
Algebraic Complexity Theory

Lecture 5: Determinant vs. Permanent;

Circuit lower bounds

Department of Computer Science,
Indian Institute of Science

Recap

 In the last two lectures, we defined the complexity
classes VNP, VP, VBP, VF, and observed that VF ⊆ VBP ⊆ VP ⊆ VNP. Whether or not any of these
containments is proper is an open problem.

 We also defined “complete” families of polynomials
for the above-mentioned classes using p-projections
and saw that IMM3 is VF-complete, Det and IMM are
VBP-complete, Hom is VP-complete, and Perm and
Ham are VNP-complete.

Recap

VP

VBP

VF

Hom

IMM, Det

IMM3

VNP Perm, Ham

The VBP vs. VNP problem can be equivalently stated as
follows: Prove that if Permn is a projection of Detm then
m = n𝜔(1). Naturally, it is also known as the Permanent

versus Determinant problem.

Algebraic complexity

classes

Permanent versus Determinant

Perm versus Det

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Recall the following from the previous lectures.

 Obs. Ryser’s formula gives a layered ABP of size n2n
for Permn.

 Claim. (Valiant 1979) If f is computable by a layered
ABP of size s then f is an affine projection of DetO(s).

 Thus, m = O(n2n).

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Recall the following from the previous lectures.

 Obs. Ryser’s formula gives a layered ABP of size n2n
for Permn.

 Claim. (Valiant 1979) If f is computable by a layered
ABP of size s then f is an affine projection of DetO(s).

 Thus, m = O(n2n). There’s a better upper bound!

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Thus, for n = 3, m ≤ 7, which is known to be optimal
(Ikenmeyer, Hüttenhain 2016; Alper, Bogart, Velasco 2017).

 It’s easy to see that for n = 2, m = 2.

 perm = det
x11 x12

x21 x22

x11 -x12

x21 x22

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n
nodes that computes Permn. Then, we’ll derive a
matrix M from A such that det(M) = Permn (as in
Valiant’s proof of VBP-hardness of Det).

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n
nodes that computes Permn. Then, we’ll derive a
matrix M from A such that det(M) = Permn.

 The ABP A has n+1 layers of nodes V0, …,Vn. The
nodes of Vi are labelled by all subsets of [n] of size i.

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. We’ll create a layered ABP A with 2n
nodes that computes Permn. Then, we’ll derive a
matrix M from A such that det(M) = Permn.

 The ABP A has n+1 layers of nodes V0, …,Vn. The
nodes of Vi are labelled by all subsets of [n] of size i.

 There’s an edge, labelled by xij, from a node S in Vi-1 to
a node S ∪ {j} in Vi if j ∉ S.

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and
it computes Permn.

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and
it computes Permn.

 Merge the nodes in V0 and Vn, and add a self-loop to
every other node to obtain a digraph G on 2n - 1
vertices. Let M be the adjacency matrix of G.

 Observe that det(M) = Permn if n is odd.

Perm versus Det: Upper bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Grenet 2012, Nisan 1991) m ≤ 2n – 1.

 Proof sketch. Observe that the ABP A has 2n nodes and
it computes Permn.

 Merge the nodes in V0 and Vn, and add a self-loop to
every other node to obtain a digraph G on 2n - 1
vertices. Let M be the adjacency matrix of G.

 Observe that det(M) = Permn if n is odd.

 If n is even, alter G slightly. (Homework: how?)

Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 It is conjectured that m = 2𝛺(n).

 Obs. If we show m = n𝜔(1), then VBP ≠ VNP. If we
show m = n𝜔(log n), then by the “depth reduction”
results we can infer that VP ≠ VNP.

 Degree comparison gives m ≥ n. There’s a significantly
better lower bound!

Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Mignon & Ressayre 2004) m ≥ n2/2 over any
field of characteristic zero.

 The lower bound can be extended to arbitrary fields
of characteristic ≠ 2. (Cai, Chen and Li 2008).

 Theorem. (Yabe 2015) m ≥ n2 – 2n + 2 over ℝ.

Perm versus Det: Lower bound

 Question. How large is the smallest m s.t. Permn is an
affine projection of Detm?

 Theorem. (Mignon & Ressayre 2004) m ≥ n2/2 over any
field of characteristic zero.

 Unfortunately, the above theorem doesn’t imply a
superlinear (in the number of variables) lower bound
for circuits, or even ABPs, as n2 is the number of
variables of Permn.

Univariate circuit lower bounds

Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽,
can be easily computed by a circuit over 𝔽 of size
O(D log D) using repeated squaring.

Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽,
can be easily computed by a circuit over 𝔽 of size
O(D log D) using repeated squaring.

 Horner’s rule. (1819) Polynomial f can be computed
by a formula that uses D additions and D
multiplications as f = a0 + x(a1 + x(a2 + x(a3 + …))).

Univariate polynomials and circuits

 Obs. A polynomial f(x) = aDxD + … + a0, where ai ∈ 𝔽,
can be easily computed by a circuit over 𝔽 of size
O(D log D) using repeated squaring.

 Horner’s rule. (1819) Polynomial f can be computed
by a formula that uses D additions and D
multiplications as f = a0 + x(a1 + x(a2 + x(a3 + …))).

 Question. (Ostrowski 1954) Is Horner’s rule optimal?

 Ref. “On two problems in abstract algebra connected to
Horner’s rule”, by Ostrowski (1954).

Univariate polynomials and circuits

 Definition. The number of × and ÷ gates with at least
two children not labelled by field constants, is called
the non-scalar complexity of a circuit. If the circuit
has no ÷ gates, then non-scalar complexity is also
called the multiplicative complexity.

Univariate polynomials and circuits

 Definition. The number of × and ÷ gates with at least
two children not labelled by field constants, is called
the non-scalar complexity of a circuit. If the circuit
has no ÷ gates, then non-scalar complexity is also
called the multiplicative complexity.

 Notations. S(f) := complexity of f = the size of the
smallest circuit computing f. Similarly, Sm(f) := the
multiplicative complexity of f, and Sns(f) := the non-
scalar complexity of f.

Univariate polynomials and circuits

 Let f(x) = aDxD + … + a0, where a0, …, aD and x are
variables. Horner’s rule implies Sns(f) ≤ D.

 Theorem. (Pan 1966) Sns(f) = D.

 Ref. “Methods of computing values of polynomials” by
Pan (1966).

Univariate polynomials and circuits

 Let f(x) = aDxD + … + a0, where a0, …, aD and x are
variables. Horner’s rule implies Sns(f) ≤ D.

 Theorem. (Pan 1966) Sns(f) = D.

 Ref. “Methods of computing values of polynomials” by
Pan (1966).

 Question. Are there explicit degree-D univariate
polynomials with circuit complexity 𝛺(D)?

Univariate polynomials and circuits

 Theorem. (Strassen 1974) Let f(x) = ∑i∈[0,D] 22 xi.
Then, the number of operations in any circuit over ℂ
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ.

 Ref. “Polynomial with rational coefficients which are hard
to compute” by Strassen (1974).

iD2

Univariate polynomials and circuits

 Theorem. (Strassen 1974) Let f(x) = ∑i∈[0,D] 22 xi.
Then, the number of operations in any circuit over ℂ
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ.

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x)
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 Ref. “Algebraic Complexity Theory” (Ch-9, Cor 9.4) by
Bürgisser, Clausen, Shokrollahi (1997).

iD2

Univariate polynomials and circuits

 Theorem. (Strassen 1974) Let f(x) = ∑i∈[0,D] 22 xi.
Then, the number of operations in any circuit over ℂ
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ.

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x)
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 However, the f in the above two theorems are not
sufficiently explicit. Unless the bit complexity of the
coefficients is poly(D), f can’t be evaluated efficiently.

iD2

Univariate polynomials and circuits

 Theorem. (Strassen 1974) Let f(x) = ∑i∈[0,D] 22 xi.
Then, the number of operations in any circuit over ℂ
computing f is 𝛺(D), i.e., S(f) = 𝛺(D) over ℂ.

 Theorem. (Bürgisser, Clausen, Shokrollahi 1997) Let f(x)
= ∑i∈[1,D] √pi ∙ xi , where pi is the ith prime. Then, S(f) = 𝛺(D/ log D) and Sm(f) = 𝛺(√(D/ log D)) over ℂ.

 Another reason to look for an f with low coefficient
complexity comes from the connection between
univariate and multivariate circuit lower bounds.

iD2

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Corollary. If S(f) = 𝛺(D), then S(𝑓) = 𝛺(2n).

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Corollary. If S(f) = 𝜔(log D), then S(𝑓) = 𝜔(n).

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Corollary. If S(f) = 𝜔(log D), then S(𝑓) = 𝜔(n).

 If the coefficients of 𝑓 are computable in #P/poly then 𝑓 defines a family in VNP. For this to happen the ai’s
must necessarily have bit complexity poly(log D).

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Proof. Let C be a circuit of size 𝓈 computing 𝑓. By
replacing yk by x in C we get a circuit for f.

i0 in-1

2k

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Proof. Let C be a circuit of size 𝓈 computing 𝑓. By
replacing yk by x in C we get a circuit for f. As x, x2,
…, x can be computed using repeated squaring, 𝓈 +
2(n-1) ≥ s implying 𝓈 ≥ s – O(log D).

i0 in-1

2k

2n-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Proving a univariate circuit lower bound is “harder”
than proving a multivariate circuit lower bound.

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Open problem. Describe an explicit univariate
polynomial of degree D and having coefficient
complexity poly(D) such that S(f) = 𝜔(log D).

i0 in-1

Univariate lb ⇒ Multivariate lb

 Let f(x) = ∑i∈[0,D] ai
 xi, where ai ∈ 𝔽. Let n = ⎣log D⎦ +

1, y = {y0, …, yn-1}, and bin(i) = (in-1, …, i0) be the bits
in the binary representation of i.

 Define ybin(i) = y0 ∙…∙ yn-1 and 𝑓(y) = ∑i∈[0,D] ai
 ybin(i) .

Observe that 𝑓(y) is a multilinear polynomial.

 Lemma. If any circuit computing f has size ≥ s, then any
circuit computing 𝑓 has size 𝓈 ≥ s – O(log D).

 Remark. Proving a 𝛺(log D) univariate lower bound is
easy -- think of computing xD.

i0 in-1

A candidate “hard” univariate

 Wilkinson’s polynomial. wD(x) := ∏i∈[1,D] (x - i).

 Conjecture. S(wD) = 𝜔(log D) over rationals.

 Remarks.

➢The bit complexity of every coefficient of wD is
poly(D). So, wD is more explicit than the two
univariate polynomials mentioned before.

➢wD is computable by a circuit over ℤ of size O(D).
The constants appearing in the circuit have bit
complexity O(log D).

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Refs.

1. “Factoring numbers in O(log n) arithmetic steps” by
Shamir (1979).

2. “Straight-line complexity and integer factorization” by
Lipton (1994).

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Assume w.l.o.g. that wD(x) := ∏i∈[1,D] (x + i).

 Goal. Design a poly-time TM M (with polynomial bits
of advice) that takes input integer N and outputs a
non-trivial factor of N, provided N is composite.

 Input size is ⎣log N⎦ + 1.

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w .

 Observe that the size of the advice string is poly(n), by
the condition given in the theorem statement.

2n

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w .

 Fact. (N-1)! = 0 mod N if and only if N is composite.
2n

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w .

 Fact. (N-1)! = 0 mod N if and only if N is composite.

 Our TM M tries to find the smallest 𝓁 < N such that 𝓁! = 0 mod N. Then, it computes gcd(𝓁, N). As (𝓁-1)! ≠
0 mod N, gcd(𝓁, N) must be nontrivial.

2n

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Let n be such that 2n-1 < N ≤ 2n.

 Advice. The circuits for w1, w2, w4, …, w .

 Fact. (N-1)! = 0 mod N if and only if N is composite.

 Our TM M tries to find the smallest 𝓁 < N such that 𝓁! = 0 mod N. Then, it computes gcd(𝓁, N).

 Observe, if m! = 0 mod N then (m+1)! = 0 mod N.

2n

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N.

 This is done by evaluating the circuit for w at 0
and computing the output of every gate modulo N.

 As 2(i-1)! ≠ 0 mod N, 𝓁 ∈ [2i-1, 2i].

2i

2i

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N.

 Also, compute 2(i-1)! = w (0) mod N.
2i

2i-1

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N.

 Also, compute 2(i-1)! = w (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w (2i-1) = 0 mod N.

2i

2i-1

2j

= (2i-1 + 2j)!

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N.

 Also, compute 2(i-1)! = w (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w (2i-1) = 0 mod N.

 Then, 𝓁 ∈ [2i-1 + 2j-1, 2i-1 + 2j].

2i

2i-1

2j

A candidate “hard” univariate

 Theorem. (Shamir ‘79, Lipton ‘94) If wD is computable
by a circuit over ℤ of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

 Proof. Use “binary search” to compute 𝓁.

➢ Find the smallest i s.t. 2i! = w (0) = 0 mod N.

 Also, compute 2(i-1)! = w (0) mod N.

➢Find the smallest j ≤ i-1 s.t. 2i-1!∙w (2i-1) = 0 mod N.

 Then, 𝓁 ∈ [2i-1 + 2j-1, 2i-1 + 2j].

➢ Continue the “binary search” as above to find 𝓁.

2i

2i-1

2j

Multivariate circuit lower bounds

Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 𝛺(n+dCd)?

Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 𝛺(n+dCd)?

 As mentioned before, univariate lower bounds imply
multivariate lower bounds. But, the univariates for
which we know good lower bounds don’t have low
bit complexity of the coefficients. (Think about the
univariate in Strassen’s theorem.)

Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 𝛺(n+dCd)?

 Unlike the case for Boolean circuits, a simple counting
argument doesn’t work here as there are infinitely
many circuits (over infinite fields) even if the underlying
digraph is fixed.

Existence of “hard” multivariates

 Obs. Every n-variate polynomial of degree d can be
computed by a circuit of size d∙ n+dCd.

 Question. Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 𝛺(n+dCd)?

 Unlike the case for Boolean circuits, a simple counting
argument doesn’t work here as there are infinitely
many circuits (over infinite fields) even if the underlying
digraph is fixed.

Yes!

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Algebraic independence is a generalization of the
notion of linear independence.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. Let h be a polynomial of degree D (to be
fixed later in the analysis). Pretend that the
coefficients of h are variables; call these z variables. So,
|z| = m+DCm.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. The polynomial h(f1, …, fm) ∈ 𝔽[x1,…, xn]
has degree at most dD. So, there are at most n+dDCn
monomials in h(f1, …, fm).

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. The polynomial h(f1, …, fm) ∈ 𝔽[x1,…, xn]
has degree at most dD. So, there are at most n+dDCn
monomials in h(f1, …, fm). The coefficients of these
monomials are linear forms in the z variables.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. If |z| = m+DCm > n+dDCn, it’s possible to set
the z variables to 𝔽 elements (not all 0) s.t. all the
previously mentioned linear forms vanish, implying
h(f1, …, fm) = 0. Now choose D s.t. m+DCm > n+dDCn.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n
(assuming dD ≥ n).

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n
(assuming dD ≥ n). m+DCm ≥ n+1+DCn+1 ≥ (D/(n+1))n+1.

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Proof sketch. n+dDCn ≤ (e(n+dD)/n)n ≤ (2edD/n)n
(assuming dD ≥ n). m+DCm ≥ n+1+DCn+1 ≥ (D/(n+1))n+1.
If we choose D s.t. (D/(n+1))n+1 ≥ (2edD/n)n , we’re
done. Set D = dO(n).

Algebraic independence: A detour

 Definition. Polynomials f1, …, fm ∈ 𝔽[x1,…, xn] are
algebraically dependent if there’s a nonzero polynomial
h ∈ 𝔽[y1,…, ym] such that h(f1, …, fm) = 0. Such an h is
called an annihilating polynomial for f1, …, fm.

 Lemma *. Let f1, …, fm ∈ 𝔽[x1,…, xn], deg fi ≤ d, and m
> n. Then, there’s a nonzero h ∈ 𝔽[y1,…, ym] of degree
dO(n) such that h(f1, …, fm) = 0.

 Theorem. (Perron 1927) There’s an annihilating
polynomial h for f1, …, fm of degree ≤ dn.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 If s = poly(n), the bit complexity of the coefficients of
fhard are polynomially bounded.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s
nodes. So, the number of distinct digraphs with s
edges is sO(s). The nodes of such a digraph can be
labelled in nO(s) ways using +, × or one of the n
variables.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s
nodes. So, the number of distinct digraphs with s
edges is sO(s). The nodes of such a digraph can be
labelled in nO(s) ways using +, × or one of the n
variables. Pick one of these sO(s) many digraphs, call it
C, and label it’s s edges by distinct variables z1, …, zs.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. W.l.o.g a circuit of size s has at most s
nodes. So, the number of distinct digraphs with s
edges is sO(s). The nodes of such a digraph can be
labelled in nO(s) ways using +, × or one of the n
variables. Pick one of these sO(s) many digraphs, call it
C, and label it’s s edges by distinct variables z1, …, zs.

 The output of C is a polynomial whose n+dCn
coefficients are polynomials in z1, …, zs of degree ≤ s.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn.

 By Lemma *, there’s a non-zero annihilating polynomial
hC(y) of degree sO(s) for the n+dCn many coefficients
polynomials in the z variables. (as |z| = s < n+dCn)

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn.

 By Lemma *, there’s a non-zero annihilating polynomial
hC(y) of degree sO(s) for the n+dCn many coefficients
polynomials in the z variables.

 Define P(y) := ∏Circuit C hC(y). Note that deg P = sO(s).

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. Let M(n,d) := {e ∈ ℤn
≥0 : ||e||1 ≤ d}, and y

:= {ye : e ∈ M(n,d)}. Observe, |M(n,d)| = |y| = n+dCn.

 By Lemma *, there’s a non-zero annihilating polynomial
hC(y) of degree sO(s) for the n+dCn many coefficients
polynomials in the z variables.

 Define P(y) := ∏Circuit C hC(y). Note that deg P = sO(s).

 By SZ lemma, there’s an a : = (ae : e ∈ M(n,d)) s.t. P(a)
≠ 0 & bit complexity of ae is O(s log s).

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Proof sketch. This mean, the hard polynomial

 fhard := ∑e∈M(n,d) ae x
e

 is not computable by any circuit of size s.

Existence of “hard” multivariates

 Theorem. Let n ≤ s < n+dCn & |𝔽| > 2O(s log s). There’s a
polynomial fhard with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes fhard.

 Remarks.

➢The application of the SZ lemma in the proof
implies that most polynomials with coefficient bit
complexity O(s log s) require circuits of size s.

➢The coefficient bit complexity of O(s log s) is not
quite satisfactory if s = n𝜔(1).

Existence of “hard” multivariates

 Theorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients
require circuits of size 2𝛺(n) over any field.

 Ref. “Arithmetic complexity of algebraic extensions” by
Hrubes & Yehudayoff (2011).

Existence of “hard” multivariates

 Theorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients
require circuits of size 2𝛺(n) over any field.

 Ref. “Arithmetic complexity of algebraic extensions” by
Hrubes & Yehudayoff (2011).

 Question. Is there an family of multilinear polynomials
with 0/1 coefficients in VNP that has super-polynomial
circuit complexity?

 Conjecture. Perm is such a family over fields of char ≠ 2.

