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Lecture 11: Mar 2, 2015
Lecturer: Neeraj Kayal Scribe: Saravanan K

11.1
∑∧∑

Circuits

Consider a special class of depth-3 circuits, where the bottom layer consists of addition gates of unbounded
fan-in, first layer consists of exponentiation gates (it performs the operation of product gate whose input
edges are from a single node) and the root node is an addition gate. We call this family of circuits, the∑∧∑

circuits.

We can map this to polynomials of the form

f(x) = α1.l
e1
1 (x) + α2.l

e2
2 (x) + · · ·+ αs.l

es
s (x) (11.1)

where x is a n-tuple (x1, x2, · · · , xn) of variables over the field F, l1(x), l2(x), · · · , ls(x) are linear polynomials
(that is of degree equal to 1) and α1, α2, · · · , αs are scalars.

It has been proved by W.J.Ellison[1] that any polynomial of degree d can be expressed in the form (11.1),
where ei ≤ d and ei ∈ Z+, for all 1 ≤ i ≤ s. Hence we state the theorem,

Theorem 11.1 Let f(x) be a n-variate polynomial of degree d ≥ 1, where x is a n-tuple of variables over
the field F. Then f(x) can be expressed as,

f(x) = α1l
e1
1 (x) + α2l

e2
2 (x) + · · ·+ αsl

es
s (x)

where ei ∈ Z+ and ei ≤ d, for all 1 ≤ i ≤ s,
l1, l2, l3, · · · , ls are polynomials in x of degree 1 and α1, α2, · · · , αs are scalars.

Before proving the theorem let us look at a simple example to get some idea.

Example : Consider the polynomial f(x1) = x21 + x1. Our goal is to express f(x1) in the form (11.1).
Indeed it is sufficient to prove that there exist scalars α1, α2, α3 such that f(x1) can be expressed as,

f(x1) = x21 + x1 = α1(x1 + 0)2 + α2(x1 + 1)2 + α3(x1 + 2)2 (11.2)

Now, let us find the values of α1, α2, α3. By equating coefficients of x21, x1 and the constant term we get,

α1 + α2 + α3 = 1

2α2 + 4α3 = 1

α2 + 4α3 = 0

Solving the above equations we get, α1 = 1/4, α2 = 1, α3 = −1/4. Therefore we can express f(x1) as

f(x1) = x21 + x1 = (1/4)x21 + (1)(x1 + 1)2 − (1/4)(x1 + 2)2 (11.3)

In the proof we generalize the example for uni-variate polynomials of degree d ≥ 1.
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Lemma 11.2 Let M be any given matrix over the field F and M
′

be a matrix obtained by multiplying some
rows (or some columns) of M by a non-zero scalar. Then rank of M is equal to the rank of M

′

Proof of Theorem 11.1 :

Case 1 : n = 1

Consider the uni-variate polynomial

f(x1) = c0 + c1 · x1 + c2 · x21 + · · ·+ cd · xd1 (11.4)

of degree d, where x1 ∈ F is the formal variable and c0, c1, · · · , cd are coefficients over the field F.

In order to prove this case, it is sufficient to prove that there exist α0, α1, α2, · · · , αd such that,

f(x1) = α0(x1 + 0)d + α1(x1 + 1)d + α2(x1 + 2)d + · · ·+ αd(x1 + d)d (11.5)

From (11.4) and (11.5) we get,

c0 + c1 · x1 + c2 · x21 + · · ·+ cd · xd1 = α0(x1 + 0)d + α1(x1 + 1)d + α2(x1 + 2)d + · · ·+ αd(x1 + d)d

Equating the coefficients of xd1, x
d−1
1 , · · ·x1 and the constant term on both sides we get equations,

α0 + α1 + α2 + · · ·+ αd = cd

0 + 1

(
d

d− 1

)
+ 2

(
d

d− 1

)
+ · · ·+ d

(
d

d− 1

)
= cd−1

0 + 12
(

d

d− 2

)
+ 22

(
d

d− 2

)
+ · · ·+ d2

(
d

d− 2

)
= cd−2

...
...

0 + 1d
(
d

0

)
+ 2d

(
d

0

)
+ · · ·+ dd

(
d

0

)
= c0

In matrix notation we write,

A.x = c

where,

A =


1 1 1 1 · · · 1

0 1
(
d
d−1
)

2
(
d
d−1
)

3
(
d
d−1
)
· · · d

(
d
d−1
)

0 12
(
d
d−2
)

22
(
d
d−2
)

32
(
d
d−2
)
· · · d2

(
d
d−2
)

...
...

...
. . .

...
...

0 1d
(
d
0

)
2d
(
d
0

)
3d
(
d
0

)
· · · dd

(
d
0

)


(d+1)×(d+1)

, x =


α0

α1

α2

...
αd


(d+1)×1

and c =


cd
cd−1

...
c1
c0


(d+1)×1

If inverse of A exists, then we can solve the vector x by computing x = A−1c.
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Let A
′

be a matrix obtained by multiplying ith row of A by
1(
d

d−i+1

) , for all 1 ≤ i ≤ d+ 1. Now,

A
′

=


1 1 1 1 · · · 1
0 1 2 3 · · · d
0 12 22 32 · · · d2

...
...

...
. . .

...
...

0 1d 2d 3d · · · dd


(d+1)×(d+1)

,

We can see that A
′

is a Vandermonde matrix whose determinant is non-zero. This implies rank of A
′

=

d+ 1. Since
1(
d

d−i+1

) is non-zero for all 1 ≤ i ≤ d+ 1, by using lemma 11.2 we get,

rank of A = rank of A
′

= d+ 1

Since A has full rank, inverse of A exists. Thus we compute the vector x by

x = A−1c

Hence we conclude case 1 by stating: there exist scalars α0, α1, α2, · · · , αd such that f(x1) can be expressed
in the form

f(x1) = α0(x1 + 0)d + α1(x1 + 1)d + α2(x1 + 2)d + · · ·+ αd(x1 + d)d

Case 2 : n = 2

Consider a bi-variate polynomial f(x1, x2). We need to prove that f(x1, x2) can be expressed as the sum of
powers of linear forms. It is indeed sufficient to prove that any monomial can be expressed in the sum of
powers of linear forms (Because, sum of all the monomial expressions yield the same form).

That is, our proof suffices when we prove that any monomial of the form xβ1

1 x
β2

2 can be expressed as

xβ1

1 x
β2

2 = α0(x1 + 0.x2)dm + α1(x1 + 1.x2)dm + α2(x1 + 2x2)dm + · · ·+ αdm(x1 + dm.x2)dm

where dm = β1 + β2 ≤ d is the degree of the monomial and α0, α1, α2, · · · , αdm are some scalars.

Equating the coefficients of xdm1 x02, x
(dm−1)
1 x12, x

(dm−2)
1 x22 · · · · · ·x01x

dm
2 on both sides we get equations,

α0 + α1 + α2 + · · ·+ αdm = 0

0 + 1

(
dm

dm − 1

)
α1 + 2

(
dm

dm − 1

)
α2 + · · ·+ d

(
dm

dm − 1

)
αdm = 0

0 + 12
(

dm
dm − 2

)
α1 + 22

(
dm

dm − 2

)
α2 + · · ·+ d2

(
dm

dm − 2

)
αdm = 0

...
...

0 + 1β2

(
dm

dm − β2

)
α1 + 2β2

(
dm

dm − β2

)
α2 + · · ·+ dβ2

m

(
dm

dm − β2

)
αdm = 1

...
...

0 + 1dm
(
dm
0

)
α1 + 2dm

(
dm
0

)
α2 + · · ·+ ddmm

(
dm
0

)
αdm = 0
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In matrix notation we write,

A.x = c

where,

A =



1 1 1 1 · · · 1

0 1
(
dm
dm−1

)
2
(
dm
dm−1

)
3
(
dm
dm−1

)
· · · dm

(
dm
dm−1

)
...

...
...

...
...

...

0 1β2
(

dm
dm−β2

)
2β2
(

dm
dm−β2

)
3β2
(

dm
dm−β2

)
· · · dm

β2
(

dm
dm−β2

)
...

...
...

...
...

...

0 1dm
(
dm
0

)
2dm

(
dm
0

)
3dm

(
dm
0

)
· · · ddm

(
dm
0

)


(dm+1)×(dm+1)

,

x =



α0

α1

...

...

...
αd


(dm+1)×1

and c =



0
0
...
1
...
0


(dm+1)×1

By a similar argument like in case 1, we find that inverse of A exists. Hence we compute the vector x
by x = A−1c.

Thus there exist scalars α0, α1, α2, · · · , αdm such that any dm-degree monomial of the form xβ1

1 x
β2

2 can be
expressed as

xβ1

1 x
β2

2 = α0(x1 + 0.x2)dm + α1(x1 + 1.x2)dm + α2(x1 + 2.x2)dm + · · ·+ αdm(x1 + dm.x2)dm

That is,

xβ1

1 x
β2

2 = α0l
dm
11 + α1l

dm
12 + α2l

dm
13 + · · ·+ αdm l

dm
1s1

(11.6)

where, l11, l12, l13, · · · , l1s1 are linear forms in variables x1, x2 and s1 is some positive integer.

Case 3 : n ≥ 3

Now we extend the proof for 3-variate polynomials. The monomials of a 3-variate polynomial can be
expressed as xβ1

1 x
β2

2 x
β3

3 . Using (11.6) we express xβ1

1 x
β2

2 x
β3

3 as

xβ1

1 x
β2

2 x
β3

3 = α0l
dm
11 x

β3

3 + α1l
dm
12 x

β3

3 + α2l
dm
13 x

β3

3 + · · ·+ αdm l
dm
1s1
xβ3

3

Every monomial in the above expression can be viewed as a 2−variate monomial in li, x3 , for all 1 ≤ i ≤ s1.
By again using (11.6) we get,

xβ1

1 x
β2

2 x
β3

3 = α0l
dm
21 + α1l

dm
22 + α2l

dm
23 + · · ·+ αdm l

dm
2s2

where, l21, l22, l23, · · · , l2s2 are linear forms in variables l1,x3, which is indeed linear forms in x1, x2, x3 and
s2 is some positive integer.
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We see that, by induction we can extend the above argument for n-variate polynomials. Hence we conclude
the proof by stating: any n-variate d-degree polynomial f(x) can be expressed as

f(x) = α1.l
e1
1 (x) + α2.l

e2
2 (x) + · · ·+ αs.l

es
s (x)

where the powers ei ≤ d, for all 1 ≤ i ≤ s.

11.1.1 Fisher’s formula :

I.F isher[4] proved that we can express the monomial x1x2 · · ·xn as

x1x2 · · ·xn =
1

2(n−1)n!
·

∑
e2={0,1},··· ,en={0,1}

(−1)
e2+···+en · (x1 + (−1)

e2x2 + · · ·+ (−1)
enxn)

n

Here the number of summands is s = 2n−1.

S.B.Gashkov and E.T.Shavgulidze [5] proved that Fisher’s formula is optimal. That is, the above monomial
can never be expressed as a sum of nth powers of linear forms, for s < 2n−1.

11.2 Lower Bounds on
∑∧∑

circuits

When we convert the exponentiation gates
∧

to product gates
∏

of fan-in 2, we require log ei number of
product gates for every monomial in the expression of f(x). Assuming the addition gates have unbounded
fan-in, we get the size of the circuit as

size =

s∑
i=1

log ei

where s is the number of summands.

In the last lecture we have seen that, d-degree n-variate random polynomials cannot be computed by a

circuit of size (1/2)
√(

n+d
d

)
with high probability. Therefore, for a random polynomial

s∑
i=1

log ei ≥ (1/2)

√(
n+ d

d

)
=⇒ s log d ≥ (1/2)(nd)

1/2
(Since ei is at most d)

=⇒ s ≥ nd/2

2 log d

In the next lecture we will improve this bound on the number of summands s required for a random n-variate

polynomial of degree d. That is, we will show that s ≥ 1

n+ 1

(
n+d
d

)
(using a dimension argument). On the

upper bound front, it is known that a random n-variate, degree-d polynomial can be expressed as a sum of

at most d
(
n+d
n

) n

n+ 1
+ 1e many dth powers of linear polynomials [6].
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