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Recap

 In the last two lectures, we defined the complexity 
classes VNP,  VP,  VBP,  VF, and observed that VF ⊆ VBP ⊆ VP ⊆ VNP. Whether or not any of these 
containments is proper is an open problem.  

 We also defined “complete” families of polynomials 
for the above-mentioned classes using p-projections 
and saw that IMM3 is VF-complete, Det and IMM are 
VBP-complete, Hom is VP-complete, and Perm and 
Ham are VNP-complete.
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The VBP vs. VNP problem can be equivalently stated as 
follows: Prove that if Permn is a projection of Detm then 
m = n𝜔(1). Naturally, it is also known as the Permanent 

versus Determinant problem.

Algebraic complexity 

classes



Permanent versus Determinant



Perm versus Det

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Recall the following from the previous lectures.

 Obs. Ryser’s formula gives a layered ABP of size n2n 
for Permn.

 Claim. (Valiant 1979) If f is computable by a layered 
ABP of size s then f is an affine projection of DetO(s).

 Thus, m = O(n2n). 



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Recall the following from the previous lectures.

 Obs. Ryser’s formula gives a layered ABP of size n2n 
for Permn.

 Claim. (Valiant 1979) If f is computable by a layered 
ABP of size s then f is an affine projection of DetO(s).

 Thus, m = O(n2n).  There’s a better upper bound!



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Thus, for n = 3, m ≤ 7, which is known to be optimal 
(Ikenmeyer, Hüttenhain 2016;  Alper, Bogart, Velasco 2017).

 It’s easy to see that for n = 2,  m = 2.

    perm              =  det 
x11 x12

x21 x22

x11 -x12

x21 x22



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n 
nodes that computes Permn. Then, we’ll derive a 
matrix M from A such that det(M) = Permn (as in 
Valiant’s proof of  VBP-hardness of Det). 
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affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n 
nodes that computes Permn. Then, we’ll derive a 
matrix M from A such that det(M) = Permn. 

 The ABP A has n+1 layers of nodes V0, …,Vn. The 
nodes of Vi are labelled by all subsets of [n] of size i.



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n 
nodes that computes Permn. Then, we’ll derive a 
matrix M from A such that det(M) = Permn. 

 The ABP A has n+1 layers of nodes V0, …,Vn. The 
nodes of Vi are labelled by all subsets of [n] of size i.

 There’s an edge, labelled by xij, from a node S in Vi-1 to 
a node S ∪ {j} in Vi if j ∉ S.



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and 
it computes Permn. 



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and 
it computes Permn. 

 Merge the nodes in V0 and Vn, and add a self-loop to 
every other node to obtain a digraph G on 2n - 1 
vertices. Let M be the adjacency matrix of G.

 Observe that det(M) = Permn if n is odd.



Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and 
it computes Permn. 

 Merge the nodes in V0 and Vn, and add a self-loop to 
every other node to obtain a digraph G on 2n - 1 
vertices. Let M be the adjacency matrix of G.

 Observe that det(M) = Permn if n is odd.

 If n is even, alter G slightly.  (Homework: how?)



Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 It is conjectured that m = 2𝛺(n). 

 Obs. If we show m = n𝜔(1), then VBP ≠ VNP.  If we 
show m = n𝜔(log n), then by the “depth reduction” 
results we can infer that  VP ≠ VNP.

 Degree comparison gives m ≥ n.  There’s a significantly 
better lower bound! 



Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Mignon & Ressayre 2004) m ≥ n2/2 over any 
field of characteristic zero.

 The lower bound can be extended to arbitrary fields 
of characteristic ≠ 2. (Cai, Chen and Li 2008). 

 Theorem. (Yabe 2015) m ≥ n2 – 2n + 2 over ℝ.



Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an 
affine projection of Detm?

 Theorem. (Mignon & Ressayre 2004) m ≥ n2/2 over any 
field of characteristic zero.

 Unfortunately, the above theorem doesn’t imply a 
superlinear (in the number of variables) lower bound  
for circuits, or even ABPs, as n2 is the number of 
variables of Permn.  



Univariate circuit lower bounds



Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽, 
can be easily computed by a circuit over 𝔽 of size 
O(D log D) using repeated squaring.



Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽, 
can be easily computed by a circuit over 𝔽 of size 
O(D log D) using repeated squaring.

 Horner’s rule. (1819) Polynomial f can be computed 
by a formula that uses D additions and D 
multiplications as f = a0 + x(a1 + x(a2 + x(a3 + …))).



Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽, 
can be easily computed by a circuit over 𝔽 of size 
O(D log D) using repeated squaring.

 Horner’s rule. (1819) Polynomial f can be computed 
by a formula that uses D additions and D 
multiplications as f = a0 + x(a1 + x(a2 + x(a3 + …))).

 Question. (Ostrowski 1954) Is Horner’s rule optimal?

 Ref. “On two problems in abstract algebra connected to 
Horner’s rule”, by Ostrowski (1954).



Univariate polynomials and circuits

 Definition. The number of × and ÷ gates with at least 
two children not labelled by field constants, is called 
the non-scalar complexity of a circuit. If the circuit 
has no ÷ gates, then non-scalar complexity is also 
called the multiplicative complexity.



Univariate polynomials and circuits

 Definition. The number of × and ÷ gates with at least 
two children not labelled by field constants, is called 
the non-scalar complexity of a circuit. If the circuit 
has no ÷ gates, then non-scalar complexity is also 
called the multiplicative complexity.

 Notations. S(f) := complexity of f = the size of the 
smallest circuit computing f. Similarly, Sm(f) := the 
multiplicative complexity of f, and Sns(f) := the non-
scalar complexity of f.



Univariate polynomials and circuits

 Let f(x) = aDxD + … + a0, where a0, …, aD and x are 
variables. Horner’s rule implies Sns(f) ≤ D.

 Theorem. (Pan 1966) Sns(f) = D.

 Ref. “Methods of computing values of polynomials” by 
Pan (1966).



Univariate polynomials and circuits

 Let f(x) = aDxD + … + a0, where a0, …, aD and x are 
variables. Horner’s rule implies Sns(f) ≤ D.

 Theorem. (Pan 1966) Sns(f) = D.

 Ref. “Methods of computing values of polynomials” by 
Pan (1966).

 Question. Are there explicit degree-D univariate 
polynomials with circuit complexity 𝛺(D)?



Univariate polynomials and circuits

 Theorem. (Strassen 1974)  Let f(x) = ∑i∈[0,D] 22  xi. 
Then, the number of operations in any circuit over ℂ 
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ. 

 Ref. “Polynomial with rational coefficients which are hard 
to compute” by Strassen (1974).

iD2



Univariate polynomials and circuits

 Theorem. (Strassen 1974)  Let f(x) = ∑i∈[0,D] 22  xi. 
Then, the number of operations in any circuit over ℂ 
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ. 

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x) 
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 Ref. “Algebraic Complexity Theory” (Ch-9, Cor 9.4) by 
Bürgisser, Clausen, Shokrollahi (1997).
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Univariate polynomials and circuits

 Theorem. (Strassen 1974)  Let f(x) = ∑i∈[0,D] 22  xi. 
Then, the number of operations in any circuit over ℂ 
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ. 

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x) 
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 However, the f in the above two theorems are not 
sufficiently explicit. Unless the bit complexity of the 
coefficients is poly(D), f can’t be evaluated efficiently.

iD2



Univariate polynomials and circuits

 Theorem. (Strassen 1974)  Let f(x) = ∑i∈[0,D] 22  xi. 
Then, the number of operations in any circuit over ℂ 
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ. 

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x) 
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 Another reason to look for an f with low coefficient 
complexity comes from the connection between 
univariate and multivariate circuit lower bounds. 

iD2



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Corollary. If S(f) = 𝛺(D), then S(𝑓) = 𝛺(2n).

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Corollary. If S(f) = 𝜔(log D), then S(𝑓) = 𝜔(n).

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Corollary. If S(f) = 𝜔(log D), then S(𝑓) = 𝜔(n).

 If the coefficients of 𝑓 are computable in #P/poly then 𝑓 defines a family in VNP. For this to happen the ai’s 
must necessarily have bit complexity poly(log D).

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Proof. Let C be a circuit of size 𝓈 computing 𝑓. By 
replacing yk by x   in C we get a circuit for f.  

i0 in-1
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Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Proof. Let C be a circuit of size 𝓈 computing 𝑓. By 
replacing yk by x   in C we get a circuit for f.  As x, x2, 
…, x   can be computed using repeated squaring, 𝓈 + 
2(n-1) ≥ s implying 𝓈 ≥ s – O(log D). 

i0 in-1

2k

2n-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Proving a univariate circuit lower bound is “harder” 
than proving a multivariate circuit lower bound.

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Open problem. Describe an explicit univariate 
polynomial of degree D and having coefficient 
complexity poly(D) such that S(f) = 𝜔(log D).

i0 in-1



Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
  xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ + 

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits 
in the binary representation of i.  

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
  ybin(i) . 

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any 
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D). 

 Remark. Proving a 𝛺(log D) univariate lower bound is 
easy -- think of computing xD.

i0 in-1



A candidate “hard” univariate

 Wilkinson’s polynomial.  wD(x) := ∏i∈[1,D] (x - i).

 Conjecture. S(wD) = 𝜔(log D) over rationals.

 Remarks. 

➢The bit complexity of every coefficient of wD is 
poly(D). So, wD is more explicit than the two 
univariate polynomials mentioned before.

➢wD is computable by a circuit over ℤ of size O(D). 
The constants appearing in the circuit have bit 
complexity O(log D).



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Refs. 

1. “Factoring numbers in O(log n) arithmetic steps” by 
Shamir (1979).

2. “Straight-line complexity and integer factorization” by 
Lipton (1994).



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof.  Assume w.l.o.g. that wD(x) := ∏i∈[1,D] (x + i).

 Goal. Design a poly-time TM M (with polynomial bits 
of advice) that takes input integer N and outputs a 
non-trivial factor of N, provided N is composite.

 Input size is ⎣log N⎦ + 1. 



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w   .

 Observe that the size of the advice string is poly(n), by 
the condition given in the theorem statement.

2n



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w   .

 Fact. (N-1)! = 0 mod N if and only if N is composite.
2n



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w   .

 Fact. (N-1)! = 0 mod N if and only if N is composite.

 Our TM M tries to find the smallest 𝓁 < N such that 𝓁! = 0 mod N. Then, it computes gcd(𝓁, N). As (𝓁-1)! ≠ 
0 mod N,  gcd(𝓁, N) must be nontrivial. 

2n



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w   .

 Fact. (N-1)! = 0 mod N if and only if N is composite.

 Our TM M tries to find the smallest 𝓁 < N such that 𝓁! = 0 mod N. Then, it computes gcd(𝓁, N). 

 Observe, if m! = 0 mod N then (m+1)! = 0 mod N.

2n



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N. 

 This is done by evaluating the circuit for w  at 0 
and computing the output of every gate modulo N.

 As 2(i-1)! ≠ 0 mod N,  𝓁 ∈ [2i-1, 2i]. 

 

2i

2i



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N. 

 Also, compute 2(i-1)! = w  (0) mod N.
2i

2i-1



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N. 

 Also, compute 2(i-1)! = w  (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w  (2i-1) = 0 mod N. 

2i

2i-1

2j

= (2i-1 + 2j)!



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N. 

 Also, compute 2(i-1)! = w  (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w  (2i-1) = 0 mod N. 

 Then, 𝓁 ∈ [2i-1 + 2j-1, 2i-1 + 2j].

2i

2i-1

2j



A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable 
by a circuit over ℤ of size poly(log D) and the integers 
labelling the edges of the circuit have bit complexity 
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N. 

 Also, compute 2(i-1)! = w  (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w  (2i-1) = 0 mod N. 

 Then, 𝓁 ∈ [2i-1 + 2j-1, 2i-1 + 2j].

➢ Continue the “binary search” as above to find 𝓁.

2i

2i-1

2j



Multivariate circuit lower bounds



Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be 
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity 
of the coefficients that requires circuit size 𝛺(n+dCd)? 



Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be 
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity 
of the coefficients that requires circuit size 𝛺(n+dCd)? 

 As mentioned before, univariate lower bounds imply 
multivariate lower bounds. But, the univariates for 
which we know good lower bounds don’t have low 
bit complexity of the coefficients. (Think about the 
univariate in Strassen’s theorem.)
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 Obs. Every n-variate polynomial of degree d can be 
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity 
of the coefficients that requires circuit size 𝛺(n+dCd)? 

 Unlike the case for Boolean circuits, a simple counting 
argument doesn’t work here as there are infinitely 
many circuits (over infinite fields) even if the underlying 
digraph is fixed.



Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be 
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity 
of the coefficients that requires circuit size 𝛺(n+dCd)? 

 Unlike the case for Boolean circuits, a simple counting 
argument doesn’t work here as there are infinitely 
many circuits (over infinite fields) even if the underlying 
digraph is fixed.

Yes!



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Algebraic independence is a generalization of the 
notion of linear independence.
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 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. Let h be a polynomial of degree D (to be 
fixed later in the analysis). Pretend that the 
coefficients of h are variables; call these z variables. So, 
|z| = m+DCm. 



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. The polynomial h(f1, …, fm) ∈ 𝔽[x1,…, xn] 
has degree at most dD. So, there are at most n+dDCn 
monomials in h(f1, …, fm).



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. The polynomial h(f1, …, fm) ∈ 𝔽[x1,…, xn] 
has degree at most dD. So, there are at most n+dDCn 
monomials in h(f1, …, fm). The coefficients of these 
monomials are linear forms in the z variables.



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. If |z| = m+DCm > n+dDCn, it’s possible to set 
the z variables to 𝔽 elements (not all 0) s.t. all the 
previously mentioned linear forms vanish, implying 
h(f1, …, fm) = 0.  Now choose D s.t. m+DCm > n+dDCn. 
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 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch.  n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n 
(assuming dD ≥ n). 



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch.  n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n 
(assuming dD ≥ n). m+DCm ≥ n+1+DCn+1 ≥ (D/(n+1))n+1.



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch.  n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n 
(assuming dD ≥ n). m+DCm ≥ n+1+DCn+1 ≥ (D/(n+1))n+1. 
If we choose D s.t. (D/(n+1))n+1 ≥ (2edD/n)n , we’re 
done.  Set D = dO(n).



Algebraic independence:  A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are 
algebraically dependent if there’s a nonzero polynomial 
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is 
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m 
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree 
dO(n) such that h(f1, …, fm) = 0.

 Theorem. (Perron 1927) There’s an annihilating 
polynomial h for f1, …, fm of degree ≤ dn.



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 If s = poly(n), the bit complexity of the coefficients of 
fhard are polynomially bounded.  
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 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s 
nodes. So, the number of distinct digraphs with s 
edges is sO(s). The nodes of such a digraph can be 
labelled in nO(s) ways using +, × or one of the n 
variables.
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 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s 
nodes. So, the number of distinct digraphs with s 
edges is sO(s). The nodes of such a digraph can be 
labelled in nO(s) ways using +, × or one of the n 
variables. Pick one of these sO(s) many digraphs, call it 
C, and label it’s s edges by distinct variables z1, …, zs.



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s 
nodes. So, the number of distinct digraphs with s 
edges is sO(s). The nodes of such a digraph can be 
labelled in nO(s) ways using +, × or one of the n 
variables. Pick one of these sO(s) many digraphs, call it 
C, and label it’s s edges by distinct variables z1, …, zs.

 The output of C is a polynomial whose n+dCn 
coefficients are polynomials in z1, …, zs of degree ≤ s.



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y 

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn. 

 By Lemma *, there’s a non-zero annihilating polynomial 
hC(y) of degree sO(s) for the n+dCn many coefficients 
polynomials in the z variables.  (as |z| = s < n+dCn )
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 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y 

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn. 

 By Lemma *, there’s a non-zero annihilating polynomial 
hC(y) of degree sO(s) for the n+dCn many coefficients 
polynomials in the z variables. 

 Define P(y) := ∏Circuit C  hC(y). Note that deg P = sO(s).



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y 

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn. 

 By Lemma *, there’s a non-zero annihilating polynomial 
hC(y) of degree sO(s) for the n+dCn many coefficients 
polynomials in the z variables. 

 Define P(y) := ∏Circuit C  hC(y). Note that deg P = sO(s).

 By SZ lemma, there’s an a : = (ae : e ∈ M(n,d)) s.t. P(a) 
≠ 0 & bit complexity of ae is O(s log s).



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. This mean, the hard polynomial 

  fhard := ∑e∈M(n,d)  ae x
e 

   is not computable by any circuit of size s. 



Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a 
polynomial fhard with bit complexity of the coefficients 
O(s log s) s.t. no circuit of size s computes fhard.

 Remarks. 

➢The application of the SZ lemma in the proof 
implies that most polynomials with coefficient bit 
complexity O(s log s) require circuits of size s.

➢The coefficient bit complexity of O(s log s) is not 
quite satisfactory if s = n𝜔(1). 



Existence of “hard” multivariates

 Theorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients 
require circuits of size 2𝛺(n) over any field. 

 Ref. “Arithmetic complexity of algebraic extensions” by 
Hrubes & Yehudayoff (2011).



Existence of “hard” multivariates

 Theorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients 
require circuits of size 2𝛺(n) over any field. 

 Ref. “Arithmetic complexity of algebraic extensions” by 
Hrubes & Yehudayoff (2011).

 Question. Is there an family of multilinear polynomials 
with 0/1 coefficients in VNP that has super-polynomial 
circuit complexity? 

 Conjecture. Perm is such a family over fields of char ≠ 2.


