
E0 309: Topics in Complexity Theory Spring 2015

Lecture 1: Jan 14, 2015
Lecturer: Neeraj Kayal Scribe: Sumant Hegde and Abhijat Sharma

1.1 Introduction

The theme of the course in this semester is Algebraic Complexity Theory with primary focus on arithmetic
circuit complexity. At a very high level, this area studies complexity of arithmetic or algebraic operations by
‘translating’ problems to computation of/with polynomials. This in a way is a relatively structured approach
to computational problems, as it is more concerned with syntactic computation as compared to semantic
computation, like in the boolean setting[1].

Thinking of algebraic problems, the first two basic operations are addition and multiplication. In the case
of addition of two integers the middle school algorithm performs O(n) bit-by-bit additions which is optimal.
In the case of multiplication of two integers the middle school algorithm performs O(n2) operations. But
the optimal complexity of multiplication of two integers is still an open problem.

1.1.1 Karatsuba’s algorithm(1962)

It was conjectured (by Kolmogorov) that the naive multiplication algorithm was asymptotically optimal[6].
But this turned out to be false due to the discovery of Karatsuba’s algorithm which we discribe now. Given
two n-digit numbers A and B, suppose we split them into blocks A0, A1 and B0, B1 as follows.

A = A0 + 10n/2A1

B = B0 + 10n/2B1

Then the product AB can be expressed as,

AB = A0B0 + 10n/2(A0B1 +A1B0) + 10nA1B1

We could recursively compute each of the four products to get AB. Unfortunately, this approach is asymp-
totically no better than the previous one:

T (n) =4T (n/2) +O(n) .Here O(n) is for additions and multiplications by 10’s powers

=O(n2)

However, if we can somehow compute A0B0, A0B1 + A1B0, A1B1 with three (recursive) multiplication
operations instead of four, then we get

T (n) =3T (n/2) +O(n)

=O(nlog2 3)

Karatsuba algorithm gives us a way of achieving this, as discussed below.
Assume additions and subtractions are completely free.

1-1



1-2 Lecture 1: Jan 14, 2015

Input: A0, A1, B0, B1

Output: A0B0, A0B1 +A1B0, A1B1 l1 := A0B0

l2 := (A0 +A1)(B0 +B1)
l3 := A1B1

l4 := l2 − l1 − l3
output l1, l4, l2

Clearly, only 3 multiplications (namely, for l1, l2, l3) are required. Hence the complexity of Karatsuba
algorithm is O(nlog2 3) as discussed before.
Again, it is natural to ask whether we can do better. Before answering that question, we observe that integer
multiplication can be translated to polynomial multiplication.

1.2 Polynomial multiplication

Input: Two univariate polynomials A,B:

A(x) = a0 + a1x+ · · ·+ an−1x
n−1

B(x) = b0 + b1x+ · · ·+ bn−1x
n−1

Output:

A(x)B(x) = (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x2 + · · ·+ an−1bn−1x
2n−2

Assumptions:
. +,- and multiplication by scalars are free.
. Each × has cost 1.

On putting a2 = a3 = · · · = an−1 = 0 and b2 = b3 = · · · = bn−1 = 0, and evaluating x at an appro-
priate power of 10, the model simplifies to Karatsuba’s algorithm.

We can also represent an n− 1-degree univariate polynomial A as a list of evaluations:
A = A(α1), . . . , A(αn) where all αi’s are distinct.

Fact 1: There is a one-to-one correspondence between the two representations of A(x), namely, as a list of
n coefficients and as a list of n evaluations.
We identify by evaluation the process of getting the list of evaluations from the coefficient vector, and we
identify by interpolation the other direction. We first detail the procedure of interpolation.

Given a polynomial A(x) evaluated at points α1, . . . , αn, suppose we need to find out its coefficients
a0, . . . , an−1. We just need to solve the following system of equations (where ai are unknowns).

A(α1) = a0 + a1α1 + · · ·+ an−1α
n−1
1

A(α2) = a0 + a1α2 + · · ·+ an−1α
n−1
2

...

A(αn) = a0 + a1αn + · · ·+ an−1α
n−1
n



Lecture 1: Jan 14, 2015 1-3

That is,
M

1 α1 α2
1 · · · αn−1

1

1 α2 α2
2 · · · αn−1

2
...

...
...

. . .
...

1 αn α2
n · · · αn−1

n


n×n

·

C
a0
a1
...

an−1


n×1

=

E
A(α1)
A(α2)

...
A(αn)


n×1

We can see that M is a square Vandermonde matrix whose determinant is given by

DET (M) =
∏

1≤j<i≤n

(αi − αj)

which can be proved by induction on n. This implies that M is invertible (as αi’s are distinct), and hence
we can compute the coefficient vector C, by C = M−1E

Now we show that interpolation can be done in linear time (under the assumption that +,- and multi-
plication by scalars are free). C can be viewed as a linear combination of columns of M−1. But both M
and M−1 can be precomputed as they are independent of the input. Under the assumption that additions
and scalar multiplications are free, computing a linear combination takes constant time and thus C can be
computed in linear time.
�

Upper bound An important implication of Fact 1 is as follows. If two degree-(n− 1) polynomials A,B are
given as evaluations, i.e.

A = (A(α1), A(α2), . . . , A(α2n−1))

B = (B(α1), B(α2), . . . , B(α2n−1))

then the product polynomial can be given by the pointwise product of the evaluations, i.e.

AB = (A(α1)B(α1), A(α2)B(α2), . . . , A(α2n−1)B(α2n−1))

Therefore, the process of finding the product of two degree-(n − 1) polynomials A(x), B(x) can be done in
the following steps:
1. Evaluate A(x), B(x) at 2n− 1 points.
2. Pairwise multiply to get the evaluations of AB at 2n− 1 points.
3. Interpolate the coefficients of AB from these evaluations.

This implies that, under the assumptions we made in the beginning of this section, 2n− 1 nonscalar multi-
plications are sufficient to multiply two degree-(n− 1) univariate polynomials.

1.3 Integer multiplication

Using the upper bound mentioned above, we are ready to answer whether we can do better than Karatsuba
algorithm. This time let us split the input numbers into 4 parts:

A =A0 +A110n/4 +A2102n/4 +A3103n/4

B =B0 +B110n/4 +B2102n/4 +B3103n/4

AB =(A0B0) + (A0B1 +A1B0)10n/4 + · · ·+ (A3B3)106n/4



1-4 Lecture 1: Jan 14, 2015

This can be viewed as multplying two degree-3 polynomials. Therefore n = 4 and the upper bound above
implies 2n− 1 = 7 multiplication operations. Thus we get the recurrence

T (n) = 7T (n/4) +O(n)

= O(nlog4 7)

< O(nlog2 3)

This idea was used to further improve the complexity in Toom Cook algorithm, which splits up both the
inputs into k smaller parths and performs operations on the parts. As k grows, one may combine many
of the multiplication suboperations, thus reducing the overall complexity of the algorithm[2]. (The above
example is just a special case of Toom Cook where k = 4).
Advanced algorithms like Schönhage–Strassen also use techniques like Fast Fourier Transforms (FFT) and
modular arithmetic. Complexity of Schönhage-Strassen is O(n log n log log n). The best complexity known
till date is n log n2O(log∗ n), achieved by Fürer(2007)[5] which uses FFT over complex numbers. De et
al.(2008)[4] used modular arithmetic and achieved the same complexity. Recently, more explicit bound
of O(n log n8log

∗ n) was shown by Harvey et al(2014)[3].

1.4 Lower bound on Polynomial Multiplication

In our quest to find the optimal way to multiply two univariate polynomials, we are trying to find the
minimum number of multiplication operations required to compute the product of two polynomials, assuming
the following operations as free : addition, subtraction and multiplication by fixed constants. We have already
seen an upper bound on this quantity, now we try to find an answer for the coresponding lower bound.

We proceed with this lower bound proof using the concept of Straight Line Programs (SLP). Given
two univariate polynomials, each of degree (n− 1), Consider the following SLP:

The first 2n lines are the coefficients of input polynomials

l1 = a0

l2 = a1

...

ln = an−1

ln+1 = b0

...

l2n = bn−1

After the input, there are s lines of intermediate computation, which involves multiplying appropriate linear
combinations of the previous lines (2n+ 1 ≤ i ≤ 2n+ s)

li =
∑
j<i

(αj lj + cj)
∑
k<i

(βklk + dk)



Lecture 1: Jan 14, 2015 1-5

where cj and dk are constants. And finally, there are the output lines, also computed as just a linear
combination of all previous lines. each output on a seperate line, which in this case are the set of (2n − 1)
coefficients of the product polynomial.

l2n+s+1 =
∑
j<i

(α̂j lj) = a0b0

l2n+s+2 = a0b1 + a1b0

...

l2n+s+(2n−1) = an−1bn−1

Now, let us think of the coefficients of the input polynomials (a0, a1, ...an−1, b0, b1, ..., bn−1) as variables. Then
the outputs, that are the coefficients of the product polynomial, would be quadratic polynomials in the above
defined variables. Every coefficient can now be written as a linear combination of monomials and therefore
represented as a vector as follows. This is done after fixing some particular ordering of the n2 possible
monomials, a0b0, a0b1, ..., an−1bn−1, and then representing each output as a vector, where each component
of the vector corresponds to the coefficient of that particular monomial in the output. For example, the first
output, a0b0 would be represented as the vector [1, 0, 0, ..., 0], and the second output a0b1 + a1b0 will have
two 1s in its vector representation, corresponding to the monomials a0b1 and a1b0, and the rest would be 0s.

After having represented each of the outputs as a vector as described above, consider the vector space
spanned by these vectors over the field of real numbers, R.

Claim 1.1 The dimension of the vector space, dimR{l2n+s+1, ..., l2n+s+(2n−1)} ≤ s.

Proof:

Let us think of all the computations of the straight line program as computing a polynomial in the variables
a0, a1, ...an−1, b0, b1, ..., bn−1. Then, the first 2n lines of the program are degree 1 polynomials, and every
output is a degree 2 polynomial. Each of the output lines l2n+s+1, ..., l2n+s+(2n−1) are linear combinations
of the previous (2n+ s) lines. Thus, for 2n+ s+ 1 ≤ k ≤ 2n+ s+ (2n− 1),

lk = α1a0 + α2a1 + ...+ α2nbn−1 + α2n+1l2n+1 + ...+ α2n+sl2n+s

Now, let us restrict every line of the SLP to monomials of the form aibj , then the above equaity should still
hold for the restricted polynomials. As all the monomials in the output lines are of the form aibj , the left
hand side of the above equation stays as it is. Although, on the right hand side, lines l1, ...l2n contain only
monomials having degree 1, and therefore will be equal to zero when restricted to the degree-2 monomials
of the form aibj . Hence, in the resticted form, the output lines would look like

lk = α2n+1 l̂2n+1 + ...+ α2n+s l̂2n+s

where, 2n+ s+ 1 ≤ k ≤ 2n+ s+ (2n− 1) and l̂j represent the polynomial lj restricted to monomials of the
form aibj . Now, we can see that all the 2n− 1 output lines are linear combinations of s fixed polynomials,
each represented as a vector of coefficients. Hence, the dimension of the vector space spanned by the vectors
representing the output lines can be at-most s. This proves the claim that dimR{l2n+s+1, ..., l2n+s+(2n−1)} ≤
s.

Claim 1.2 dimR{a0b0, a0b1 + a1b0, ..., an−1bn−1} = 2n− 1



1-6 Lecture 1: Jan 14, 2015

Proof: As the input polynomials are of degree (n − 1) each, the product is of degree (2n − 2) and hence
will have (2n− 1) coefficients. Let us call the vector representations of these coefficients as u1, u2, ..., u2n−1.
Thus, to prove that the dimension of the spanned vector space is 2n − 1, it suffices to prove that all these
2n− 1 vectors are linearly independent.

We prove this by contradiction. Let us assume that they are not linearly independent, which implies that
there exists some real numbers αi(1 ≤ i ≤ 2n − 1), not all zero such that

∑2n−1
i=1 αiui = 0. Now, we know

that every component in these vectors corresponds to the coefficient of some particular monomial aibj . On
careful observation, we can notice that all these outputs are monomial disjoint, and therefore any particular
monomial aibj occurs in exactly one of the 2n− 1 outputs. Also, when we compute the linear combination∑2n−1

i=1 αiui, it will be zero if and only if all its components are zero. But, as every monomial occurs in
only one output, its coefficient would not be cancelled out by any other vector representing another output.
Hence,

∑2n−1
i=1 αiui = 0 iff αi = 0 for all i. This contradicts our assumption and therefore proves our claim.

From the above two claims, it directly follows that s ≥ 2n− 1. This proves that if we ignore all the addition
and scalar multiplication operations, we still need at-least 2n− 1 multiplication operations to compute the
product of two polynomials, each of degree n − 1. This also shows that in the Karatsuba Algorithm, the
breaking up of integers is like considering a degree 1 polynomial i.e n = 2. Therefore, it cannot be done in
less than 2n− 1 = 3 multiplications.

1.5 References

[1] Amir Shpilka and Amir Yehudayaoff, Arithmetic Circuits: A survey of recent results and
open questions, Foundations and Trends in Theoretical Computer Science 2010

[2] Shri Prakash Dwivedi, An Efficient Multiplication Algorithm Using Nikhilam Method,
arXiv:1307.2735, 2013

[3] David Harvey, Joris van der Hoeven and Grégoire Lecerf, Even faster integer multi-
plication, arXiv:1407.3360, 2014

[4] Anindya De, Piyush P Kurur, Chandan Saha and Ramprasad Saptharishi, Fast Inte-
ger Multiplication Using Modular Arithmetic, Symposium on Theory of Computing 2008

[5] Martin Fürer, Faster Integer Multiplication, Symposium on Theory of Computing, 2007

[6] A. A. Karatsuba, The Complexity of Computations, Steklov Institute of Mathematics, 1995


