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Determinant: Combinatorics, Algorithms, and
Complexity∗

Meena Mahajan V. Vinay

31 December, 1997

Abstract

We prove a new combinatorial characterization of the determi-Abstract-1

nant. The characterization yields a simple combinatorial algorithm
for computing the determinant. Hitherto, all (known) algorithms for
the determinant have been based on linear algebra. Our combinatorial
algorithm requires no division, and works over arbitrary commutative
rings. It also lends itself to efficient parallel implementations.

It has been known for some time now that the complexity classAbstract-2

GapL characterizes the complexity of computing the determinant of
matrices over the integers. We present a direct proof of this charac-
terization.

1 Introduction

The determinant has been a subject of study for over 200 years. Its history1-1

can be traced back to Leibnitz, Cramer, Vandermode, Binet, Cauchy, Jacobi,
Gauss, and others. Given its importance in linear algebra in particular and in
geometry in general, it is not surprising that a galaxy of great mathematicians
investigated the determinant from varied viewpoints.

The algorithmic history of the determinant is as old as the mathemati-1-2

cal concept itself. After all, the determinant was invented to solve systems
of linear equations. Much of the initial effort was expended on proving the

∗A preliminary version of this paper appeared in [MV97a].
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so-called “Cramer’s rule,” “Laplace expansion,” and the “Cauchy-Binet the-
orem,” and these led to a variety of interesting algebraic identities. The first
definitions of determinant used inversions as a means of computing the signs
of permutations. Cauchy realized that the sign of a permutation can be more
easily computed by considering the permutation’s cycle decomposition: if k
is the number of cycles in the decomposition of a permutation over Sn, he
showed that (−1)n−k computes the sign. In a sense, Cauchy appears to have
started the combinatorial approach to determinants.

The so-called “Gaussian elimination” is a standard procedure for calcu-1-3

lating the determinant. It converts a given matrix into an upper triangular
matrix using elementary row operations, which maintain the value of the
determinant, and uses O(n3) operations. It can be shown that the sizes of
numbers in the intermediate steps are small, and this gives rise to a poly-
nomial time algorithm. This algorithm, however, appears to be sequential.
In its present form, the algorithm would require division, rendering it use-
less over arbitrary rings. To use this method over a ring, one considers a
field extension (e.g., for computing the determinant over integers, compute
using rationals). While theoretically correct, this procedure often introduces
a computational problem; for instance, over integers, because of the divi-
sions involved, this method may needlessly introduce floating point errors.
Thus, in several situations, a division-free method that still has polynomial
bit complexity would be preferable to Gaussian elimination.

Numerical analysts have looked closely at the problem of computing the1-4

determinant, and also the associated problem of computing the characteris-
tic polynomial of a given matrix. An authoritative book on this subject is
due to Fadeev and Fadeeva [FF63]. The book lists more than half a dozen
methods for computation of the characteristic polynomial. The most im-
portant among them seem to be Krylov’s method, Leverier’s method, and
Samuelson’s method. Csanky [Csa76] observes that Leverier’s method may
be implemented in NC2. However, Leverier’s method uses division, and hence
is unsuitable over arbitrary fields. (The method is applicable only over fields
of characteristic zero or over fields with characteristic greater than the di-
mension of the matrix, so the algorithm cannot be used, in general, over
finite fields.) Berkowitz [Ber84] observes that Samuelson’s method [Sam42]
is division free and may be implemented in NC2. Valiant [Val92] analyzes
the nature of monomials that result from Samuelson’s method. Indepen-
dently, Chistov [Chi85] uses arithmetic over polynomials to come up with a
division-free NC2 algorithm. Thus the Samuelson-Berkowitz algorithm, as

2
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well as Chistov’s algorithm, can be used over any commutative ring.
Vinay [Vin91a], Damm [Dam91], and Toda [Tod91] observed indepen-1-5

dently that DET (as a complexity class) has an exact characterization. They
showed that over integers, DET is exactly GapL. That is, any function that
is logspace reducible to computing the determinant of a matrix over integers
can be computed as the difference of two #L functions. Here, a #L func-
tion corresponds to the number of accepting paths in an NL machine; a GapL
function corresponds to the difference between the number of accepting paths
and the number of rejecting paths in an NL machine, or equivalently, to the
difference between two #L functions. This characterization of DET estab-
lishes a telling parallel between the complexity of the two major algorithmic
problems; namely, the complexity of the permanent vs. the determinant.
While Valiant [Val79] shows that computing the permanent is GapP com-
plete, the determinant is complete for GapL; both are complete for counting
versions of nondeterministic classes. An interesting feature of the three in-
dependent proofs cited above is that they all rely on Samuelson’s method to
convert the problem of computing the determinant to iterated matrix multi-
plication. In this paper, we present a direct and self-contained proof of this
theorem.

We give the first combinatorial algorithm for computing the determinant.1-6

We do this by extending the definition of a permutation to a clow sequence
(“clow” being the acronym for “closed walk”). Using a combinatorial proof,
we establish that all clow sequences that are not permutations cancel each
other, leaving precisely the permutations. We then show how clow sequences
may be realized in a simple graph-theoretic model. The model is described
by a tuple 〈G, s, t+, t−〉, where G is a directed acyclic graph (DAG), and
s, t+, t− are distinguished vertices in G. Let paths(G, s, t) compute the
number of paths from s to t in G. Then the integer function computed by
〈G, s, t+, t−〉 is paths(G, s, t+) − paths(G, s, t−). The model yields a polyno-
mial time algorithm via simple dynamic programming techniques (see Ta-
ble 1). It characterizes GapL exactly, and also contains characterizations in
terms of arithmetic skew circuits [Ven92, Tod91] and arithmetic branching
programs, yielding NC2 and GapL algorithms (see Tables 2 and 3). The
results stand out in contrast to Nisan’s results [Nis91], which show that the
determinant cannot be computed by a polynomial-size branching program
over a noncommutative semi-ring.

The size of the DAG we construct is about O(n4), with O(n6) edges, and1-7

may be implemented on an arithmetic skew circuit with O(n6) wires. This
3
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compares favorably with the O(n18) implementation of Toda. (In [Tod92],
Toda notes that Samuelson’s method can be implemented on arithmetic skew
circuits of size n18.)

Our combinatorial proof is inspired by Straubing, who gives a purely1-8

combinatorial interpretation and a very elegant proof of the Cayley-Hamilton
theorem [Str83].

Various other parallel algorithms for computing the determinant (includ-1-9

ing Chistov’s method and the Samuelson-Berkowitz method) can also be
interpreted combinatorially, and correctness can also be proved using purely
combinatorial techniques. The objects generated by these algorithms turn
out to be variations of clow sequences. Such interpretations for some algo-
rithms are found in [MV97b].

Of course, the combinatorial approach cannot replace the algebraic one1-10

altogether. However, it can (as we feel it does in this case) offer interesting
insights into the nature of a seemingly purely algebraic problem.

2 The Combinatorics

We will start with the definition of the determinant of an n-dimensional2-1

matrix, A:

det(A) =
∑
σ∈Sn

sgn(σ)
∏

i

aiσ(i)

The summation is over all permutations on n elements. The sign of a per-
mutation is defined in terms of the number of inversions:

sgn(σ) = (−1)number of inversions in σ

To move to a combinatorial setting, we interpret the matrix A as a2-2

weighted, directed graph GA on n vertices, where the weight on the directed
edge 〈i, j〉 is aij. A permutation in Sn therefore corresponds to a cycle cover :
the cycle decomposition of the permutation, when interpreted as a graph,
induces a partition on the vertex set into disjoint cycles.

This definition cannot be directly converted into an efficient algorithm for2-3

the determinant, because the number of monomials in the above definition is
n!. Since enumeration is out of the question, any algorithm should implicitly
count over all monomials. The bottleneck in doing so directly is that these

4
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permutations are not easily “factorizable” to allow for a simple implemen-
tation. We will get around this problem by enlarging the summation from
cycle covers to clow sequences.

A clow is a walk 〈w1, . . . , wl〉 starting from vertex w1 and ending at the2-4

same vertex, where any 〈wi, wi+1〉 is an edge in the graph. Vertex w1 is the
least-numbered vertex in the clow, and is called the head of the clow. We
also require that the head occur only once in the clow. This means that there
is exactly one incoming edge (〈wl, w1〉) and one outgoing edge (〈w1, w2〉) at
w1 in the clow.

A clow sequence is a sequence of clows W = 〈C1, . . . , Ck〉 with two prop-2-5

erties:

1. the sequence is ordered: head(C1) < head(C2) < · · · < head(Ck), and

2. the total number of edges (counted with multiplicity) adds to exactly
n.

A cycle cover is a special type of clow sequence. We will now show how2-6

to associate a sign with a clow sequence that is consistent with the definition
of the sign of a cycle cover. The sign of a cycle cover can be shown to be
(−1)n+k, where n is the number of vertices in the graph, and k is the number
of components in the cycle cover. The sign of a clow sequence is defined to
be (−1)n+k, where n is the number of vertices in the graph, and k is the
number of clows in the sequence.

We will also associate a weight with a clow sequence that is consistent2-7

with the contribution of a cycle cover. The weight of a clow C, w(C), is
the product of the weights of the edges in the walk while accounting for
multiplicity. For example, w(〈1, 2, 3, 2, 3〉) = a12a

2
23a32a31. The weight of a

clow sequence W = 〈C1, . . . , Ck〉 is w(W) =
∏

i w(Ci).

Theorem 1

det(A) =
∑

W : a clow sequence
sgn(W)w(W)

Proof of Theorem 1 We prove this by showing that the contribution ofProof of Theorem 1-1

clow sequences that are not cycle covers is zero. Consequently, only the
cycle covers contribute to the summation, yielding exactly the determinant.

5

Chicago Journal of Theoretical Computer Science 1997-5



Mahajan and Vinay Determinant §2

Case 1 Case 2

head

v

v

head

v

Figure 1: Pairing clow sequences of opposing signs

Our proof defines an involution on a signed set. An involution ϕ on aProof of Theorem 1-2

set is a bijection with the property that ϕ2 is the identity map on the set.
The domain is the set of all clow sequences, and their signs define a natural
partition of the domain into two sets.

We will now define an involution on this signed set. It has the propertyProof of Theorem 1-3

that a clow sequence that is not a cycle cover is paired with another clow
sequence over the same multiset of edges, but with opposing sign. The fixed
points of the involution are precisely the cycle covers. This is sufficient to
establish the theorem.

The desired involution is the following. Let W = 〈C1, . . . , Ck〉 be a clowProof of Theorem 1-4

sequence. Choose the smallest i such that 〈Ci+1, . . . , Ck〉 is a set of disjoint
(simple) cycles. If i = 0, the involution maps W to itself. These are obviously
cycle covers and the only fixed points. Otherwise, having chosen i, traverse
Ci starting from the head until one of two things happen:

1. we hit a vertex that touches one of 〈Ci+1, . . . , Ck〉, or

2. we hit a vertex that completes a simple cycle within Ci.

Let us call the vertex v. Given the way we chose i, such a v must exist.
Vertex v cannot satisfy both of the above conditions: if v completes a cycle

6
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and it touches cycle Cj, its previous occurrence (which exists, or else there
can be no cycle at v) also touches Cj, and the traversal would have stopped
at that occurrence.

Case 1 Suppose v touches Cj. We map W to a clow sequence:Case 1-1

W ′ = 〈C1, . . . , Ci−1, C
′
i, Ci+1, . . . , Cj−1, Cj+1, . . . Ck〉

The modified clow, C ′
i, is obtained by merging Ci and Cj as follows: insert

the cycle Cj into Ci at the first occurence (from the head) of v. For ex-
ample, let Ci = 〈8, 11, 10, 14〉 and Cj = 〈9, 10, 12〉. Then the new clow is
〈8, 11, 10, 12, 9, 10, 14〉. Figure 1 illustrates the mapping.

The head of C ′
i is clearly the head of Ci. The new sequence has the sameCase 1-2

multiset of edges and hence the same weight as the original sequence. It also
has one component less than the original sequence.

In the new sequence, vertex v in cycle C ′
i would have been chosen by ourCase 1-3

traversal, and it satisfies Case 2.

Case 1 2

Case 2
Suppose v completes a simple cycle C in Ci. By our earlier argument,Case 2-1

cycle C cannot touch any of the later cycles. We now modify the sequence
W by deleting C from Ci and introducing C as a new clow in an appropriate
position, depending on the minimum labeled vertex in C, which we make the
head of C. For example, let Ci = 〈8, 11, 10, 12, 9, 10, 14〉. Then Ci changes
to 〈8, 11, 10, 14〉, and the new cycle C = 〈9, 10, 12〉 is inserted in the clow
sequence.

To show that the modified sequence continues to be a clow sequence, noteCase 2-2

that the head of C is greater than the head of Ci; hence C occurs after Ci.
Also, the head of C is distinct from the heads of Cj (i < j ≤ k). In fact, C is
disjoint from all cycles Cj (i < j ≤ k). (Otherwise, Case 1 would have been
true.) Further, the new sequence has the same multiset of edges and hence
the same weight as the original sequence. It also has one component more
than the original sequence.

Figure 1 illustrates the mapping. In the new sequence, vertex v in cycleCase 2-3

C ′
i would have been chosen by our traversal, and it satisfies Case 1.

Case 2 2

7
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In both of the above cases, the new sequence constructed maps back to theProof of Theorem 1-5

original sequence; therefore, the mapping is a weight-preserving involution.
Furthermore, the number of clows in the two sequences differ by one, and
hence the signs are opposing. This completes the proof.

Proof of Theorem 1 2

Corollary 1

det(A) =
∑

W : a clow sequence with head of first clow 1
sgn(W)w(W)

Proof of Corollary 1 In the involution defined above, the head of the first
clow in the clow sequence remains unchanged. Also, the head of the first
cycle in any cycle cover must be the vertex 1.

Proof of Corollary 1 2

3 The Sequential Algorithm

Given an n×n matrix A, we define a layered, directed acyclic graph HA with3-1

three special vertices, s, t+, and t−, having the following property:

det(A) =
∑

ρ: s ; t+ path
w(ρ) −

∑

η: s ; t− path
w(η)

Here the weight of a path is simply the product of the weights of the edges
appearing in it. The idea is that s ; t+ (s ; t− ) paths will be in one-to-one
correspondence with clow sequences of positive (negative) sign.

The vertex set of HA is {s, t+, t−} ∪ {[p, h, u, i] | p ∈ {0, 1}, h, u ∈3-2

{1, . . . , n}, i ∈ {0, . . . , n − 1}}. If a path from s reaches a vertex of the form
[p, h, u, i], this indicates that in the clow sequence being constructed along
this path, p is the parity of the quantity “n + the number of components
already constructed,” h is the head of the clow currently being constructed,
u is the vertex that the current clow has reached, and i edges have been tra-
versed so far (in this and preceding clows). Finally, an s ; t+ (s ; t− ) path
will correspond to a clow sequence where n + the number of components in
the sequence is even (odd).

The edge set of HA consists of the following types of edges:3-3

8
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1. 〈s, [b, h, h, 0]〉 for h ∈ {1, . . . , n}, b = n mod 2; this edge has weight 1,

2. 〈[p, h, u, i], [p, h, v, i + 1]〉 if v > h and i + 1 < n; this edge has weight
auv,

3. 〈[p, h, u, i], [p, h′, h′, i + 1]〉 if h′ > h and i + 1 < n; this edge has weight
auh,

4. 〈[p, h, u, n − 1], t+〉 if p = 1; this edge has weight auh, and

5. 〈[p, h, u, n − 1], t−〉 if p = 0; this edge has weight auh.

Theorem 2 For an n-dimensional matrix A, let HA be the graph described
above. Then

det(A) =
∑

ρ: s ; t+ path
w(ρ) −

∑

η: s ; t− path
w(η)

Proof of Theorem 2 We will establish a one-to-one correspondence be-Proof of Theorem 2-1

tween s ; t+ (s ; t−) paths and clow sequences of positive (negative) sign,
preserving weights. The result then follows from Theorem 1.

Let W = 〈C1, . . . , Ck〉 be a clow sequence of positive sign (i.e., n + k isProof of Theorem 2-2

even). We will demonstrate a path from s to t+ in HA. Let hi be the head
of clow Ci, and let ni be the number of edges in clows C1, . . . , Ci−1. The
path we construct will go through the vertices [p, hi, hi, ni], where p = 0 if
n + i is odd, and p = 1 otherwise. From s, clearly we can go to the first such
vertex [n mod 2, h1, h1, 0]. Assume that the path has reached [p, hi, hi, ni].
Let the clow Ci be the sequence 〈hi, v1, . . . , vl−1〉, a closed walk of length l.
Starting from [p, hi, hi, ni], HA has a path through vertices [p, hi, v1, ni + 1],
[p, hi, v2, ni + 2], . . . , [p, hi, vl−1, ni + (l − 1)], and finally [p, hi+1, hi+1, ni +
l], which is the vertex [p, hi+1, hi+1, ni+1]. At the last clow, starting from
[1, hk, hk, nk], HA has a path tracing out the vertices of clow Ck and finally
making a transition to t+. Clearly, the weight of the path is identical to the
weight of the clow sequence. See Figure 2.

Conversely, let ρ be an s ; t+ path in HA. In the sequence of verticesProof of Theorem 2-3

visited along this path, the second component of the vertex labels is mono-
tonically nondecreasing and takes, say, k distinct values h1, . . . , hk. Also, the
first component changes exactly when the second component changes, and is
n mod 2 at h1 and 1 at hk (to allow an edge to t+), so n + k must be even.

9
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[0, 1, 1, 0]

[0, 1, 7, 1]

[0, 1, 2, 3]

[0, 1, 2, 5]

[0, 1, 4, 2]
[0, 1, 5, 4]

[1, 3, 10, 7]

[1, 3, 8, 8]

[0, 6, 6, 9]

[0, 6, 11, 10]

[0, 6, 9, 11]

3 [1, 3, 3, 6]

s

parity of number of components

current vertex
edges seen so far

head of current clow

Figure 2: From a clow sequence to a path
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Consider the maximal segment of the path with second component hi.Proof of Theorem 2-4

The third components along this segment constitute a clow with leader hi in
GA. When this clow is completely traversed, a new clow with a larger head
must be started, and the parity of the number of components must change.
But this is precisely modeled by the edges of HA. Therefore, ρ corresponds
to a clow sequence of positive sign in GA.

A similar argument shows the correspondence between paths from s toProof of Theorem 2-5

t− and clow sequences with negative sign, preserving weights.

Proof of Theorem 2 2

Now, to evaluate det(A), we merely need to evaluate the weighted sums of3-4

paths. But this can easily be done using simple dynamic programming tech-
niques; we give a polynomial time algorithm that evaluates this expression
and hence computes det(A).

We say that a vertex [p, h, u, i] is at layer i in HA. Vertices t+ and t− are3-5

at layer n. The algorithm proceeds by computing, in stages, the sum of the
weighted paths from s to any vertex at layer i in HA. After n stages, it has
the values at t+ and t−, and therefore it also has det(A). See Table 1.

This algorithm processes each edge in HA exactly once, and for each edge,3-6

it performs one addition and one multiplication. The total number of vertices
in HA is 2n3 + 3. However, HA is quite a sparse graph; the total number of
edges is at most 4n4. The overall running time is therefore O(n4). In fact,
if GA has m edges, then HA has only O(mn2) edges, so for sparse matrices,
the algorithm is faster.

The number of operations (addition or multiplication) is O(n4). The3-7

largest partial product at any stage is mn|amax|n, where amax is the largest
entry in A, m is the number of edges in GA, and mn is an upper bound on
the number of clow sequences. This can be represented with N = n log m +
n log |amax| bits, so each operation needs at most M(N) time, where M(t) is
the time required to multiply two t-bit numbers. Clearly, even in terms of
bit complexity, the algorithm needs only polynomial time.

The space used in this implementation is also polynomial; however, it is3-8

only O(n2), since at any stage the values at only two adjacent layers need to
be stored. (Again, there are O(n2) values to be stored; each may require up
to N bits.)

11
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# Initialize values to 0
For u, v, i ∈ [n], p ∈ {0, 1} do V ([p, u, v, i − 1]) = 0
V (t+) = 0
V (t−) = 0
# Set selected values at layer 0 to 1
b = n mod 2
For u ∈ [n], do V ([b, u, u, 0]) = 1
# Process outgoing edges from each layer
For i = 0 to n − 2 do

For u, v ∈ [n] such that u ≤ v, and p ∈ {0, 1}, do
For w ∈ {u + 1, . . . , n} do

V ([p, u, w, i + 1]) = V ([p, u, w, i + 1]) + V ([p, u, v, i]) · avw

V ([p̄, w, w, i + 1]) = V ([p̄, w, w, i + 1]) + V ([p, u, v, i]) · avu

For u, v ∈ [n] such that u ≤ v, and p ∈ {0, 1}, do
V (t+) = V (t+) + V ([1, u, v, n − 1]) · avu

V (t−) = V (t−) + V ([0, u, v, n − 1]) · avu

# Compute the determinant
Return V (t+) − V (t−)

Table 1: A sequential algorithm for the determinant

4 Computing the Characteristic Polynomial

Our technique can be used as easily to compute all coefficients of the charac-4-1

teristic polynomial ΦA(λ) = det(λIn − A) = cnλ
n + cn−1λ

n−1 + · · · + c1λ + c0

of the matrix A. In fact, we will show that the graph defined in the previous
section already does so. Rewriting det(λIn − A) in terms of cycle covers and
regrouping terms, we see that cr, the coefficient of λr in ΦA(λ), can be com-
puted by summing, over all permutations of σ with at least r fixed points,
the weight of the permutation outside these fixed points:

cr =
∑

S⊆[1,...,n]:|S|=r

∑
σ∈Sn:j∈S⇒σ(j)=j

sgn(σ)
∏
i6∈S

(−aiσ(i))

If σ fixes all of the points in S, let sgn(σ|S) denote the parity of the number
of components of σ, not counting the fixed-point cycles of S (+1 if the parity

12
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is even, and −1 otherwise). Then

cr =
∑

S⊆[1,...,n]:|S|=r

∑
σ∈Sn:j∈S⇒σ(j)=j

sgn(σ|S)
∏
i6∈S

(aiσ(i))

But each term here is the weight of a partial cycle cover, covering exactly
n−r vertices. To compute this sum, not surprisingly, we look at partial clow
sequences! An l-clow sequence is a sequence of clows (ordered by strictly
increasing head) with total number of edges exactly l, accounting for mul-
tiplicity. Its sign is (−1)k, where k is the number of clows in the sequence.
The involution on the set of l-clow sequences is defined in the same fashion
as in Section 2, and shows that the net contribution of sequences that are
not partial cycle covers is zero. So now instead of HA, we construct HA(r)
with n − r layers, with paths corresponding to (n − r)-clow sequences. We
then compute the weights of s ; t+ and s ; t− paths in this reduced graph,
and report the difference as cr.

Actually, all coefficients can be computed using the single graph HA, by4-2

introducing n copies of t+ and t− (one for each coefficient). Further, in this
graph, if the ith layer reports a nonzero value, we can immediately conclude
that the matrix has rank at least i. However, we do not know how to infer
small rank from this construction.

Note that our graphs HA, or HA(r) for computing the coefficient cr, have4-3

a very regular structure: the edge connectivity across layers is identical. By
dropping layer information from the vertices, we can construct a graph (finite-
state automaton) with O(n2) vertices. Then to compute cr for 0 ≤ r ≤ n−1,
we find the contribution of s ; t+ or t− paths in this graph of length exactly
n − r.

5 Improving the Algorithm

The algorithm of Section 3 can be made more efficient if the number of ver-5-1

tices and edges in the graph HA can be pruned. One simple saving is obtained
by noting that we do not really need two copies of each vertex [p, u, v, i] for
the two values of p. Instead, we can keep one copy, and where in the original
HA this component was to be changed via an edge 〈[p, u, v, i], [p, x, y, i + 1]〉
of weight w, we now have an edge from [u, v, i] to [x, y, i+1] with weight −w.
This reduces the number of vertices by a factor of 2. More crucially, it allows
the dynamic programming algorithm to do subtractions and cancellations at
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earlier layers, so the size of partial products, and hence the bit complexity,
decreases.

Another pruning which also results in a saving by a constant factor (but5-2

with a larger constant than above) follows from this simple observation: paths
going through vertices of the form [p, h, u, i] with h > i+1 cannot correspond
to cycle covers. This is because in a cycle cover, all vertices are covered ex-
actly once, so at layer i, with n − i vertices still to be covered, the head
(minimum element) of the current cycle cannot be greater than i. Alter-
natively, once h becomes the head, at least h − 1 edges should have been
seen in preceding cycles. We also can require our clow sequences to satisfy
this property. We formalize the prefix property as follows: a clow sequence
W = 〈C1, . . . , Ck〉 has the prefix property if for 1 ≤ j ≤ k, the total lengths
of the clows C1, . . . , Cj−1 are at least head(Cj) − 1.

It is easy to verify that the involution defined in Section 2 also works5-3

on such restricted clow sequences: ϕ(W) has the prefix property if and only
if W does. So we may instead construct a pruned version of HA which
generates only such clow sequences. (Consider the induced subgraph of HA

obtained by deleting all vertices [p, h, u, i] where h > i + 1.) This will lead
to an algorithm with essentially the same complexity, but smaller constants.
Pruning, however, is not without its drawbacks: after pruning, we can no
longer directly extract the coefficients of the characteristic polynomial.

Interestingly, clow sequences with the prefix property are precisely the5-4

terms computed by Samuelson’s method for computing the determinant. As
observed by Valiant1 in [Val92], the correctness of Samuelson’s algorithm
gives a proof, based on linear algebra, that such sequences that are not cycle
covers “cancel” out. Our involution gives a combinatorial proof of this fact
(for details, see [MV97b]).

Of course, if the algorithm is to be used to compute the coefficient cr of5-5

the characteristic polynomial, then we cannot use this kind of prefix property.
The right prefix property for computing cr would be that in the clow sequence
W = 〈C1, . . . , Ck〉; for 1 ≤ j ≤ k, the total lengths of the clows C1, . . . , Cj−1

should be at least head(j)−1−r. The graph HA(r) can be pruned consistent
with this property. However, if a single graph is to be used to compute all
coefficients, then we must work with the unpruned version.

1There is a minor technical error in Valiant’s formulation. He claims that Samuelson’s
algorithm generates all clow sequences, referred to there as loop covers. However, his
preceding discussion makes it clear that clow sequences without the prefix property are
not generated.
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6 Parallel Algorithms: GapL and NC Imple-
mentations

In this section, we describe two different approaches toward obtaining paral-6-1

lel algorithms that exploit the combinatorial Theorem 1. The first approach
is to apply the standard divide-and-conquer technique to compute the con-
tributions of all clow sequences, and so directly obtain an NC or PRAM
algorithm. The second approach is indirect; we first show how our algo-
rithm places the integer determinant in the class of functions GapL, and
then appeal to standard parallelizations of GapL functions. This approach is
particularly interesting from the complexity-theory point of view, since the
GapL implementation gives a very good instance of how to effectively use
nondeterminism in a space-bounded computation.

6.1 PRAM and NC Algorithms

The signed and weighted sum of all clow sequences can be evaluated in par-6.1-1

allel using the standard divide-and-conquer technique, yielding an NC2 al-
gorithm for the determinant. We describe the algorithm below. We first
show how to construct an arithmetic SAC1 circuit for computing the deter-
minant (an arithmetic polynomially sized circuit with O(log n) depth, where
the + gates have unbounded fanin but each × gate has constant fanin). We
then show how to implement this circuit as an OROW PRAM algorithm,
requiring O(log2 n) parallel time. Owner-restricted PRAMs, first introduced
in [DR86], are the most restrictive of the PRAM models. In owner-write-
restricted PRAMs, each cell is “owned” by one processor, and this is the only
processor allowed to write into the cell. In owner-read-restricted PRAMs, a
processor is associated with each cell, and only this processor can read the
cell’s contents. In an owner-read owner-write (OROW) PRAM, the processor
owning a cell for writing is in general different from the processor owning the
same cell for reading. For more details, see [DR86, Ros91, FLR96]. We also
analyze the bit complexity of our algorithm, and show an implementation in
Boolean NC2.

The goal is to sum up the contribution of all clow sequences at the output6.1-2

gate of the circuit. The output gate is a sum, over all 1 ≤ k ≤ n, of Ck,
where Ck is the sum of the contributions of all clow sequences with exactly k
clows. To compute Ck, we use a divide-and-conquer approach on the number
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of clows: any clow sequence contributing to Ck can be suitably split into two
partial clow sequences, with the left sequence having 2dlog ke−1 clows. The
heads of all clows in the left part must be less than the head of the first
clow in the rightmost part. And the lengths of the left and the right partial
clow sequences must add up to n. We can carry this information in the gate
label. Let gate g[p, l, u, v] sum up the weights of all partial clow sequences
with p clows, l edges, head of first clow u, and heads of all clows at most v.
(We need not consider gates where l < p or u > v.) Then Ck = g[k, n, 1, n],
Dk = (−1)n+kCk, and the output is

∑n
k=1 Dk. Further,

g[p, l, u, v] =




∑
2q≤r≤2q+(l−p)

u<w≤v

g[2q, r, u, w − 1] · g[p − 2q, l − r, w, v] p > 1

g[l, u] p = 1

where q = dlog pe − 1, i.e., 2q < p ≤ 2q+1. The gate g[l, u] sums up the
weights of all clows of length l with head u. This gate is also evaluated in a
divide-and-conquer fashion. A clow with head u is either a self-loop if l = 1,
or it must first visit some vertex v > u, find a path of length l − 2 to some
vertex w > u through vertices all greater than u, and then return to u. So

g[l, u] =




auu l = 1
∑
v>u

auv · avu l = 2

∑
v,w>u

auv · c[l − 2, u, v, w] · awu otherwise

The gate c[l, u, v, w] sums the weights of all length l paths from v to w going
through vertices greater than u. The required values can be computed in
O(log n) layers as follows:

c[1, u, v, w] = avw

c[2s + i, u, v, w] =
∑
x>u

c[2s, u, v, x] · c[i, u, x, w]

for s = 0 to dlog ne−1, i = 1 to 2s. The final circuit description is summarized
in a bottom-up fashion in Table 2.
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# Initialize values for paths of length 1
For u, v, w ∈ [n] : v, w > u do in parallel

c[1, u, v, w] = avw

# Evaluate values of paths of lengths up to 2s

For s = 0 to dlog ne − 1
For 1 ≤ i ≤ 2s and for u, v, w ∈ [n] : v, w > u do in parallel

c[2s + i, u, v, w] =
∑

x>u c[2s, u, v, x] · c[i, u, x, w]
# Evaluate values of single clows
For l, u ∈ [n] do in parallel

If l = 1 then g[l, u] = auu

If l = 2 then g[l, u] =
∑

v>u auv · avu

If l > 2 then g[l, u] =
∑

v,w>u auv · c[l − 2, u, v, w] · awu

# Initialize values of partial clow sequences with one clow
For l, u, v ∈ [n] : u ≤ v do in parallel

g[1, l, u, v] = g[l, u]
# Evaluate values of partial clow sequences with up to 2s clows
For s = 0 to dlog ne − 1

For 1 ≤ i ≤ 2s and for l, u, v ∈ [n] : (u ≤ v) ∧ (l ≥ 2s + i) do in parallel
g[2s + i, l, u, v] =

∑
2s ≤ r ≤ l − i; u < w ≤ v

g[2s, r, u, w − 1] · g[i, l − r, w, v]

# Evaluate the sum of clow sequences
For k ∈ [n] do in parallel

Dk = (−1)n+kg[k, n, 1, n]
# Evaluate the determinant
Return det(A) =

∑n
k=1 Dk

Table 2: An arithmetic SAC1 algorithm for the determinant

Assigning a gate to each variable c[l, u, v, w] or g[l, u] or g[p, l, u, v] or Dk6.1-3

in this algorithm, we obtain an arithmetic circuit with O(n4) gates and depth
O(log n). Each + gate has fanin at most O(n2), and each × gate has fanin
at most 3. Therefore this is an arithmetic SAC1 circuit.

To obtain the desired PRAM implementation, we must first eliminate6.1-4

the large fanin and fanout gates. Suppose we replace each + gate having
fanin f by a binary tree of + gates (i.e., a bounded fanin subcircuit). The
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number of edges only doubles, and the depth increases by log f . To han-
dle fanout, we reverse the process: we introduce an inverted binary tree of
“copy” gates above each gate (a bounded fanout subcircuit). Again, the num-
ber of edges only doubles. Note that in the SAC1 circuit described above,
the maximum fanin of any + gate is O(n2), so the total number of edges in
the circuit is O(n6). Applied to the circuit, this procedure yields a bounded
fanin, bounded fanout circuit of depth O(log2 n) with O(n6) edges. Plac-
ing a processor on each gate and associating a memory cell with each edge
gives an EREW PRAM algorithm that requires O(n6) processors and runs in
O(log2 n) parallel time. Reusing processors across layers will give an EREW
PRAM algorithm performing O(n6) work and running in O(log2 n) parallel
time. A little reflection will convince the reader that this EREW implemen-
tation satisfies the owner-write and owner-read restrictions; thus we have an
OROW PRAM implementation.

Let us consider the bit complexity of the above algorithm. (In the PRAM6.1-5

model, each addition and each multiplication is considered to be a unit-
cost operation.) All operations in the SAC1 circuit are on N -bit numbers;
recall that N = n log n + n log |amax|, where amax is the largest entry in A.
Each operation in the above algorithm involves either adding n2 numbers or
multiplying three numbers, and can be performed in NC1 . Plugging in these
Boolean circuits at each gate gives a Boolean NC2 circuit that computes the
determinant.

6.2 The Integer Determinant and GapL

In this section we demonstrate how #L functions (first studied in [ÀJ93])6.2-1

can be used to compute the determinant. In particular, we show that the
determinant can be expressed as the difference of two #L functions, i.e.,
as a GapL function. This, coupled with the fact that functions in #L can
be computed in Boolean NC2 (and subtraction is in NC1), provides another
approach toward building small-depth circuits for the determinant.

To place things in perspective, we first sketch the history of research6.2-2

efforts directed toward the connections between the determinant and the
function class #L . We denote by Det the function which, given a matrix
with integer entries, evaluates to the determinant of the matrix.

Cook [Coo85] introduced NC1 reductions; he used NC1 Turing reductions6.2-3

to formally define and study many parallel complexity classes. The decision
to use reductions with oracle gates as opposed to many-one NC1 reductions
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is deliberate; in Cook’s view, oracle reductions are more suitable for the
study of functions than many-one reductions. Among the parallel complexity
classes introduced, Cook defined DET∗ to be the class of functions that NC1

reducible to Det. Cook also listed many complete problems for DET∗; the
most important of them was Iterated Matrix Product (over integers). He
observed that Samuelson’s method in fact establishes an NC1 reduction from
Det to IterMatProd. In the other direction,

IterMatProd ≤ MatrixPowering ≤ MatrixInversion ≤ Det

(All reductions are NC1 reductions.)
Unfortunately, the relation NC1 ⊆ DLOG does not relativize [Wil87].6.2-4

This caused some confusion earlier in many papers dealing with the deter-
minant as a complexity class.

In particular, Damm’s claim [Dam91] that the logspace many-one reduc-6.2-5

tion closure of Det is equivalent to L#L, and Vinay’s claim [Vin91a] that
DET∗ is equivalent to L#L, are both in error. Also, Immerman and Landau
erroneously claimed in the conference version of their paper [IL95] that the
quantifier-free projection closure of Det, qfp(Det), equals DET∗.

Buntrock et al. [BDHM92] show that L#L is contained in DET∗. Vinay6.2-6

and Damm use the following chain to establish their results:

IterMatProd ≤ DiffL ⊆ L#L ⊆ DET∗

Wilson’s results [Wil87] imply that “IterMatProd is complete for DET∗”
is inadequate to show that “DET∗ equals L#L.” And the proof technique
of Buntrock et al. [BDHM92] fails when DET∗ is replaced with the weaker
logspace many-one reduction closure of the determinant.

In fact, the correct statement should be as follows [Vin91b, Tod91]:6.2-7

Theorem 3 DET∗ = NC1(#L).

Immerman and Landau [IL95] and Toda [Tod91] observe that the Samuelson-6.2-8

Berkowitz algorithm is in fact a (first-order) projection from Det to IterMatProd.
Consequently, by defining (a possibly new class) DET as the logspace many-
one closure of the determinant, and by defining GapL as the class containing
differences of two #L functions, one can hope for the following theorem:

Theorem 4 DET = GapL.
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This result was essentially discovered independently by Vinay, Damm,6.2-9

and Toda (see [Vin91a, Vin91b, Dam91, Tod91, Tod92]) around the same
time. The proofs are somewhat different, though. Damm, inspired by Babai
and Fortnow’s [BF91] characterization of #P, used (positive) arithmetic
straight-line programs with restricted multiplications (the (P)ARM model)
to characterize #L. These programs are equivalent to skew arithmetic cir-
cuits; in fact, in the #P setting, this equivalence was already known (see
[BF91]). Toda and Vinay show how Det is equivalent to the difference be-
tween the number of (s, t) paths in two directed acyclic graphs. All the proofs
rely on the Samuelson-Berkowitz algorithm. We will now present a complete
proof of this theorem.

Proof of Theorem 4 In the forward direction, the result can be seen in a
particularly direct way from our sequential implementation of clow sequences
in Section 3. Observe that given A, the construction of HA is logspace
uniform, and tracing out s ; t+ or s ; t− paths can be done by an NL
machine. (We must be careful here: the partial products along a path can
be too large to be stored in logspace. To traverse an edge of weight |w|, the
NL machine should simply branch into w paths and remember only the sign.
This way, a path of weight w in HA will generate |w| accepting/rejecting
paths of the NL machine.) Essentially, HA gives us a uniform polynomial
size, polynomial width branching program, corresponding precisely to GapL.

Table 3 lists the code for an NL machine computing, through its gap6.2-10

function, the determinant of a matrix A with non-negative integral entries.
(Negative integers can be accommodated by appropriately updating the par-
ity variable.) Most steps are easily seen to be possible on an NL machine.
The l-way branching is the only step which must be done carefully. Since
l can be n bits long, it cannot be stored on the worktape. Instead, the NL
machine has to step through the bit description of l on the input tape, and
branch accordingly. The details are shown in Table 4.

In the other direction, we follow Toda, who follows Valiant [Val79]. It6.2-11

essentially suffices to show that counting s ; t paths in an acyclic graph
G1 (a canonical complete problem for #L) can be reduced to computing
the determinant of a matrix. We first replace each edge in G1 by a path of
length 2, and add edges 〈t, s〉 and {〈u, u〉 | u 6∈ {s, t}}. An s ; t path in G1

then corresponds exactly to a cycle cover in this new graph G2, and all cycle
covers in G2 have a positive sign. The number of s ; t paths in G1 therefore
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Nondeterministically choose head ∈ {1, . . . , n}.
current = head
count = 0
If n is odd, then parity = 1 else parity = 0
# [parity, head, current, count] is the vertex traced out in
# a clow sequence of GA or an s ; t+ or s ; t− path in HA

While count < n − 1 do
Nondeterministically choose next ∈ {head, . . . , n}.
count = count + 1
Branch l-ways, where l = A[current, next].
If next > head then current = next
else Nondeterministically choose newhead ∈ {head + 1, . . . , n}.

parity = (parity + 1) mod2
head = newhead
current = head

# At this point, count = n − 1
Branch l-ways, where l = A[current, head].
parity = (parity + 1) mod2
If parity = 0 then accept, otherwise reject.

Table 3: A GapL algorithm for the determinant over non-negative integers

equals det(adj(G2)), which equals perm(adj(G2)) (by adj(G2) we mean the
adjacency matrix of the graph G2).

A canonical complete problem for GapL is counting the difference between6.2-12

s ; t+ paths and s ; t− paths in an acyclic graph G1. To reduce this to
computing the determinant of a matrix, a minor modification of the above
procedure suffices. We first replace each edge in G1 by a path of length 2 as
above, then add node x, and add edges 〈t+, s〉, 〈t−, x〉, 〈x, s〉, and {〈u, u〉 |
u 6= s}. Each s ; t+ path in G1 then corresponds to a cycle cover of
positive sign in this new graph G2 (there are no cycles of even length in the
corresponding cycle cover). Also, each s ; t− path in G1 corresponds to a
cycle cover of negative sign in G2. So the GapL function equals det(adj(G2)).

Proof of Theorem 4 2
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Input: k bits ak−1, . . . , a1, a0 specifying the number l =
∑k−1

i=0 2iai

Goal: To produce exactly l paths ending in some prespecified configuration C;
any extra paths produced should be rejecting.

NL algorithm
j = 0
While j < k do

Branch 3-ways
On Branch 1, if aj = 0 then reject and exit loop

otherwise enter configuration C and exit loop
On Branches 2 and 3, increment j

Endwhile

Table 4: NL code to produce l accepting paths, given l in binary

What is striking is a complexity theoretic analog of the classical Det vs.6.2-13

Perm problem: they are complete for GapL and GapP, respectively.2 A
corollary of the proof above shows that for every integer matrix A, there
is an integer matrix B whose dimensions are polynomially related to the
dimensions of A, such that the determinant of A is the permanent of B. Of
course, we do not know if Perm can be reduced to Det in logspace/polynomial
time.

The future of the class DET∗ is not clear. Allender and Ogihara [AO96]6.2-14

note that there is no reason to believe that NL is a subset of GapL(=DET).
(We mean subset in the following sense: a language is in GapL if its char-
acteristic function is in GapL.) This is because the 0–1 valued functions
in DET must differ in at most one accepting path. (However, a recent re-
sult of Reinhardt and Allender [RA97] shows that the inclusion is true in
a nonuniform setting.) On the other hand, notice that NL is contained in
DET∗. In fact, Allender and Ogihara [AO96] consider AC0(Det) and show

2Here, Perm denotes the function which, given an n-dimensional matrix A with integer
entries, evaluates to the permanent of A:

perm(A) =
∑

σ∈Sn

∏
i

aiσ(i)
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that AC0(Det) corresponds to a certain counting hierarchy LH that may be
defined on #L. They also claim (without proof) that if AC0(Det) and DET∗

coincide, LH collapses.
Two nice applications of the GapL characterization in Theorem 4 have6.2-15

been the drastic simplification of Jung’s theorem on PL (see [AO96]) and the
characterization of the complexity of computing the rank of a matrix (see
[ABO96]).
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