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Recap

* In the last lecture, we defined the complexity classes
VE VBP and VF, and observed that VF € VBP C VP,

* We saw that the polynomial families Det, IMM and
ESym are in VBF. Also, SP and PSym are in VF and
ESym too (over sufficiently large fields).



Recap

* In the last lecture, we defined the complexity classes
VFE VBP and VF and observed that VF € VBP € VP.

* We saw that the polynomial families Det, IMM and
ESym are in VBF. Also, SP and PSym are in VF and
ESym too (over sufficiently large fields).

 In today’s lecture, we’ll introduce an algebraic notion
of reduction and use it to define “complete” families
of polynomials for the abovementioned classes. We'll
also define the class VNP — the algebraic analog of NP.



Reductions and Completeness



Few words on reductions

* As to how we define a reduction from one polynomial
family to another is guided by a guestion on whether
two algebraic complexity classes are different or identical.

e The relevant questions in this context are whether or
not VF_equals VBP and VBP equals VP,

* Reductions help us define complete families (i.e., the
‘hardest’ families in a class) which in turn help us
compare the complexity classes under consideration.



Projections and affine projections

e Definition. A polynomial f(x,,..., x) is a projection of
another polynomial g(y,..., vy,) if f = g(z,..., z.),
where every z. € {x,,...,x_}UIF. fis an dffine projection
of g if f = g(Ax + b), where AEF™", belF™ & x =

{X5..., X }.

* Projections are special kind of affine projections.

e Eg, x,2 — x,2 - | is a projection of y,2 — y,2 + vy,
whereas 4xx, is an affine projection of y 2 — y,% + y5°.



p-projections and complete families

e The reduction that is typically studied in algebraic
complexity is given by p-projections.

o A polynomial family {f } . is a p-projection
of another family {g_} ., if there’s a polynomial
function p: N — N such that f_is a projection of g ..

o Let C be the class VP or VBP or VE If a family F is
a p-projection of another family G € C,then F € C.



p-projections and complete families

e The reduction that is typically studied in algebraic
complexity is given by p-projections.

o Definition. A polynomial family {f } ., is a p-projection
of another family {g_} ., if there’s a polynomial
function p: N — N such that f_is a projection of g ..

o Definition. Let C be the class VP or VBP or VFE. A family
G is C-complete if G € C and every F € C is a p-
projection of G.




VBP-complete families

e Obs.IMM is VBP-complete.

* Proof. Easy exercise.



VBP-complete families

e Obs.IMM is VBP-complete.
* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.



VBP-complete families

e Obs.IMM is VBP-complete.

* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.

* Proof sketch. The underlying weighted DAG of IMM_
has w(d-1)+2 nodes with source s and sink t. Modify
this graph as follows: Put a self-loop on every node
other than s and t and give it weight |.



VBP-complete families

e Obs.IMM is VBP-complete.
* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.

* Proof sketch. The underlying weighted DAG of IMM_
has w(d-1)+2 nodes with source s and sink t. Modify
this graph as follows: Add an edge from t to s and give
it weight | if d is even, else give weight -1.



VBP-complete families

e Obs.IMM is VBP-complete.
* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.

e Proof sketch. Let A be the adjacency matrix of the
resulting weighted graph G. Obs. IMM = det(A). Why?

e The answer lies in the graph theoretic interpretation
of the determinant.




Graph theoretic interpretation of Det

* Let A = (3));;c- Then, det(A) = ) sign(o) [] a 4 -

oES, i€[r]

* Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, ]) in G has weight a;.

e Every permutation o: [r]— [r] can be expressed
(uniquely) as a product of disjoint cycles.
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Graph theoretic interpretation of Det

* Let A = (3));;c- Then, det(A) = ) sign(o) [] a 4 -

oES, i€[r]

* Let G be the weighted digraph on r vertices with
adjacency matrix A, i.e., the edge (i, ]) in G has weight a;.

e Let b be number of transpositions (swaps) that define o©.
Then sign(o) := (-1)°. The o below has sign | as it is
defined by an even no. of transpositions.

| 23 4 /l\
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Graph theoretic interpretation of Det

° A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly |, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

» Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.




Graph theoretic interpretation of Det

° A cycle cover of a digraph G is a subgraph of
G having in-degree and out-degree of every vertex
exactly |, i.e., the subgraph is a disjoint union of cycles
covering all the vertices of G.

» Weight of a cycle cover C, denoted wt(C), is defined as
the product of the weights of the edges in C.

o det(A) = >  sign(oc) - wt(C) .

C: Ciis cycle
cover of G

Every “contributing” permutation 6~ corresponds to a cycle cover C and vice versa.



VBP-complete families

e Obs.IMM is VBP-complete.
* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.

e Proof sketch. Let A be the adjacency matrix of the
resulting weighted graph G. Obs. IMM = det(A). Why?

* As det(A) is the signed sum of the weights of the
cycle covers of G. Every cycle cover consists of a

cycle from s to t to s and a collection of self-loops. _




VBP-complete families

e Obs.IMM is VBP-complete.
* Proof. Easy exercise.
e Theorem. Det is VBP-complete.

* Proof sketch. We've already seen that Det is in VBP. It is
sufficient to prove the following claim.

o Claim. (Valiant ’79) IMM is a p-projection of Det.

o Claim. (Valiant 79) If f is computable by a layered ABP
of size s then f is an affine projection of Detg,,.

* Proof. Same idea. (homework)



VBP-complete families

e Obs.IMM is VBP-complete.
e Theorem. Det is VBP-complete.

o Corollary. If IMM or Det is in VF then VBP =VFE



A VF-complete family

o Let IMM; := {IMM; 4} 45
e Theorem. (Ben-Or & Cleve '88) IMM, is VF-complete.
* Proof. We start with the following observation:

o Obs. If f is computable by a constant width ABP of size
s, then it is also computable by a formula of size s°().

 Proof. Use divide & conquer on the length of the ABP.
(Homework) o

* So, IMM, is in VF



A VF-complete family

o Let IMM; := {IMM; 4} 45
e Theorem. (Ben-Or & Cleve '88) IMM, is VF-complete.
* Proof. We also need a depth reduction result:

o [heorem. (Brent ’/4) If f is computable by a formula of

size s, then it is also computable by a formula of size
sO() and depth O(log s).

* Proof. We’ll prove it when we discuss depth reduction.



A VF-complete family

o Let IMM; := {IMM; 4} 45
e Theorem. (Ben-Or & Cleve '88) IMM, is VF-complete.

 Proof. Let f be computable by a formula of size s and
depth d = O(log s). Then, f is also computable by a

width-3 ABP of length at most 49 = s°(), Use the
following relations to prove this:



A VF-complete family

o Let IMM; := {IMM; 4} 45
e Theorem. (Ben-Or & Cleve '88) IMM, is VF-complete.

 Proof. Let f be computable by a formula of size s and
depth d = O(log s). Then, f is also computable by a

width-3 ABP of length at most 49 = s°(), Use the
following relations to prove this:

fi | h | f+f, |




A VF-complete family

o Let IMM; := {IMM; 4} 45
e Theorem. (Ben-Or & Cleve '88) IMM, is VF-complete.

 Proof. Let f be computable by a formula of size s and
depth d = O(log s). Then, f is also computable by a

width-3 ABP of length at most 49 = s°(), Use the
following relations to prove this:

£ | | £, || |




Power of IMM,

o [heorem. (Allender & Wang ’| |) The polynomial x,x, +
X3X, t XX, + X;Xg cannot be computed by affine
projections of IMM, , for any d over any T

o [heorem. (S., Saptharishi, Saxena "09) If f is computable
by a depth-3 circuit of size s, then L-f is computable by
affine projections of IMM where L is a product
of non-zero affine forms.

2,poly(s)’



Power of IMM,

o (Allender & Wang °I |) The polynomial x,x, +
X3X, t XX, + X;Xg cannot be computed by affine
projections of IMM, , for any d over any T

° (S., Saptharishi, Saxena "09) If f is computable
by a depth-3 circuit of size s, then L-f is computable by
affine projections of IMM where L is a product
of non-zero affine forms.

o PIT (or the hitting-set problem) for affine
projections of IMM, is at least as hard as PIT (or the
hitting-set problem) for depth-3 circuits.

2,poly(s)’




Power of IMM,

o Theorem. (Allender & Wang "I ) The polynomial x,x, +
X3X, t XX, + X;Xg cannot be computed by affine
projections of IMM, , for any d over any T

o [heorem. (S., Saptharishi, Saxena "09) If f is computable
by a depth-3 circuit of size s, then L-f is computable by
affine projections of IMM where L is a product
of non-zero affine forms.

2,poly(s)’

e Theorem. (Bringmann, lkenmeyer, Zuiddam °18) Orbit
closure of IMM,, capture orbit closure of formulas.



A VP-complete family

e For a long time no “natural” VP-complete family of
polynomials were known.

e Theorem. (Mahajan & Saurabh ’17; Durand, Mahajan,
Malod, Rugy-Altherre, Saurabh’l4) A certain family of
graph homomorphism polynomials Hom is VP-complete.



A VP-complete family

e For a long time no “natural” VP-complete family of
polynomials were known.

e Theorem. (Mahajan & Saurabh ’17; Durand, Mahajan,
Malod, Rugy-Altherre, Saurabh’l4) A certain family of
graph homomorphism polynomials Hom is VP-complete.

> Hom

> IMM, Det

> IMM; Families in VF that are not VF-
complete are SP, PSym, and
ESym (over char 0 fields)




Class VNP and VNP-completeness



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =

{g.}.>, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

* It follows from the definition of class VP that the
number of variables and the degree of f s
polynomially bounded in n.



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

 Valiant called such a family F p-definable.

e Clearly,VP SVNFP.



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

e Recall that a language L is in NP/poly if there’s a
polynomial size circuit family {C_} ., and a
polynomial function p: N — N such that for every x,

X € L Y — Y\E/{O’|}|y| Cp(lxl)(x, Y) — I.

* W.l.o.g we can assume that C_ is a 3CNF.



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

e Recall that a language L is in NP/poly if there’s a
polynomial size circuit family {C_} ., and a
polynomial function p: N — N such that for every x,

X € L Y — Y\E/{O’|}|y| Cp(lxl)(x, Y) — I.

e VNP may be regarded as the algebraic analog of NP/poly.



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =

{g.}.>, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

e A function f: {0,I}* — N is in #P/poly if there’s a
polynomial size circuit family {C_} ., and a
polynomial function p: N — N such that for every x,

f(x) = 2 Cox) % Y)-
yE{O,|}|Y|

* W.l.o.g we can assume that C_ is a 3CNF.



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

e A function f: {0,I}* — N is in #P/poly if there’s a
polynomial size circuit family {C_} ., and a
polynomial function p: N — N such that for every x,

f(x) = 2 Cox) % Y)-
yE{O,|}|Y|

* So,VNP is closer to #P/poly than NP/poly.



Class VNP

o Definition. (Valiant ’79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for everyn = |, f (x) = > Ep(n) (X,Y)-
yE{O’|}|Y|

e Proposition. (Valiant ’79) If c: {0,1}* — N is in #P/poly,
the family {f } ., defined as f (x)=) c(e)x|"x,?"...-x."
is in VINP. e€{0,1}"



Class VNP

o Definition. (Valiant ’79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for everyn = |, f (x) = > Ep(n) (X,Y)-
yE{O’|}|Y|

e Proposition. (Valiant ’79) If c: {0,1}* — N is in #P/poly,
the family {f } ., defined as f (x)=) c(e)x|"x,?"...-x."

is in VINP. ee{0,1}"
* Proof sketch. Arithmetize the 3CNF associated with ¢
and replace X' x3? -...x" by (ex,*l-e)(ex,+I-

e,)...(e.x,+1-e ). Homework: Fill in the details. -



Class VNP

o Definition. (Valiant °79) A polynomial family F = {f } .,
is in class VNP if there’s another polynomial family G =
{g._} -, in VP and a polynomial function p: N — N

such that for every n = I, f (x) = ) Eo(n) 5Y)-
YE{O,'}M

e Proposition. (Valiant ’79) If c: {0,1}* — N is in #P/poly,
the family {f } ., defined as f (x)=) c(e)x|"x,?"...-x."
is in VNP, e€{0,1}"

e The above sufficient condition for membership in VNP
is known as Valiant’s criterion.




Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?



Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?

* Let X = (X;); ;e[ - Then,

1)

Perm, := perm(X) = > [] X4 -

o€S, i€[n]

e Easy to see from Valiant’s criterion that Perm :=
{Perm_} . is in VNP.



Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?
* Let X = (X;); ;e[ - Then,

1)

Perm, := perm(X) = > [] X4 -

o€S, i€[n]

e Easy to see from Valiant’s criterion that Perm :=
{Perm_} . is in VNP.

e The evaluation of Perm_ at the biadjacency matrix of a
bipartite graph G gives the number of perfect
matching in G. As this is a #P-complete problem, Perm
ought to be outside VP. (more on this later.)



Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?
* Let X = (X;); ;e[ - Then,

1)

Ham_:= ) [1 x o) *
OES, i€[n]
is a cycle of length n

e Easy to see from Valiant’s criterion that Ham :=
{Ham_} ., is in VINP.

e The evaluation of Ham_ at the adjacency matrix of a
digraph G gives the number of Hamiltonian cycles in
G. As this is a #P-complete problem, Ham ought to be
outside VP. (more on this later.)



Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?

* More such VNP polynomial families can be defined
using various graph properties.

e Ref: Completeness and Reductions in Algebraic Complexity
Theory (habilitation) by Burgisser (1998)




Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?

* Let X = (%) e N @ prime, k < n,and [ [y], the set of
univariate polynomials over [F of deg < k.Then,

NWoi= 2 [T Xing) -

heF [yl i€[n]

e Easy to see from Valiant’s criterion that NW :=
{NW_ i}z is in VNP NW is the family of Nisan-
Wigderson design polynomials (simply, design polynomials).




Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Are there families in VNP that are not in VP?

* Let X = (%) e N @ prime, k < n,and [ [y], the set of
univariate polynomials over [F of deg < k.Then,
NWoi= 2 [T Xing) -

hEIFn[Y]k iE[n]

e NW_, is the polynomial corresponding to Reed-
Solomon codes with message length k+| and codeword
length n. A monomial [ [,c;,x;,; is the “codeword” for
the coefficient vector of h.




Examples of families in VNP

e AsVP VNP, any family in VP is also in VINP.
o Question.Are there families in VNP that are not in VP?

e Question.Are the families Perm, Ham and NWV in VP?
e We do not know!

e IfVP =VNP then they are obviously in VP,



Valiant’s hypothesis

o Conjecture. (Valiant ’79) VP #VNP over any field.
e The conjecture is known as Valiant’s hypothesis.

* WEe'll see later that if Valiant’s hypothesis is true, then
Perm and Ham are not in VF.

e Question. IfVP #ZVNP then is NW not in VP?
e We do not know!



Valiant’s hypothesis

o Conjecture. (Valiant ’79) VP #VNP over any field.
e The conjecture is known as Valiant’s hypothesis.

o Question. How does the P # NP problem (Cook’s
hypothesis) relate to Valiant’s hypothesis?



Valiant’s hypothesis

o Conjecture. (Valiant ’79) VP #VNP over any field.
e The conjecture is known as Valiant’s hypothesis.

o Question. How does the P # NP problem (Cook’s
hypothesis) relate to Valiant’s hypothesis?

» To prove P # NP it is “necessary” to prove VP # VNP.
Let’s see why...



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly.

* Proof sketch. Let f: {O,1}* — N be in #P/poly. Then,
there’s a polynomial size 3CNF family {C_} ., and a
polynomial function p: N — N such that for every x,

f(x) = 2 Cox) % Y)-
yE{O,|}|Y|



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly.

* Proof sketch. Let f: {O,1}* — N be in #P/poly. Then,
there’s a polynomial size 3CNF family {C_} ., and a
polynomial function p: N — N such that for every x,

fx) = > Cox) (%, Y)-
yE{O,l}M

* By arithmetizing the 3CNF C .\, we see that f defines
a polynomial family in VNP over Z. If VP=VNP over Z
then f(x) has a circuit D over 7Z of size poly(|x]).



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly.

* Proof sketch. Let f: {O,1}* — N be in #P/poly. Then,
there’s a polynomial size 3CNF family {C_} ., and a
polynomial function p: N — N such that for every x,

fx) = > Cox) (%, Y)-
yE{O,l}M

* By arithmetizing the 3CNF C .\, we see that f defines
a polynomial family in VNP over Z. If VP=VNP over Z
then f(x) has a circuit D over Z of size poly(|x|). This
“almost” implies f € FP/poly; the issue is D may have
very large integers labeling its edges!




Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly.

* Proof sketch. Let f: {O,1}* — N be in #P/poly. Then,
there’s a polynomial size 3CNF family {C_} ., and a
polynomial function p: N — N such that for every x,

fx) = > Cox) (%, Y)-
yE{O,l}M

* By arithmetizing the 3CNF C .\, we see that f defines
a polynomial family in VNP over Z. If VP=VNP over Z
then f(x) has a circuit D over 7Z of size poly(|x|). As
the value of |f(x)| is = 2P it is sufficient to do the
computation in D modulo a prime q > 2pol(x)),



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly.

* Proof sketch. Let f: {O,1}* — N be in #P/poly. Then,
there’s a polynomial size 3CNF family {C_} ., and a
polynomial function p: N — N such that for every x,

fx) = > Cox) (%, Y)-
yE{O,l}M

* By arithmetizing the 3CNF C .\, we see that f defines
a polynomial family in VNP over Z. If VP=VNP over Z
then f(x) has a circuit D over 7Z of size poly(|x|).
Finally, convert D modulo g to a multi-output Boolean
circuit computing f(x) implying f € FP/poly. 0



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly,
which implies P/poly = NP/poly.

o [heorem. (Burgisser '98) Assuming GRH, if VP=VNP
over C, then NC3/poly = P/poly = NP/poly = PH/poly
and FP/poly = #P/poly.

e NC enters the picture because of depth reduction
results for arithmetic circuits (we’ll discuss this later).



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly,
which implies P/poly = NP/poly.

o [heorem. (Burgisser '98) Assuming GRH, if VP=VNP
over C, then NC3/poly = P/poly = NP/poly = PH/poly
and FP/poly = #P/poly.

e GRH (Generalized Riemann Hypothesis) is used to
“replace” the complex numbers labelling the edges

with integers of polynomial bit complexity.




Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly,
which implies P/poly = NP/poly.

o [heorem. (Burgisser '98) Assuming GRH, if VP=VNP
over C, then NC3/poly = P/poly = NP/poly = PH/poly
and FP/poly = #P/poly.

* More precisely, GRH is used to show that if a system
of integer polynomial equations is solvable over C,
then it is solvable modulo g for many primes q.



Valiant’s hypothesis

e Proposition. If VP=VNP over Z then FP/poly = #P/poly,
which implies P/poly = NP/poly.

o Theorem. (Burgisser “98) If VP=VINP over a finite field
then NC?/poly = P/poly = NP/poly.

* In this sense, it is necessary to prove VP # VNP before
proving P/poly # NP/poly.



VNP-completeness

e Definition. A family G is VNP—complete if G € VNP and
every F € VNP is a p-projection of G.

e [heorem. (Valiant °/9) Perm is VNP-complete over any
field of char # 2. Ham is VNP-complete over any field.

e Several other families have been shown to be VNP-
complete by Burgisser (1998).



VNP-completeness

e Definition. A family G is VNP—complete if G € VNP and
every F € VNP is a p-projection of G.

e [heorem. (Valiant °/9) Perm is VNP-complete over any
field of char # 2. Ham is VNP-complete over any field.

* The proof of the above theorem involves clever gadget
constructions. Refer to Burgisser (1998) or
Completeness classes on algebra by Valiant (1979).




VNP-completeness

e Definition. A family G is VNP—complete if G € VNP and
every F € VNP is a p-projection of G.

e [heorem. (Valiant °/9) Perm is VNP-complete over any
field of char # 2. Ham is VNP-complete over any field.

e Question. s NW VNP-complete?
* We do not know! Nor do we know if NW is in VF.



Circuits for Perm, Ham and NW

* Proposition. (Ryser ‘63) Let X = (X;); ;e[ - Then,

1)

Perm, := perm(X) = > (-1)™P ] (X xy).

S C[n] i€[n] jES

e Proof sketch. Use inclusion-exclusion principle.



Circuits for Perm, Ham and NW

* Proposition. (Ryser ‘63) Let X = (X;); ;e[ - Then,

Perm, := perm(X) = > (-1)™PI[] (2 xy).

S C[n] i€[n] jES

 The above formula gives a depth-3 formula of size
O(n?2") (which is the smallest known formula) for Perm .

e Question. Is there a circuit of size 2°(" for Perm ?

e Question. Is there a circuit of size 2°("'°¢") for Ham ?

 Question. Is there a circuit of size n°® for NW, ?
* We do not know!



Zero-testing

e Problem. (Zero-testing on the Boolean cube) Let X =
(Xi)i ey and f be Perm_ or Ham or NW . Given an A
€ {0,1}"*n check if f(A) = 0.



Zero-testing

e Problem. (Zero-testing on the Boolean cube) Let X =
(Xi)i e[y and f be Perm or Ham, or NW _,.Given an A
€ {0,1}"*n check if f(A) = 0.

o Obs. Zero-testing Perm_ (which is the perfect matching
problem) is in P Zero-testing Ham_ (which is the
Hamiltonian Cycle problem) is NP-complete.

e Question. What is the complexity of zero-testing
NW_, on the Boolean cube? Is it in P?

n,k

* We do not know! (a.k.a.the Andreev’s problem)




