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Recap

 In the last lecture, we defined the complexity classes 
VP,  VBP and VF, and observed that VF ⊆ VBP ⊆ VP. 

 We saw that the polynomial families Det, IMM and 
ESym are in VBP.  Also, SP and PSym are in VF, and 
ESym too (over sufficiently large fields). 



Recap

 In the last lecture, we defined the complexity classes 
VP,  VBP and VF, and observed that VF ⊆ VBP ⊆ VP. 

 We saw that the polynomial families Det, IMM and 
ESym are in VBP.  Also, SP and PSym are in VF, and 
ESym too (over sufficiently large fields). 

 In today’s lecture, we’ll introduce an algebraic notion 
of reduction and use it to define “complete” families 
of polynomials for the abovementioned classes. We’ll 
also define the class VNP – the algebraic analog of NP. 



Reductions and Completeness



Few words on reductions

 As to how we define a reduction from one polynomial 
family to another is guided by a question on whether 
two algebraic complexity classes are different or identical.

 The relevant questions in this context are whether or 
not VF equals VBP and VBP equals VP.

 Reductions help us define complete families (i.e., the 
‘hardest’ families in a class) which in turn help us 
compare the complexity classes under consideration. 



Projections and affine projections

 Definition. A polynomial f(x1,…, xn) is a projection of 
another polynomial g(y1,…, ym) if f = g(z1,…, zm), 
where every zi ∈ {x1,…, xn}∪𝔽.  f is an affine projection 
of g if f = g(Ax + b), where A∈𝔽mxn, b∈𝔽m & x = 
{x1,…, xn}.

 Projections are special kind of affine projections. 

 E.g., x1
2 – x2

2 - 1 is a projection of y1
2 – y2

2 + y3
3, 

whereas 4x1x2 is an affine projection of y1
2 – y2

2 + y3
3. 



p-projections and complete families

 The reduction that is typically studied in algebraic 
complexity is given by p-projections. 

 Definition. A polynomial family {fn}n≥1 is a p-projection 
of another family {gm}m≥1 if there’s a polynomial 
function p: N → N such that fn is a projection of gp(n).

 Obs. Let 𝓒 be the class VP or VBP or VF. If a family 𝓕 is 
a p-projection of another family 𝓖 ∈ 𝓒, then 𝓕 ∈ 𝓒.



p-projections and complete families

 The reduction that is typically studied in algebraic 
complexity is given by p-projections. 

 Definition. A polynomial family {fn}n≥1 is a p-projection 
of another family {gm}m≥1 if there’s a polynomial 
function p: N → N such that fn is a projection of gp(n).

 Definition. Let 𝓒 be the class VP or VBP or VF.  A family 𝓖 is 𝓒–complete if 𝓖 ∈ 𝓒 and every 𝓕 ∈ 𝓒 is a p-
projection of 𝓖.



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.

 Proof sketch. The underlying weighted DAG of IMMw,d 
has w(d-1)+2 nodes with source s and sink t. Modify 
this graph as follows: Put a self-loop on every node 
other than s and t and give it weight 1.  



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.

 Proof sketch. The underlying weighted DAG of IMMw,d 
has w(d-1)+2 nodes with source s and sink t. Modify 
this graph as follows: Add an edge from t to s and give 
it weight 1 if d is even, else give weight -1. 



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.

 Proof sketch. Let A be the adjacency matrix of the 
resulting weighted graph G.  Obs. IMM = det(A). Why?

 The answer lies in the graph theoretic interpretation 
of the determinant.



Graph theoretic interpretation of Det

 Let A = (aij)i,j∈[r].  Then,  det(A) =  ∑ sign(𝞂)  ∏  ai 𝞂(i) .   

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij. 

 Every permutation 𝞂: [r]  [r] can be expressed 
(uniquely) as a product of disjoint cycles. 

𝞂∈Sr
i∈[r]

𝞂: 1   2   3   4    1

     
 3   1   2   4   2 3        4

(1 3 2) (4)



Graph theoretic interpretation of Det

 Let A = (aij)i,j∈[r].  Then,  det(A) =  ∑ sign(𝞂)  ∏  ai 𝞂(i) .   

 Let G be the weighted digraph on r vertices with 
adjacency matrix A, i.e., the edge (i, j) in G has weight aij. 

 Let b be number of transpositions (swaps) that define 𝞂. 
Then sign(𝞂) := (-1)b. The 𝞂 below has sign 1 as it is 
defined by an even no. of transpositions. 

𝞂∈Sr
i∈[r]

𝞂: 1   2   3   4    1

     
 3   1   2   4   2 3        4

(1 3 2) (4) = (2 3)(1 3)(4)



Graph theoretic interpretation of Det

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G.

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C.



Graph theoretic interpretation of Det

 Definition. A cycle cover of a digraph G is a subgraph of 
G having in-degree and out-degree of every vertex 
exactly 1, i.e., the subgraph is a disjoint union of cycles 
covering all the vertices of G.

 Weight of a cycle cover C, denoted wt(C), is defined as 
the product of the weights of the edges in C.

 Obs.  det(A) =  ∑     sign(𝞂C) ∙ wt(C) .
C:  C is cycle 
cover of G 

Every “contributing” permutation 𝞂C corresponds to a cycle cover C and vice versa.



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.

 Proof sketch. Let A be the adjacency matrix of the 
resulting weighted graph G.  Obs. IMM = det(A). Why?

 As det(A) is the signed sum of the weights of the 
cycle covers of G. Every cycle cover consists of a 
cycle from s to t to s and a collection of self-loops.



VBP-complete families

 Obs. IMM is VBP-complete.

 Proof. Easy exercise.

 Theorem. Det is VBP-complete.

 Proof sketch. We’ve already seen that Det is in VBP. It is 
sufficient to prove the following claim.

 Claim. (Valiant ’79) IMM is a p-projection of Det.

 Claim. (Valiant ’79) If f is computable by a layered ABP 
of size s then f is an affine projection of DetO(s).

 Proof. Same idea. (homework)



VBP-complete families

 Obs. IMM is VBP-complete.

 Theorem. Det is VBP-complete.

 Corollary. If IMM or Det is in VF then VBP = VF.



A VF-complete family

 Let IMM3 := {IMM3,d}d≥1.

 Theorem. (Ben-Or & Cleve ’88) IMM3 is VF-complete.

 Proof. We start with the following observation:

 Obs. If f is computable by a constant width ABP of size 
s, then it is also computable by a formula of size sO(1).

 Proof. Use divide & conquer on the length of the ABP. 
(Homework)

 So, IMM3 is in VF.



A VF-complete family

 Let IMM3 := {IMM3,d}d≥1.

 Theorem. (Ben-Or & Cleve ’88) IMM3 is VF-complete.

 Proof. We also need a depth reduction result:

 Theorem. (Brent ’74) If f is computable by a formula of 
size s, then it is also computable by a formula of size 
sO(1) and depth O(log s).

 Proof. We’ll prove it when we discuss depth reduction.



A VF-complete family

 Let IMM3 := {IMM3,d}d≥1.

 Theorem. (Ben-Or & Cleve ’88) IMM3 is VF-complete.

 Proof. Let f be computable by a formula of size s and 
depth d = O(log s). Then, f is also computable by a 
width-3 ABP of length at most 4d = sO(1). Use the 
following relations to prove this:



A VF-complete family

 Let IMM3 := {IMM3,d}d≥1.

 Theorem. (Ben-Or & Cleve ’88) IMM3 is VF-complete.

 Proof. Let f be computable by a formula of size s and 
depth d = O(log s). Then, f is also computable by a 
width-3 ABP of length at most 4d = sO(1). Use the 
following relations to prove this:

1

1

f1 1

1

1

f2 1

1

1

f1+f2 1

=



A VF-complete family

 Let IMM3 := {IMM3,d}d≥1.

 Theorem. (Ben-Or & Cleve ’88) IMM3 is VF-complete.

 Proof. Let f be computable by a formula of size s and 
depth d = O(log s). Then, f is also computable by a 
width-3 ABP of length at most 4d = sO(1). Use the 
following relations to prove this:

1

-f2 1

1

1

1

f1 1

1

1

f1f2 1

=

1

f2 1

1

1

1

-f1 1



Power of IMM2

 Theorem. (Allender & Wang ’11) The polynomial x1x2 + 
x3x4 + x5x6 + x7x8 cannot be computed by affine 
projections of IMM2,d for any d over any 𝔽. 

 Theorem. (S., Saptharishi, Saxena ’09) If f is computable 
by a depth-3 circuit of size s, then L∙f is computable by 
affine projections of IMM2,poly(s), where L is a product 
of non-zero affine forms.



Power of IMM2

 Theorem. (Allender & Wang ’11) The polynomial x1x2 + 
x3x4 + x5x6 + x7x8 cannot be computed by affine 
projections of IMM2,d for any d over any 𝔽. 

 Theorem. (S., Saptharishi, Saxena ’09) If f is computable 
by a depth-3 circuit of size s, then L∙f is computable by 
affine projections of IMM2,poly(s), where L is a product 
of non-zero affine forms.

 Corollary. PIT (or the hitting-set problem) for affine 
projections of IMM2 is at least as hard as PIT (or the 
hitting-set problem) for depth-3 circuits.



Power of IMM2

 Theorem. (Allender & Wang ’11) The polynomial x1x2 + 
x3x4 + x5x6 + x7x8 cannot be computed by affine 
projections of IMM2,d for any d over any 𝔽. 

 Theorem. (S., Saptharishi, Saxena ’09) If f is computable 
by a depth-3 circuit of size s, then L∙f is computable by 
affine projections of IMM2,poly(s), where L is a product 
of non-zero affine forms.

 Theorem. (Bringmann, Ikenmeyer, Zuiddam ’18) Orbit 
closure of IMM2 capture orbit closure of formulas.   



A VP-complete family

 For a long time no “natural” VP-complete family of 
polynomials were known.

 Theorem. (Mahajan & Saurabh ’17; Durand, Mahajan, 
Malod, Rugy-Altherre, Saurabh’14) A certain family of 
graph homomorphism polynomials Hom is VP-complete.



A VP-complete family

 For a long time no “natural” VP-complete family of 
polynomials were known.

 Theorem. (Mahajan & Saurabh ’17; Durand, Mahajan, 
Malod, Rugy-Altherre, Saurabh’14) A certain family of 
graph homomorphism polynomials Hom is VP-complete.

VP

VBP

VF

Hom

IMM, Det

IMM3
Families in VF that are not VF-
complete are SP, PSym, and 
ESym (over char 0 fields) 



Class VNP and VNP-completeness



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 It follows from the definition of class VP that the 
number of variables and the degree of fn is 
polynomially bounded in n. 

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Valiant called such a family 𝓕 p-definable.

 Clearly, VP ⊆VNP.

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Recall that a language L is in NP/poly if there’s a 
polynomial size circuit family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         x ∈ L           ⋁       Cp(|x|)(x, y) = 1.  

 

 W.l.o.g we can assume that Cm is a 3CNF. 

y∈{0,1}|y|

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Recall that a language L is in NP/poly if there’s a 
polynomial size circuit family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         x ∈ L           ⋁       Cp(|x|)(x, y) = 1.  

 

 VNP may be regarded as the algebraic analog of NP/poly. 

y∈{0,1}|y|

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 A function f: {0,1}* → N is in #P/poly if there’s a 
polynomial size circuit family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 

 W.l.o.g we can assume that Cm is a 3CNF.

y∈{0,1}|y|

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 A function f: {0,1}* → N is in #P/poly if there’s a 
polynomial size circuit family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 

 So, VNP is closer to #P/poly than NP/poly. 

y∈{0,1}|y|

y∈{0,1}|y|



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Proposition. (Valiant ’79) If c: {0,1}* → N is in #P/poly, 
the family {fn}n≥1 defined as fn(x)=∑   c(e)x1 ∙x2  ∙…∙xn  
is in VNP.

y∈{0,1}|y|

e∈{0,1}n

e1 e2 en



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Proposition. (Valiant ’79) If c: {0,1}* → N is in #P/poly, 
the family {fn}n≥1 defined as fn(x)=∑   c(e)x1 ∙x2  ∙…∙xn  
is in VNP.

 Proof sketch. Arithmetize the 3CNF associated with c 
and replace x1 ∙x2 ∙…∙xn by (e1x1+1-e1)(e2x2+1-
e2)…(enxn+1-en).  Homework: Fill in the details. 

y∈{0,1}|y|

e∈{0,1}n

e1 e2 en

e1 e2 en



Class VNP

 Definition. (Valiant ’79) A polynomial family 𝓕 = {fn}n≥1 
is in class VNP if there’s another polynomial family 𝓖 = 
{gm}m≥1 in VP and a polynomial function p: N → N
such that for every n ≥ 1,  fn(x) =  ∑       gp(n)(x,y).

 Proposition. (Valiant ’79) If c: {0,1}* → N is in #P/poly, 
the family {fn}n≥1 defined as fn(x)=∑   c(e)x1 ∙x2  ∙…∙xn  
is in VNP.

 The above sufficient condition for membership in VNP 
is known as Valiant’s criterion.

y∈{0,1}|y|

e∈{0,1}n

e1 e2 en



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP? 



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Let X = (xij)i,j∈[n] . Then,

 Permn := perm(X) =  ∑    ∏  xi 𝞂(i) .

 Easy to see from Valiant’s criterion that Perm := 
{Permn}n≥1 is in VNP. 

𝞂∈Sn i∈[n]



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Let X = (xij)i,j∈[n] . Then,

 Permn := perm(X) =  ∑    ∏  xi 𝞂(i) .

 Easy to see from Valiant’s criterion that Perm := 
{Permn}n≥1 is in VNP. 

 The evaluation of Permn at the biadjacency matrix of a 
bipartite graph G gives the number of perfect 
matching in G. As this is a #P-complete problem, Perm 
ought to be outside VP.  (more on this later.)

𝞂∈Sn i∈[n]



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Let X = (xij)i,j∈[n] . Then,

   Hamn := ∑    ∏  xi 𝞂(i) .

 Easy to see from Valiant’s criterion that Ham := 
{Hamn}n≥1 is in VNP. 

 The evaluation of Hamn at the adjacency matrix of a 
digraph G gives the number of Hamiltonian cycles in 
G. As this is a #P-complete problem, Ham ought to be 
outside VP.  (more on this later.)

𝞂∈Sn 
is a cycle of length n

i∈[n]



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 More such VNP polynomial families can be defined 
using various graph properties.

 Ref: Completeness and Reductions in Algebraic Complexity 
Theory (habilitation) by Bürgisser (1998)



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Let X = (xij)i,j∈[n], n a prime, k < n, and 𝔽n[y]k the set of 
univariate polynomials over 𝔽n of deg ≤ k. Then,

   NWn,k :=   ∑         ∏  xi h(i) .

 Easy to see from Valiant’s criterion that NW := 
{NWn,k}n>k≥1 is in VNP. NW is the family of Nisan-
Wigderson design polynomials (simply, design polynomials).

h∈𝔽n[y]k i∈[n]



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Let X = (xij)i,j∈[n], n a prime, k < n, and 𝔽n[y]k the set of 
univariate polynomials over 𝔽n of deg ≤ k. Then,

   NWn,k :=   ∑         ∏  xi h(i) .

 NWn,k is the polynomial corresponding to Reed-
Solomon codes with message length k+1 and codeword 
length n. A monomial ∏i∈[n]xi h(i) is the “codeword” for 
the coefficient vector of h.  

h∈𝔽n[y]k i∈[n]



Examples of families in VNP

 As VP ⊆VNP, any family in VP is also in VNP.

 Question. Are there families in VNP that are not in VP?

 Question. Are the families Perm, Ham and NW in VP?

 We do not know!

 If VP = VNP then they are obviously in VP.



Valiant’s hypothesis

 Conjecture. (Valiant ’79) VP ≠ VNP over any field.

 The conjecture is known as Valiant’s hypothesis.

 We’ll see later that if Valiant’s hypothesis is true, then 
Perm and Ham are not in VP.

 Question. If VP ≠ VNP then is NW not in VP?

 We do not know! 



Valiant’s hypothesis

 Conjecture. (Valiant ’79) VP ≠ VNP over any field.

 The conjecture is known as Valiant’s hypothesis.

 Question. How does the P ≠ NP problem (Cook’s 
hypothesis) relate to Valiant’s hypothesis?



Valiant’s hypothesis

 Conjecture. (Valiant ’79) VP ≠ VNP over any field.

 The conjecture is known as Valiant’s hypothesis.

 Question. How does the P ≠ NP problem (Cook’s 
hypothesis) relate to Valiant’s hypothesis?

 To prove P ≠ NP it is “necessary” to prove VP ≠ VNP. 
Let’s see why…



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly.

 Proof sketch. Let f: {0,1}* → N be in #P/poly. Then, 
there’s a polynomial size 3CNF family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 
y∈{0,1}|y|



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly.

 Proof sketch. Let f: {0,1}* → N be in #P/poly. Then, 
there’s a polynomial size 3CNF family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 By arithmetizing the 3CNF Cp(|x|), we see that f defines 
a polynomial family in VNP over ℤ. If VP=VNP over ℤ 
then f(x) has a circuit D over ℤ of size poly(|x|). 

 

y∈{0,1}|y|



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly.

 Proof sketch. Let f: {0,1}* → N be in #P/poly. Then, 
there’s a polynomial size 3CNF family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 By arithmetizing the 3CNF Cp(|x|), we see that f defines 
a polynomial family in VNP over ℤ. If VP=VNP over ℤ 
then f(x) has a circuit D over ℤ of size poly(|x|). This 
“almost” implies f ∈ FP/poly; the issue is D may have 
very large integers labeling its edges!
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Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly.

 Proof sketch. Let f: {0,1}* → N be in #P/poly. Then, 
there’s a polynomial size 3CNF family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 By arithmetizing the 3CNF Cp(|x|), we see that f defines 
a polynomial family in VNP over ℤ. If VP=VNP over ℤ 
then f(x) has a circuit D over ℤ of size poly(|x|). As 
the value of |f(x)| is ≤ 2poly(|x|), it is sufficient to do the 
computation in D modulo a prime q > 2poly(|x|).
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Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly.

 Proof sketch. Let f: {0,1}* → N be in #P/poly. Then, 
there’s a polynomial size 3CNF family {Cm}m≥1 and a 
polynomial function p: N → N such that for every x,

         f(x)  =   ∑       Cp(|x|)(x, y).  

 By arithmetizing the 3CNF Cp(|x|), we see that f defines 
a polynomial family in VNP over ℤ. If VP=VNP over ℤ 
then f(x) has a circuit D over ℤ of size poly(|x|). 
Finally, convert D modulo q to a multi-output Boolean 
circuit computing f(x) implying f ∈ FP/poly.

y∈{0,1}|y|



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly, 
which implies P/poly = NP/poly.

 Theorem. (Bürgisser ’98) Assuming GRH, if VP=VNP 
over ℂ, then NC3/poly = P/poly = NP/poly = PH/poly 
and FP/poly = #P/poly.

 NC enters the picture because of depth reduction 
results for arithmetic circuits (we’ll discuss this later).



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly, 
which implies P/poly = NP/poly.

 Theorem. (Bürgisser ’98) Assuming GRH, if VP=VNP 
over ℂ, then NC3/poly = P/poly = NP/poly = PH/poly 
and FP/poly = #P/poly.

 GRH (Generalized Riemann Hypothesis) is used to 
“replace” the complex numbers labelling the edges 
with integers of polynomial bit complexity. 



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly, 
which implies P/poly = NP/poly.

 Theorem. (Bürgisser ’98) Assuming GRH, if VP=VNP 
over ℂ, then NC3/poly = P/poly = NP/poly = PH/poly 
and FP/poly = #P/poly.

 More precisely, GRH is used to show that if a system 
of integer polynomial equations is solvable over ℂ, 
then it is solvable modulo q for many primes q.



Valiant’s hypothesis

 Proposition. If VP=VNP over ℤ then FP/poly = #P/poly, 
which implies P/poly = NP/poly.

 Theorem. (Bürgisser ’98) If VP=VNP over a finite field 
then NC2/poly = P/poly = NP/poly.

 In this sense, it is necessary to prove VP ≠ VNP before 
proving P/poly ≠ NP/poly.



VNP-completeness

 Definition. A family 𝓖 is VNP–complete if 𝓖 ∈ VNP and 
every 𝓕 ∈ VNP is a p-projection of 𝓖.

 Theorem. (Valiant ’79) Perm is VNP-complete over any 
field of char ≠ 2. Ham is VNP-complete over any field. 

 Several other families have been shown to be VNP-
complete by Bürgisser (1998).



VNP-completeness

 Definition. A family 𝓖 is VNP–complete if 𝓖 ∈ VNP and 
every 𝓕 ∈ VNP is a p-projection of 𝓖.

 Theorem. (Valiant ’79) Perm is VNP-complete over any 
field of char ≠ 2. Ham is VNP-complete over any field. 

 The proof of the above theorem involves clever gadget 
constructions. Refer to Bürgisser (1998) or 
Completeness classes on algebra by Valiant (1979).



VNP-completeness

 Definition. A family 𝓖 is VNP–complete if 𝓖 ∈ VNP and 
every 𝓕 ∈ VNP is a p-projection of 𝓖.

 Theorem. (Valiant ’79) Perm is VNP-complete over any 
field of char ≠ 2. Ham is VNP-complete over any field. 

 Question. Is NW VNP-complete?

 We do not know! Nor do we know if NW is in VP.



Circuits for Perm, Ham and NW

 Proposition. (Ryser ‘63) Let X = (xij)i,j∈[n] . Then,

 Permn := perm(X) =  ∑(-1)n-|S| ∏  ( ∑ xij).

 Proof sketch. Use inclusion-exclusion principle.

S ⊆[n] i∈[n] j∈S



Circuits for Perm, Ham and NW

 Proposition. (Ryser ‘63) Let X = (xij)i,j∈[n] . Then,

 Permn := perm(X) =  ∑(-1)n-|S| ∏  ( ∑ xij).

 The above formula gives a depth-3 formula of size 
O(n22n) (which is the smallest known formula) for Permn.

 Question. Is there a circuit of size 2o(n) for Permn? 

 Question. Is there a circuit of size 2o(n log n) for Hamn?

 Question. Is there a circuit of size no(k) for NWn,k?

 We do not know!

S ⊆[n] i∈[n] j∈S



Zero-testing

 Problem. (Zero-testing on the Boolean cube) Let X = 
(xij)i,j∈[n] and f be Permn or Hamn or NWn,k. Given an A ∈ {0,1}n x n, check if f(A) = 0.



Zero-testing

 Problem. (Zero-testing on the Boolean cube) Let X = 
(xij)i,j∈[n] and f be Permn or Hamn or NWn,k. Given an A ∈ {0,1}n x n, check if f(A) = 0.

 Obs. Zero-testing Permn (which is the perfect matching 

problem) is in P. Zero-testing Hamn (which is the 

Hamiltonian Cycle problem) is NP-complete.

 Question. What is the complexity of zero-testing 
NWn,k on the Boolean cube? Is it in P?

 We do not know!   (a.k.a. the Andreev’s problem)


