,j,k)j,k∈[w]. It has w2(d-2) + 2w variables, degree d,
and is computable by a circuit of size O(w3d) and
depth O(log w∙log d). So, IMM = {IMMw,d}w,d≥1 is in VP.

 Sometimes, IMMw,d is defined as tr(X1∙…∙Xd).

 Is ESym = {ESymn,d}n,d≥1 in VP? Yes. Let’s see why…

Circuits computing ESym

Circuits for ESym over char 0 fields

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2), and
Cramer’s rule,

 ESymn,d = 1/d! ∙ det

p1 1 0 ⋯ 0

p2 p1 2 ⋯ 0

p3 p2 p1
⋯ 0⋮ ⋮ ⋮ ⋱ ⋮

pd pd-1 ⋯ p2 p1

M

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d = 1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

 Hence, by Csanky’s theorem, det(M) can be computed
by a circuit of size O(nd + d4) and depth O(log nd +
(log d)2).

Circuits for ESym over char 0 fields

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d = 1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

 Homework. Once p1,…,pd are computed, det(M) can
be computed by a circuit of size O(d2). (Use the
special structure of M.)

Circuits for ESym over char 0 fields

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) provided char(𝔽) = 0 or > d.

 Proof. From Newton-Gerard identities (Lecture 2),

 ESymn,d = 1/d! ∙ det(M).

 Obs. p1,…,pd can be computed by a circuit of size
O(nd) and depth O(log nd) (why?).

 Therefore, ESymn,d can be computed by a circuit of
size O(nd) provided char(𝔽) = 0 or > d.

Circuits for ESym over char 0 fields

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) provided char(𝔽) = 0 or > d.

 The merit of this proof is that it yields a circuit of
subquadratic size and low depth if d is small, e.g., if d =
n1/3, the circuit has size O(n4/3) and depth O((log n)2).

 Question. What about circuits over fields of low char.?

Circuits for ESym over char 0 fields

Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that

 en,k = en-1,k + xn∙ en-1,k-1

 = en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 = xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that

 en,k = en-1,k + xn∙ en-1,k-1

 = en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 = xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 This suggests the following dynamic programming
approach: For k∈[2,d], compute ek-1,k-1, …, en-1,k-1; then
compute xk∙ ek-1,k-1, …, xn∙ en-1,k-1. From these compute
ek,k, …, en,k using O(n) multiplications and additions.

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) over any field.

 Proof. Denote ESymn,k as en,k. Observe that

 en,k = en-1,k + xn∙ en-1,k-1

 = en-2,k + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 ⋮
 = xk∙ ek-1,k-1 + xk+1∙ ek,k-1 + … + xn-1∙ en-2,k-1 + xn∙ en-1,k-1

 Thus, we use a total of O(nd) multiplications and
additions. However, the depth of the circuit is O(d).
The construction works over any field.

Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a circuit of size
O(nd) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that
is not a leaf node.

Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a monotone,
skew circuit of size O(nd) & depth O(d) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that
is not a leaf node.

 We’ll see later that skew circuits form an important
subclass of circuits, namely Algebraic Branching
Programs. We’ll use ABPs to define the class VBP.

Circuits for ESym over any field

 Theorem. ESymn,d can be computed by a monotone,
skew circuit of size O(nd) & depth O(d) over any field.

 Two important features of the circuit are:

1. It is monotone, i.e., there’s no negation, and so, no
cancellation of monomials generated in the circuit.

2. It is skew, i.e., every × gate has at most one child that
is not a leaf node.

 Question. Can ESymn,d be computed by a constant
depth circuit (like PSymn,d)?

 A small depth-2 circuit is not possible as ESym has
too many monomials. How about a depth-3 circuit?

Circuits for ESym over any field

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof. Observe that

 f(x, y) := (1+x1y) ∙…∙ (1+xny)

 = 1 + ESymn,1(x)y + … + ESymn,n(x)yn

 The idea is to use polynomial interpolation.

 Let 𝛼1, …, 𝛼n+1 be distinct elements of 𝔽, and V be the
Vandermonde matrix (𝛼i

j)i∈[n+1], j∈[0,n] .

Depth-3 circuits computing ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof. Then,

Depth-3 circuits computing ESym

1

ESymn,1

ESymn,2⋮
ESymn,n

f(x, 𝛼1)

f(x, 𝛼2)

f(x, 𝛼3)⋮
f(x, 𝛼n+1)

= V-1 ∙

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Proof. Thus,

 ESymn,d = 𝛽d,1f(x, 𝛼1) + … + 𝛽d,n+1f(x, 𝛼n+1).

 𝛽d,1, …, 𝛽d,n+1 are 𝔽-constants dependent only on 𝛼1,
…, 𝛼n+1.

 The above expression gives a depth-3 circuit of size
O(n2) and top fan-in n+1 for ESymn,d for every d.

Depth-3 circuits computing ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size
poly(n) over fixed finite fields for every d?

Depth-3 circuits computing ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size
poly(n) over fixed finite fields for every d? No!

 Can be proved using methods by Grigoriev & Karpinski
(1998) and Grigoriev & Razborov (1998).

 Ref. See Theorem 10.2 in the survey
https://github.com/dasarpmar/lowerbounds-
survey/releases/download/v9.0.3/fancymain.pdf

Depth-3 circuits computing ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
depth-3 circuit of size O(n2) provided |𝔽| > n.

 Question. Does ESymn,d have a depth-3 circuit of size
poly(n) over fixed finite fields for every d? No!

 Question. Does ESymn,d have a constant depth circuit
of size poly(n) over fixed finite fields?

 We do not know.

Depth-3 circuits computing ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
circuit of size O(n(log d)2) over complex numbers.

 The proof uses Fast Fourier Transform (FFT) for
polynomial multiplication.

 Ref. See the first answer to the post
https://cstheory.stackexchange.com/questions/33503/mon
otone-arithmetic-circuit-complexity-of-elementary-
symmetric-polynomials

Almost linear size circuit for ESym

 Theorem. (Ben-Or) ESymn,d can be computed by a
circuit of size O(n(log d)2) over complex numbers.

 Theorem. (Baur & Strassen ‘83) Any circuit computing
ESymn,n/2 has size 𝛺(n log n).

Almost linear size circuit for ESym

ABPs and class VBP

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 The size of B is the number of edges in it.

 The length of B is the length of the longest path
from s to t.

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 The size of B is the number of edges in it.

 The length of B is the length of the longest path
from s to t. (Obs. The polynomial computed by B has
degree at most the length of B.)

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 An ABP B is layered if the nodes can be partitioned
into layers V0, …,Vd, with V0 = {s} and Vd = {t}, such
that every edge is incident between a node in Vi and a
node in Vi+1 for some i∈[0,d-1].

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 The width of a layered ABP B with layers V0, …,Vd
is maxi{|Vi|}.

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

Obs. The polynomial computed by a layered ABP B
with layers V0, …,Vd has degree at most d.

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

Algebraic Branching Programs

s t

x1

x1 + x2

x1 - x2

-x1

x1
x3

1

The layered ABP
in the figure
computes x1x3 –
x1x2

2. Its size is 7
and length is 3.

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 Obs. An ABP of size s and length d can be converted
to a layered ABP of size at most sd (simply by splitting
an edge into at most d edges).

Algebraic Branching Programs

 Definition. An algebraic branching program (ABP) B is a
directed acyclic graph with a source node s and a sink
node t. The edges are labelled by affine forms in x1, …,
xn variables. The weight of a path is the product of the
labels of the edges in the path. The polynomial
computed by a node v is the sum of the weights of all
paths from s to v. The polynomial computed by B is
the one computed by the sink node t.

 Typically, when we talk about an ABP, we mean a
layered ABP.

Algebraic Branching Programs

 Obs. A layered ABP, with layers V0, …,Vd, can be
equivalently viewed as a sequence of matrix
multiplications M1∙M2∙…∙Md, where Mi is a |Vi-1| x
|Vi|matrix whose entries are affine forms.

 Example.

Layered ABP & Matrix Multiplication

s t

x1

x1 + x2

x1 - x2

-x1

x1
x3

1

x1 x3 x1+ x2 -x1

0 1

x1-x2

x1

∙ ∙

= x1x3 – x1x2
2

 Obs. A layered ABP, with layers V0, …,Vd, can be
equivalently viewed as a sequence of matrix
multiplications M1∙M2∙…∙Md, where Mi is a |Vi-1| x
|Vi|matrix whose entries are affine forms.

 Corollary. An n-variate polynomial computable by a
layered ABP of width w and length d can be computed
by a circuit of size O(w2nd + w3d) & depth O(log
w∙log d).

Layered ABP & Matrix Multiplication

 Definition. An ABP is homogeneous if every node of the
ABP computes a homogeneous polynomial.

 Obs. Let p be a degree-d homogeneous polynomial
that is computable by a size-s ABP. Then, p is also
computable by a homogeneous ABP of size O(ds).

 Proof sketch. For every node v computing f, create
nodes v0, …, vd that compute f[0], f[1], …, f[d].

 Recall from Lecture 1 that homogenization of circuits
can also be done efficiently.

Homogenization of ABP

 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class
VBP if there’s a polynomial function p: N → N s.t. for
every n ≥ 1, fn has number of variables bounded by
p(n) and fn is computable by an ABP of size p(n).

Class VBP

 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class
VBP if there’s a polynomial function p: N → N s.t. for
every n ≥ 1, fn has number of variables bounded by
p(n) and fn is computable by an ABP of size p(n).

 Why is there no degree restriction in the above
definition? (unlike the definition of class VP)

 That’s because the degree of the polynomial
computed by an ABP B is bound by the length of B
which in turn is bounded by the size of B.

Class VBP

 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class
VBP if there’s a polynomial function p: N → N s.t. for
every n ≥ 1, fn has number of variables bounded by
p(n) and fn is computable by an ABP of size p(n).

 It follows from the last corollary that VBP ⊆ VP.

 Question. Is VBP strictly contained in VP?

 We do not know.

Class VBP

 Obs. The families IMM, PSym and SP are in VBP.

 Proof. Easy exercise.

Examples of families in VBP

 Obs. The families IMM, PSym and SP are in VBP.

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Proof sketch. Csanky’s algorithm gives an ABP of size
O(n6) for Detn over fields of characteristic 0 or > n.
Use Equation 1 in Lecture 2: Compute each pi using
an ABP of size O(n4). Compute the entries of P using
an ABP of size O(n5). Finally, compute (In + P)-1 using
an ABP of size O(n6). (Homework: Fill in the details.)

Examples of families in VBP

 Obs. The families IMM, PSym and SP are in VBP.

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Berkowitz’s algorithm gives a poly(n) (O(n18)?) size
ABP for Detn over any field.

 Mahajan & Vinay (1997) gave an O(n6) size ABP
computing Detn over any field by proving a
combinatorial characterization of the determinant.

Examples of families in VBP

 Obs. The families IMM, PSym and SP are in VBP.

 Proof. Easy exercise.

 Theorem. Det is in VBP.

 Question. Is ESym in VBP?

 Yes, it is. The depth-3 circuit for ESymn,d gives an ABP
of size O(n2) and depth n, provided |𝔽| > n.

 The skew circuit construction for ESymn,d gives an
ABP of size O(nd) over any field.

Examples of families in VBP

 Obs. Skew circuits are essentially ABPs.

 Proof sketch. If a polynomial is computed by an ABP of
size s then it can also be computed by a skew circuit
of size O(ns). Conversely, a skew circuit of size s
computing a polynomial gives an ABP of size O(s)
computing the same polynomial. (Homework: Fill in
the details.)

Skew circuits and ABPs

 Obs. Skew circuits are essentially ABPs.

 Proof sketch. If a polynomial is computed by an ABP of
size s then it can also be computed by a skew circuit
of size O(ns). Conversely, a skew circuit of size s
computing a polynomial gives an ABP of size O(s)
computing the same polynomial. (Homework: Fill in
the details.)

 Thus VBP can be equivalently defined as the class of
families of polynomials computable by polynomial size
skew circuits.

Skew circuits and ABPs

Formulas and class VF

 Definition. An arithmetic formula is a circuit whose
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

Arithmetic formulas

+

xx

x2 x3 x1
x1

3

3x2x3 + x1
2

Size = 7
Depth = 2

 Definition. An arithmetic formula is a circuit whose
underlying graph is a tree. In other words, the out-
degree of every node is at most one in a formula.

 Obs. An n-variate polynomial computable by a formula
of size s can be computed by an ABP of size s.

 Proof sketch. Induct on the size of the formula: If a
node of the formula computes f1 + f2, attach the ABPs
computing f1 and f2 in parallel. If a node computes f1∙
f2, attach the corresponding ABPs in series.

Arithmetic formulas

 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class VF
if there’s a polynomial function p: N → N s.t. for every
n ≥ 1, fn has number of variables bounded by p(n) and
fn is computable by a formula of size p(n).

 Why is there no degree restriction in the above
definition? (unlike the definition of class VP)

 Obs. A formula of size s computes a polynomial of
degree at most s.

 Proof sketch. Can be proved by inducting on size.

Class VF

 Definition. A polynomial family 𝓕 = {fn}n≥1 is in class VF
if there’s a polynomial function p: N → N s.t. for every
n ≥ 1, fn has number of variables bounded by p(n) and
fn is computable by a formula of size p(n).

 It follows from a previous Obs that VF ⊆ VBP.

 Question. Is VF strictly contained in VBP?

 We do not know.

Class VF

 Obs. The families PSym and SP are in VF.

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields.

 Proof. Ben-Or’s construction of a depth-3 circuit.

Examples of families in VF

 Obs. The families PSym and SP are in VF.

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields.

 Proof. Ben-Or’s construction of a depth-3 circuit.

 Question. Is ESym in VF over any field?

 We do not know.

Examples of families in VF

 Obs. The families PSym and SP are in VF.

 Proof. Easy exercise.

 Obs. The family ESym is in VF over infinite fields.

 Proof. Ben-Or’s construction of a depth-3 circuit.

 Question. Is ESym in VF over any field?

 We do not know.

 Question. Are the familes Det and IMM in VF?

 We do not know. We’ll see that if yes then VBP = VF.

Examples of families in VF

