
E0 309: Topics in Complexity Theory Spring 2015

Lecture 10: Feb 25, 2015
Lecturer: Neeraj Kayal Scribe: Sumant Hegde

10.1 Determinant is irreducible

Claim 10.1 Let X = {xij}i,j∈[n] and f(X), g(X) be two polynomials such that f(X) · g(X) = DET (X).
Let var(f) denote the set of variables appearing in the polynomial f . Then var(f) and var(g) are disjoint.

Proof: Suppose for contradiction that y ∈ X is in both var(f) and var(g). Then we can view f and g as
polynomials in y as shown below.

f = α(Z) · ydf + lower order terms w.r.t. y

g = β(Z) · ydg + lower order terms w.r.t. y

where Z = X \ {y} and α, β are polynomials not equal to 0, and df , dg > 0. Clearly

f · g = α(Z)β(Z) · ydf+dg + lower order terms w.r.t. y

Since α(Z), β(Z) 6≡ 0, f · g has a monomial in which degree of y is df + dg > 1. However degree of y is equal
to 1 in DET (X) as DET (X) is a multilinear polynomial, leading to a contradiction.

Remarks
1. The above claim easily extends for more than two polynomials. The polynomials will be pairwise variable-
disjoint.
2. It follows that on expanding f · g into sum-of-products form no cancellations occur.

Claim 10.2 Let X = {xij}i,j∈[n], n ≥ 2. Then DET (X) cannot be expressed as a product of linear polyno-
mials.

Proof: Assume that there do exist linear polynomials l1(X), . . . , lm(X) such that DETn =
∏

i∈[m]

li.

Consider generating the monomial x11x22 . . . xnn present in DET (X). From the variable-disjointness prop-
erty mentioned above, each xii should be present in a distinct linear form. Say w.l.o.g. that xii is present
only in li.

Consider generating another monomial, say x12x21x33 . . . xnn present in DET (X). If x12 ∈ var(l1) then
on multiplication we get x12x22x33 . . . xnn as one of the monomials which is invalid in the determinant.
Cancellations cannot occur, so this invalid monomial remains in the final product. On the other hand, if
x12 ∈ var(li) for some i ≥ 2, then on multiplication we get x11 . . . x12 . . . as one of the monomials which
again is invalid. Thus the product always has some invalid monomials, a contradiction.

Claim 10.3 DET (X) cannot be expressed as a product f(X) · g(X) where deg(f(X)), deg(g(X)) 6= 0.

10-1



10-2 Lecture 10: Feb 25, 2015

Proof:(sketch) The variable-disjointness property holds for f(X), g(X) as well. The proof is along the lines
of that of claim 10.2.

Claim 10.4 DET (X) cannot be expressed in the form l1(X)P1(X)+l2(X)P2(X) where deg(l1(X)), deg(l2(X)) =
1 and deg(P1(X)), deg(P2(X)) > 0.

Proof of this claim is left as an exercise. We are also asked to verify if it is impossible to express DET (X)
in the form l1(X)P1(X) + l2(X)P2(X) where deg(l1(X)), deg(l2(X)), deg(P1(X)), deg(P2(X)) > 0.

10.2 Lower bounds for depth three arithmetic circuits

The determinant when expressed in the form

DETn =

s∑
i=1

d∏
j=1

lij deg(lij) = 1 ∀ i, j

corresponds to a depth three arithmetic circuit, as shown:

Naturally, we call it a ΣΠΣ circuit. We could have a ΠΣΠ circuit to compute the determinant. In that case,
however, since the determinant is irreducible, there would be at most two input edges to the product gate

at the top. The first input would be a linear combination of products of variables, say
s∑

i=1

αi

n∏
j=1

xjij and the

second input would be a constant, say β. This β can be “pushed down” to the subcircuit rooted at the first

input, to make it
s∑

i=1

αiβ
n∏

j=1

xjij . This makes the product gate at the top irrelevant, reducing the circuit

depth to two. Most of the polynomials we consider will be irreducible and therefore we will focus only on
ΣΠΣ circuits in the rest of the lecture.

Admittedly, our knowledge on the lower bounds for depth three circuits is very limited. For instance,
consider the lower bound on the size of a depth three circuit computing the determinant.

Conjecture 10.5 The size of any ΣΠΣ circuit computing DETn must be super-polynomial, i.e. nω(1).

The best known lower bound on the size of any ΣΠΣ circuit computing DETn, in terms of the number of
edges, is Ω(n4) [1].



Lecture 10: Feb 25, 2015 10-3

A recent result shows that if we can prove a “strong enough” lower bound on the size of any ΣΠΣ circuit
computing the n× n permanent PERMn then we get super polynomial lower bound for general arithmetic
circuits. Thus it seems that proving lower bounds for depth three circuits is as nontrivial as for general
circuits.

10.3 What lower bounds can we hope for?

Before proceeding further we try to answer a basic question: What lower bounds can we hope for? There
are two queries implicit in the question:
1. showing the existence of functions that are “hard” to compute, and
2. showing an explicit function and proving that it is hard to compute.
We answer the queries first in the boolean world and then the arithmetic world. As we will see we arrive at
the same conclusion in both.

10.3.1 In the Boolean World

There exist boolean functions that are hard to compute. Moreover, most boolean functions are hard to
compute. This can be shown by a counting argument, as follows.

Consider the set of boolean functions on n inputs

fn = {f(x1, . . . , xn) : each xi ∈ {0, 1}}.

Total number of such functions = |fn| = 22
n

.

Now we want to upper-bound the total number of functions computable by circuits of size s. We assume
that the ∧ and ∨ gates have fanin two.

Lemma 10.6 Total number of boolean circuits of size s is less or equal to 2s
2

.

Proof: For every boolean circuit φ of size s we define a straight line program (SLP) as follows. The SLP
has s lines. Any line li is of the form

li = xi for i ∈ [n] (i.e. the first n lines are inputs.)

li = lj ∧ lk or li = lj ∨ lk or li = ¬lj for i ≥ n+ 1

where j, k < i ≤ s. There is a one-to-one mapping between the lines of the SLP and the nodes in φ. This
equivalence between boolean circuits and straight line programs (SLPs) implies that it suffices to count the
number of SLPs of s lines.

Clearly the right hand side (RHS) of li has at most 3s2 choices. There are s such lines.

So the number of SLPs of size s is less or equal to (3s2)s = 3ss2s ≤ 2s
2

It follows that the fraction of boolean functions computed by circuits of size s is less or equal to 2s
2

/22
n

. Let
us say s = 2n/3. Still, the fraction of functions computed by the circuits of size s = 22n/3/22

n

<< 1. That
is, with high probability, even large circuits cannot compute a random boolean function (on n inputs).



10-4 Lecture 10: Feb 25, 2015

Thus we have showed the existence of functions hard to compute. The other task, that is, showing an
explicit function and proving it is hard to compute, has remained unaccomplished by the research com-
munity. Nevertheless, plenty of functions, including all NP-complete problems, have been considered to be
candidates.

10.3.2 In the Arithmetic World

There exist polynomials that are hard to compute. Moreover, most n-variate degree d polynomials are hard
to compute. This can be verified by a counting argument, as follows. Consider the set fn of n-variate degree
d polynomials over a finite field F .

Total number of such polynomials = |fn| = F(n+d
d ).

We want to upper-bound the total number polynomials computable by arithmetic circuits of size s. We
assume that the fanin of sum gates is unbounded and the fanin of product gates is two.

Lemma 10.7 The total number of arithmetic circuits of size s is less or equal to Fs2 .

Proof: It suffices to upper bound the total number of circuits with s product gates (and any number of sum
gates). Accordingly, for any circuit φ with n inputs and s product gates we define a straight line program
with n+ s lines, as follows.

li =xi for i ∈ [n]

li =(αi,0 + αi,1l1 + · · ·+ αi,i−1li−1) · (βi,0 + βi,1l1 + · · ·+ βi,i−1li−1) for n+ 1 ≤ i ≤ n+ s

where αi,j and βi,j are field constants.
Clearly, the first n lines represent the input variables. Any other line li, we claim, represents a distinct
product gate gi in φ (and vice versa). This claim can be proved by inducting on the maximum number of
product gates along the path from any leaf to gi. (Also notice that the linear combinations present on the
RHS of li represent the potential sum gates feeding to gi.)

Now let us count the number of possible SLPs on n inputs. We ignore the first n lines as they are fixed.
Among the remaining s lines, for any line li, there are i many α’s and β’s on the RHS. For each of these
α’s and β’s there are F many choices of values. Therefore the number of circuits of size s is less or equal to
s∏

i=1

FiFi = F
s∑

i=1
2i
≤ Fs2

Let us allow the circuit size to be as large as (
√(

n+d
d

)
)/2. In other words, say that the polynomial is “hard”

to compute if it requires circuit size greater than this size. (Recall that
(
n+d
d

)
+1 is the trivial upper bound on

the size of a circuit (with product gate fanin d) computing any n-variate degree d polynomial. Furthermore,
it is shown by Lovett that for any n-variate degree d polynomial f there exists a circuit computing f having

at most (
√(

n+d
d

)
)(nd)O(1) multiplications.) So s = (

√(
n+d
d

)
)/2. Yet, the fraction polynomials computed by

circuits of size s = Fs2/F(n+d
d ) = 1/F

3
4 (n+d

d ) << 1. Thus we conclude that the lower bound size is close to
the trivial circuit size.

For fields with characteristic zero. An n-variate degree d polynomial has
(
n+d
d

)
monomials and thus its

coefficient vector is of dimension
(
n+d
d

)
= N(say). Hence the set of all n-variate degree d polynomials forms



Lecture 10: Feb 25, 2015 10-5

an N dimensional vector space.

Referring to the straight line program described above, we can view the operation of a ΣΠΣ circuit as
a mapping from α’s and β’s into a polynomial (which is output). Referring again to the analysis in the
previous section, the number of α’s and β’s is at most s2. Therefore, the mapping is from a point in an s2

dimensional space to a point in an N dimensional space. The image of such mapping is an s2 dimensional
object (variety). In general, if s2 < N , then most of the points in the N dimensional space (n-variate degree
d polynomials) will be outside this image (set of polynomials computed by ΣΠΣ circuits). In our case indeed

s2 < N , as we chose s = (
√(

n+d
d

)
)/2. Thus we arrive at the same conclusion, namely, that most polynomials

are hard to compute.

10.4 References

[1] Amir Shpilka, Avi Wigderson, Depth-3 Arithmetic Circuits over Fields of Characteristic
Zero. Computational Complexity, 10(1):1-27, 2001.

[2] Ankit Gupta, Pritish Kamat, Neeraj Kayal, Ramprasad Saptharishi Arithmetic cir-
cuits: A chasm at depth three. FOCS 2013

[3] Shachar Lovett, Computing polynomials with few multiplications. Theory of Computing,
7(13):185188, 2011.


