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Recap

* In the last two lectures, we defined the complexity
classes VNF, VF, VBF VF and observed that VF © VBP
C VP < VNP Whether or not any of these
containments is proper is an open problem.

* We also defined “complete” families of polynomials
for the above-mentioned classes using p-projections
and saw that IMM; is VF-complete, Det and IMM are
VBP-complete, Hom is VP-complete, and Perm and
Ham are VNP-complete.




Recap

> Perm, Ham

> Hom

> IMM, Det

> IMM,

Aigebraic complexitz
classes

The VBP vs. VNP problem can be equivalently stated as
follows: Prove that if Perm_ is a projection of Det_ then
m = n®(), Naturally, it is also known as the Permanent
versus Determinant problem.




Permanent versus Determinant



Perm versus Det

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?




Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Recall the following from the previous lectures.

e Obs. Ryser’s formula gives a layered ABP of size n2"
for Perm.

o Claim. (Valiant 1979) If f is computable by a layered
ABP of size s then f is an affine projection of Detg,,.

e Thus,m = O(n2").



Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Recall the following from the previous lectures.

° Ryser’s formula gives a layered ABP of size n2"
for Perm.
° (Valiant 1979) If f is computable by a layered

ABP of size s then f is an affine projection of Detg,,.

e Thus,m = O(n2"). There’s a better upper bound!



Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

e Thus, for n = 3, m = 7, which is known to be optimal
(Ikenmeyer, Hiittenhain 2016; Alper, Bogart,Velasco 201 7).

* It’s easy to see that forn =2, m = 2.
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perm = det
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Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. We'll create a layered ABP A with 2"
nodes that computes Perm_. Then, we'll derive a

matrix M from A such that det(M) = Perm_ (as in
Valiant’s proof of VBP-hardness of Det).




Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. We'll create a layered ABP A with 2"

nodes that computes Perm_. Then, we'll derive a
matrix M from A such that det(M) = Perm_.

e The ABP A has n+| layers of nodes V,, ...,V.. The
nodes of V. are labelled by all subsets of [n] of size i.




Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. We'll create a layered ABP A with 2"

nodes that computes Perm_. Then, we'll derive a
matrix M from A such that det(M) = Perm_.

e The ABP A has n+| layers of nodes V,, ...,V.. The
nodes of V. are labelled by all subsets of [n] of size i.

* There’s an edge, labelled by x;, from a node Sin V| to
anodeS U {j;inV. ifj&S.



Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. Observe that the ABP A has 2" nodes and
it computes Perm, .




Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. Observe that the ABP A has 2" nodes and
it computes Perm_.

* Merge the nodes in V, and V , and add a self-loop to
every other node to obtain a digraph G on 2" - |
vertices. Let M be the adjacency matrix of G.

e Observe that det(M) = Perm_ if n is odd.



Perm versus Det: Upper bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Grenet 2012, Nisan 199]) m = 2" — |.

* Proof sketch. Observe that the ABP A has 2" nodes and
it computes Perm_.

* Merge the nodes in V, and V , and add a self-loop to
every other node to obtain a digraph G on 2" - |
vertices. Let M be the adjacency matrix of G.

e Observe that det(M) = Perm_ if n is odd.
e If n is even,alter G slightly. (Homework: how?)



Perm versus Det: Lower bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_!?

e It is conjectured that m = 2,

e Obs. If we show m = n®(), then VBP # VNP, If we
show m = n®(°e 0 then by the “depth reduction”
results we can infer that VP # VNP,

e Degree comparison gives m =2 n. There’s a significantly
better lower bound!



Perm versus Det: Lower bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

e Theorem. (Mignon & Ressayre 2004) m = n?/2 over any
field of characteristic zero.

e The lower bound can be extended to arbitrary fields
of characteristic # 2. (Cai, Chen and Li 2008).

e Theorem. (Yabe 2015) m = n? — 2n + 2 over R.



Perm versus Det: Lower bound

e Question. How large is the smallest m s.t. Perm_ is an
dffine projection of Det_?

o (Mignon & Ressayre 2004) m = n?/2 over any
field of characteristic zero.

e Unfortunately, the above theorem doesn’t imply a
superlinear (in the number of variables) lower bound
for circuits, or even ABPs, as n? is the number of
variables of Perm..



Univariate circuit lower bounds



Univariate polynomials and circuits

e Obs. A polynomial f(x) = apxP + ... + a,, where a, € F,
can be easily computed by a circuit over [F of size
O(D log D) using repeated squaring.



Univariate polynomials and circuits

e Obs. A polynomial f(x) = apxP + ... + a,, where a, € F,
can be easily computed by a circuit over [F of size
O(D log D) using repeated squaring.

e Horner’s rule. (1819) Polynomial f can be computed
by a formula that uses D_ additions and D
multiplications as f = a5 + x(a;, + x(a, + x(a; + ...))).




Univariate polynomials and circuits

e Obs. A polynomial f(x) = apxP + ... + a,, where a, € F,
can be easily computed by a circuit over [F of size
O(D log D) using repeated squaring.

e Horner’s rule. (1819) Polynomial f can be computed
by a formula that uses D_ additions and D
multiplications as f = a5 + x(a;, + x(a, + x(a; + ...))).

o Question. (Ostrowski 1954) |Is Horner’s rule optimal?

o Ref. “On two problems in abstract algebra connected to
Horner’s rule”, by Ostrowski (1954).



Univariate polynomials and circuits

The number of x and + gates with at least
two children not labelled by field constants, is called
the non-scalar complexity of a circuit. If the circuit
has no + gates, then non-scalar complexity is also
called the multiplicative complexity.



Univariate polynomials and circuits

The number of x and + gates with at least
two children not labelled by field constants, is called
the non-scalar complexity of a circuit. If the circuit
has no + gates, then non-scalar complexity is also
called the multiplicative complexity.

S(f) := complexity of f = the size of the
smallest circuit computing f. Similarly, S_(f) := the
multiplicative complexity of f, and S _(f) := the non-
scalar complexity of f.



Univariate polynomials and circuits

o Let f(x) = apxP + ... + a, where a,, ..., apand x are
variables. Horner’s rule implies S_ (f) = D.

e Theorem. (Pan 1966) S, (f) = D.

o Ref. “Methods of computing values of polynomials” by
Pan (1966).



Univariate polynomials and circuits

o Let f(x) = apxP + ... + a, where a,, ..., apand x are
variables. Horner’s rule implies S_ (f) = D.

e Theorem. (Pan 1966) S, (f) = D.

o Ref. “Methods of computing values of polynomials” by
Pan (1966).

e Question. Are there explicit degree-D univariate
polynomials with circuit complexity (2(D)?




Univariate polynomials and circuits

o Theorem. (Strassen 1974) Let f(x) = Yooy 22 X
Then, the number of operations in any circuit over C
computing f is (D), i.e., S(f) = 2(D) over C.

o Ref. “Polynomial with rational coefficients which are hard
to compute” by Strassen (1974).



Univariate polynomials and circuits

o Theorem. (Strassen 1974) Let f(x) = Yooy 22 X
Then, the number of operations in any circuit over C
computing f is (D), i.e., S(f) = 2(D) over C.

e Theorem. (Biirgisser, Clausen, Shokrollahi 1997) Let f(x)
= Die[I D] \p, - i, where p; is the it prime. Then, S(f) =
Q(D/ log D) and S_(f) = 2(\(D/ log D)) over C.

o Ref. “Algebraic Complexity Theory” (Ch-9, Cor 9.4) by
Biirgisser, Clausen, Shokrollahi (1997).



Univariate polynomials and circuits

o Theorem. (Strassen 1974) Let f(x) = Yooy 22 X
Then, the number of operations in any circuit over C
computing f is (D), i.e., S(f) = 2(D) over C.

e Theorem. (Biirgisser, Clausen, Shokrollahi 1997) Let f(x)
= Die[I D] \p, - i, where p; is the it prime. Then, S(f) =
Q(D/ log D) and S_(f) = 2(\(D/ log D)) over C.

e However, the f in the above two theorems are not
sufficiently explicit. Unless the bit complexity of the
coefficients is poly(D), f can’t be evaluated efficiently.




Univariate polynomials and circuits

o Theorem. (Strassen 1974) Let f(x) = Yooy 22 X
Then, the number of operations in any circuit over C
computing f is (D), i.e., S(f) = 2(D) over C.

e Theorem. (Biirgisser, Clausen, Shokrollahi 1997) Let f(x)
= Die[I D] \p, - i, where p; is the it prime. Then, S(f) =
Q(D/ log D) and S_(f) = 2(\(D/ log D)) over C.

e Another reason to look for an f with low coefficient
complexity comes from the connection between
univariate and multivariate circuit lower bounds.




Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog D +

L,y ={yo ---» ¥..1}»and bin(i) = (i, ..., iy) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).
o Corollary. If S(f) = (D), then S(f) = £2(2").



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog D +

L,y ={yo ---» ¥..1}»and bin(i) = (i, ..., iy) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).
e Corollary. If S(f) = w(log D), then S(f) = w(n).



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

o Corollary. If S(f) = w(log D), then S(f) = w(n).

* If the coefficients of [ are computable in #P/poly then

[ defines a family in VINP. For this to happen the a’s
must necessarily have bit complexity poly(log D).



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

* Proof. Let C be a circuit of size 8 computing f. By

2I<

replacing y, by x” in C we get a circuit for f.



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

* Proof. Let C be a circuit of size 8 computing f. By

. 2k, . . 9]

replacing y, by x* in C we get a circuit for f. As x, x*,

..., x”" can be computed using repeated squaring, 8 +

2(n-1) 2 s implying 8 2 s — O(log D). -



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

e Proving a univariate circuit lower bound is “harder”
than proving a multivariate circuit lower bound.



Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

e Open problem. Describe an explicit univariate
polynomial of degree D and having coefficient
complexity poly(D) such that S(f) = w(log D).




Univariate |b = Multivariate |b

* Let f(x) = 2oy 2 X, where a, € F.Let n = Llog DJ +

L,y ={yo ---» ¥,/ ;s and bin(i) = (i, ..., i) be the bits
in the binary representatlon of i.
* Define y*r0) = yg ...y} and f(y) = Yicropy 2 y™"0 .

Observe that f(y) is a multlllnear polynomial.

e Lemma. If any circuit computing f has size = s, then any
circuit computing [ has size 3 = s — O(log D).

e Remarl<. Proving a (2(log D) univariate lower bound is
easy -- think of computing xP.



A candidate “hard’” univariate

e Wilkinson’s polynomial. wp(x) := [T oy (X - i)

o Conjecture. S(wp) = w(log D) over rationals.

e Remarks.

» The bit complexity of every coefficient of w is
poly(D). So, wp is more explicit than the two
univariate polynomials mentioned before.

> Wp is computable by a circuit over Z of size O(D).
The constants appearing in the circuit have bit
complexity O(log D).



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

e Refs.

I. “Factoring numbers in O(log n) arithmetic steps’ by
Shamir (1979).

2. “Straight-line complexity and integer factorization” by
Lipton (1994).



A candidate “hard’” univariate

° (Shamir 79, Lipton ‘94) If wy is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Assume w.l.o.g. that w(x) := [ |ic;; py (x + ).

° Design a poly-time TM M (with polynomial bits
of advice) that takes input integer N and outputs a
non-trivial factor of N, provided N is composite.

* Input size is Llog NJ + 1.



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

e Proof. Let n be such that 2"! < N < 2,

o The circuits for w, w,, wy, ..., W,, .

* Observe that the size of the advice string is poly(n), by
the condition given in the theorem statement.




A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

e Proof. Let n be such that 2"! < N < 2,

o The circuits for w, w,, wy, ..., W,, .

e Fact. (N-1)!' =0 mod N if and only if N is composite.




A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

e Proof. Let n be such that 2"! < N < 2,

o The circuits for w, w,, wy, ..., W,, .

e Fact. (N-1)!' =0 mod N if and only if N is composite.

e Our TM M tries to find the smallest £ < N such that
£! = 0 mod N. Then, it computes gcd(¥, N). As (£-1)! #
0 mod N, gcd(#, N) must be nontrivial.




A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

e Proof. Let n be such that 2"! < N < 2,

o The circuits for w, w,, wy, ..., W,, .

e Fact. (N-1)!' =0 mod N if and only if N is composite.

e Our TM M tries to find the smallest £ < N such that
¢! = 0 mod N.Then, it computes gcd(, N).

* Observe, if m! = 0 mod N then (m+1)! =0 mod N.




A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Use “binary search” to compute .
» Find the smallest i s.t. 2'! = w,(0) = 0 mod N.

This is done by evaluating the circuit for w, at 0
and computing the output of every gate modulo N.

As 20-D1' 20 mod N, £ € [2F,21.



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Use “binary search” to compute .
» Find the smallest i s.t. 2'! = w,(0) = 0 mod N.
Also, compute 2(-D! = w _(0) mod N.



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Use “binary search” to compute .
» Find the smallest i s.t. 2'! = w,(0) = 0 mod N.
Also, compute 2(-D! = w _(0) mod N.

> Find the smallest j < i-I s.t. 2"''w,; (2") = 0 mod N.
\ J

I
= (27! + 2i)!



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Use “binary search” to compute 7.
» Find the smallest i s.t. 2'! = w,(0) = 0 mod N.
Also, compute 2(-D! = w _(0) mod N.
> Find the smallest j < i-I s.t. 2"''w,; (2") = 0 mod N.
Then, £ € [2 + 21121 + 21,



A candidate “hard’” univariate

o Theorem. (Shamir °79, Lipton ‘94) If wg is computable
by a circuit over 7Z of size poly(log D) and the integers
labelling the edges of the circuit have bit complexity
poly(log D), then integer factoring is in P/poly.

* Proof. Use “binary search” to compute 7.
» Find the smallest i s.t. 2'! = w,(0) = 0 mod N.
Also, compute 2(-D! = w _(0) mod N.
> Find the smallest j < i-I s.t. 2"''w,; (2") = 0 mod N.
Then, £ € [2 + 21121 + 21,

» Continue the “binary search” as above to find 7.
o



Multivariate circuit lower bounds



Existence of “hard’” multivariates

° Every n-variate polynomial of degree d can be
computed by a circuit of size d- "*IC_.

° Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 2("*¢C,)?




Existence of “hard’” multivariates

° Every n-variate polynomial of degree d can be
computed by a circuit of size d- "*IC_.

° Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 2("*¢C,)?

* As mentioned before, univariate lower bounds imply
multivariate lower bounds. But, the univariates for
which we know good lower bounds don’t have low
bit complexity of the coefficients. (Think about the
univariate in Strassen’s theorem.)



Existence of “hard’” multivariates

° Every n-variate polynomial of degree d can be
computed by a circuit of size d- "*IC_.

° Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 2("*¢C,)?

e Unlike the case for Boolean circuits, a simple counting
argument doesn’t work here as there are infinitely
many circuits (over infinite fields) even if the underlying
digraph is fixed.




Existence of “hard’” multivariates

° Every n-variate polynomial of degree d can be
computed by a circuit of size d- "*IC_.

° Is there a polynomial with low bit complexity
of the coefficients that requires circuit size 2("*¢C,)?

e Unlike the case for Boolean circuits, a simple counting
argument doesn’t work here as there are infinitely
many circuits (over infinite fields) even if the underlying
digraph is fixed.




Algebraic independence: A detour

o Polynomials f,, ..., f € [F[x,,..., x ] are
algebraically dependent if there’s a nonzero polynomial

h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is
called an annihilating polynomial for f, ..., f

m.

* Algebraic independence is a generalization of the
notion of linear independence.



Algebraic independence: A detour

o Definition. Polynomials f, ..., f_ € [F[x,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.



Algebraic independence: A detour

o Polynomials f,, ..., f € [F[x,,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Let f, ..., f € F[x,,...,x.],deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.

* Proof sketch. Let h be a polynomial of degree D (to be
fixed later in the analysis). Pretend that the

coefficients of h are variables; call these z variables. So,
— m+D
|z| = ™PC .



Algebraic independence: A detour

o Definition. Polynomials f, ..., f_ € [F[x,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.

* Proof sketch. The polynomial h(f,, ..., f ) € F[x,,..., x_]
has degree at most dD. So, there are at most "*°C_
monomials in h(f, ..., f ).



Algebraic independence: A detour

o Definition. Polynomials f, ..., f_ € [F[x,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.

* Proof sketch. The polynomial h(f,, ..., f ) € F[x,,..., x_]
has degree at most dD. So, there are at most "*°C_
monomials in h(f,, ..., f_). The coefficients of these
monomials are linear forms in the z variables.




Algebraic independence: A detour

o Definition. Polynomials f, ..., f_ € [F[x,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.

* Proof sketch. If |z| = ™PC_ > n*dPC it’s possible to set
the z variables to [F elements (not all 0) s.t. all the

previously mentioned linear forms vanish, implying
h(f,,...,f ) =0. Now choose D s.t. "™PC_ > n*dPC |
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o Definition. Polynomials f, ..., f € [F[x,..., x,] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y. ] of degree

d®°® such that h(f, ...,f_) = 0.

e Proof sketch. ™C < (e(n+dD)/n)" < (2edD/n)"
(assuming dD = n). ™PC_=mI*DC = (D/(n+1))"!.



Algebraic independence: A detour

o Definition. Polynomials f, ..., f € [F[x,..., x,] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y. ] of degree

d®°® such that h(f, ...,f_) = 0.

e Proof sketch. ™C < (e(n+dD)/n)" < (2edD/n)"
(assuming dD = n). ™*PC_ = mtI*DC = (D/(n+1))"*!,
If we choose D s.t. (D/(n+1))"*! = (2edD/n)" , we're

done. Set D = d°M),
O



Algebraic independence: A detour

o Definition. Polynomials f, ..., f_ € [F[x,..., x ] are
algebraically dependent if there’s a nonzero polynomial
h € F[y,,...,y,,] such that h(f,, ..., f_) = 0.Such an h is

called an annihilating polynomial for f, ..., f .
o Lemma *. Let f,, ..., f € F[x,...,x ], deg f = d,and m
> n. Then, there’s a nonzero h € F[y,...,y, ] of degree

d°™ such that h(f,, ...,f._) = 0.

e [heorem. (Perron 1927) There’s an annihilating
polynomial h for f, ..., f of degree = d".



Existence of “hard’” multivariates

e Theorem.Let n < s < "d4C_& |[F| > 296 °¢s), There’s a
polynomial f_, , with bit complexity of the coefficients

O(s log s) s.t. no circuit of size s computes f__ .

 If s = poly(n), the bit complexity of the coefficients of

f...q are polynomially bounded.
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Existence of “hard’” multivariates

o Let n < s < "4C_ & |[F| > 296 ees), There’s a
polynomial f_, , with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes f__ .

 Proof sketch. W.l.o.g a circuit of size s has at most s
nodes. So, the number of distinct digraphs with s
edges is s°©). The nodes of such a digraph can be
labelled in n©®®) ways using +, X or one of the n
variables. Pick one of these s°©) many digraphs, call it
C,and label it’s s edges by distinct variables z, ..., z..

* The output of C is a polynomial whose "¢C_
coefficients are polynomials in z|, ..., z. of degree < s.



Existence of “hard’” multivariates

e Theorem.Let n < s < "d4C_& |[F| > 296 °¢s), There’s a
polynomial f_, , with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes f__ .

e Proof sketch. Let M(n,d) := {e € Z",, : [|e]|, = d},and y
= {y. :e € M(n,d)}. Observe, |M(n,d)| = |y| = "*IC..
* By Lemma *, there’s a non-zero annihilating polynomial

he(y) of degree s©© for the "*9C_ many coefficients
polynomials in the z variables. (as |z| =s < "4C )
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polynomial f_ , with bit complexity of the coefficients
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Existence of “hard’” multivariates

e Theorem.Let n < s < "dC_ & |[F| > 296 °¢s) | There’s a
polynomial f_ , with bit complexity of the coefficients
O(s log s) s.t. no circuit of size s computes f__ .

e Proof sketch. Let M(n,d) := {e € Z",, : [|e]|, = d},and y
= {y. :e € M(n,d)}. Observe, |M(n,d)| = |y| = "*IC..

e By Lemma *, there’s a non-zero annihilating polynomial
he(y) of degree s©© for the "*9C_ many coefficients
polynomials in the z variables.

* Define P(y) := [|cicuicc he(y). Note that deg P = s©6),

e By SZ lemma, there’s an a : = (a, : e € M(n,d)) s.t. P(a)
# 0 & bit complexity of a_ is O(s log s).




Existence of “hard’” multivariates

e Theorem.Let n < s < "d4C_& |[F| > 296 °¢s), There’s a
polynomial f_, , with bit complexity of the coefficients

O(s log s) s.t. no circuit of size s computes f__ .

* Proof sketch. This mean, the hard polynomial

fhard ‘= ZeEM(n,d) de X®
is not computable by any circuit of size s.



Existence of “hard’” multivariates

o Let n < s < "4C_ & |[F| > 296 ees), There’s a
polynomial f_, , with bit complexity of the coefficients

O(s log s) s.t. no circuit of size s computes f__ .

»The application of the SZ lemma in the proof
implies that most polynomials with coefficient bit
complexity O(s log s) require circuits of size s.

» The coefficient bit complexity of O(s log s) is not
quite satisfactory if s = n®(}),



Existence of “hard’” multivariates

e [heorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients
require circuits of size 2°(" over any field.

o Ref. “Arithmetic complexity of algebraic extensions™ by
Hrubes & Yehudayoff (201 I).



Existence of “hard’” multivariates

e [heorem. (Hrubes & Yehudayoff 2011) Almost all n-
variate multilinear polynomials with 0/1 coefficients
require circuits of size 2°(" over any field.

o Ref. “Arithmetic complexity of algebraic extensions™ by
Hrubes & Yehudayoff (201 I).

° Is there an family of multilinear polynomials
with 0/1 coefficients in VNP that has super-polynomial
circuit complexity!?

o Conjecture. Perm is such a family over fields of char # 2.



