
E0309 Topics in Complexity Theory Spring 2015

Lecture 12: March 4, 2015
Lecturer: Neeraj Kayal Scribe: Abhijat Sharma

12.1 Recap

In the last lecture, we proved the following result by Ellison[2]:

Theorem 12.1 Any polynomial f ∈ F[X], where F is a field and X = (x1, x2, ..., xn) is a set of n formal
variables, can be written as a sum of powers of affine forms, i.e

f(X) = α1l
e1
1 + α2l

e2
2 + ...+ αsl

es
s (12.1)

where l1, l2, ...ls are affine polynomials in x1, x2, ..., xn (degree of each monomial in the li’s is at-most one),
for all i = 1, 2, ..., s, ei ≤ d where d ≥ 1 is the total degree of the polynomial f .

We eventually saw that without loss of generality, it is safe to assume that e1 = e2 = ... = es = d and therefore
f(X) =

∑s
i=1 αil

d
i . We also used a previous result describing the minimum number of multiplications

required to compute any random n-variate d-degree polynomial, to obtain a lower bound on the number
of summands s needed to express any random n-variate d-degree polynomial as a sum of powers of affine
forms (as in equation 12.1). We found that with high probability (probabilty p = 1 − 1

2
3
4 (n+d

d )
), for any

d-degree polynomial in n variables, the number of summands s ≥ 1
2 log d

√(
n+d
d

)
, which can be approximated

by Stirling’s bounds (when n � d,
(
n+d
d

)
' nd) to s ≥ nd/2. Now, we proceed to obtain a tighter lower

bound using a similar counting argument as used for the above bound, and explore more about the number
of summands s for general polynomials.

12.2 A trivial upper bound on s

We claim that in any given polynomial, when it is expressed as in equation 12.1, the number of summands
cannot exceed the number of monomials. More formally, as we know that there are at-most

(
n+d
d

)
monomials

in a d-degree n-variate polynomial,

Claim 12.2 If f(X) =
∑s′

i=1 αil
d
i and s′ >

(
n+d
d

)
, it is possible to ”rewrite” f =

∑s
i=1 βil

d
i such that

s ≤
(
n+d
d

)
.

Proof: Consider a vector space V = Fd[X], containing all possible n-variate d-degree polynomials, where
every polynomial f ∈ Fd[X] is represented as a vector with

(
n+d
d

)
components, each component corresponding

to a particular monomial, the value of that component representing the coefficient of that monomial in the
polynomial f . It can be easily observed that every possible polynomial in Fd[X] can be represented uniquely
as the above described vector.
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Now, suppose we are given a representation of a polynomial f as a sum of powers of affine forms, as
follows:

f(X) = α1l
d
1 + α2l

d
2 + ...αs′ l

d
s′

Then, ld1 , l
d
2 , ...l

d
s′ are, like f , all d-degree polynomials in n variables and thus belong to the vector space V .

Thus, each of ldi for i = 1, 2, ..., s′ can be represented as a
(
n+d
d

)
-dimensional vector as described above. Now,

we define a subspace W = F− span(ld1 , l
d
2 , ...l

d
s′), i.e W is the set of all linear combinations (referred as linear

span) of the vectors representing ld1 , l
d
2 , ...l

d
s′ , where the coefficients belong to a field F. Clearly, the vector

representing the polynomial f(X) =
∑s′

i=1 αil
d
i also belongs to W . By definition of a linear span, W is a

subspace of V (W ⊆ V ), which implies the dimension of W , dim(W ) ≤ dim(V ) =
(
n+d
d

)
. Therefore, there

exists a basis I of size equal to dim(W ). Let k = |I| be the dimension of the subspace W . The set of s′

vectors representing the polynomials ldi for i = 1, 2, ..., s′ cannot all be linearly independent, if s′ >
(
n+d
d

)
≥ k.

Hence, there exists a linearly dependent subset of these s′ vectors, that forms the basis I of size k. Let that
basis be I = {ldj1 , l

d
j2
, ..., ldjk} where j1, j2, ..., jk ∈ [s′]. Now, I is the basis for the subspace W , so every vector

in W can be written as a linear combination of vectors in I. Earlier we stated that f(X) ∈ W so f(x) can
be written as a linear combination of the basis vectors as follows:

f(X) = β1l
d
j1 + β2l

d
j2 + ...+ βkl

d
jk

where k = dim(W ) ≤
(
n+d
d

)
, which proves our claim.

12.3 Improving the lower bound on s

Consider all polynomials f ∈ F[X] in n variables and having degree d. Assuming that F is a finite field of
cardinality q = |F|. Then, total number of polynomials possible is equal to the total no. of ways of choosing(
n+d
d

)
coefficients for each of the monomials, which is equal to q(

n+d
d ).

Now, let us try to estimate the number of polynomials that can be written as a sum of dth powers of s
affine forms, i.e f =

∑s
i=1 αil

d
i .

Claim 12.3 The number of polynomials g which can be expressed as g = α.ld, where l is an affine form, is
q(n+1).

Proof: Consider any arbitrary affine form l(x1, x2, ..., xn) = a0 + a1x1 + ...anxn where ai ∈ F for i =
0, 1, 2, .., n. So, if we choose (n + 1) values of the coefficients ai, we fix the affine form l. This implies that
there are q(n+1) possible choices for the affine form l. We argue that the number of polynomials g = α.ld is
equal to the number of possible affine forms l, because

g = α.(a0 + a1x1 + ...anxn)d = ( d
√
α.a0 + d

√
α.a1x1 + ...+ d

√
α.anxn)d

From the above equation, it is clear that we do not have to choose a value for the variable α, to fix the
polynomial g. Therefore, g is uniquely defined by the (q(n+1) choices for the linear polynomial l. Observe
that this argument is valid only if d

√
α is properly defined, like when F = C, the set of complex numbers.

So, to fix the polynomial f , we have to choose s such polynomials g as defined in the above claim. Thus,
total number of polynomials that can be written as f =

∑s
i=1 αil

d
i are (q(n+1))s = qs(n+1). So, there are

s.(n+1) degrees of freedom to express polynomials as sum of powers of s affine powers, and this must at-least
be equal to the degrees of freedom to pick a random n-variate d-degree polynomial. Therefore, with high
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probability, the number of summands s would be such that

s.(n+ 1) ≥
(
n+ d

d

)
s ≥ 1

n+ 1

(
n+ d

d

)
' nd

The last approximation is using Stirling’s formula, and it can be seen this is clearly a tighter lower bound
than the earlier nd/2. Now, we try to find an explicit polynomial f for which the minimum number of
summands required, comes close to the above proved lower bound.

12.4 Finding the explicit polynomial f

Formally, the challenge is to find an explicit n-variate polynomial d-degree polynomial f such that any
representation of the form f =

∑s
i=1 αil

d
i (where li’s are affine forms), requires s to be ”large” (at-least

exponential in d).

In order to find the required polynomial we try to explore what are some ways in which a polynomial of
the from f = ld, where l = a0 + a1x1 + a2x2 + ...+ anxn is an affine form, differs from any other arbitrary
n-variate d-degree polynomial R.

Question 12.4 Given the random polynomial R, in n variables having degree d (the degree d is known),
describe an efficient algorithm that can output YES or NO, whether the given polynomial R is of the form
R = ld, where l is an affine form. (input polynomial is given explicitly as coefficients of monomials)

For simplicity, let us consider the case when R is an univariate polynomial of degree d, i.e n = 1 and we have
to output whether R is of the form R(x) = (ax+b)d = adxd+

(
d
1

)
ad−1bxd−1 + ...+bd. The first strategy that

we can think of is to look at the coefficients of xd and the constant term in the polynomial R, calculate their
dth roots to get probable values of a and b respectively, and then check if the other coefficients follow the
required pattern, i.e whether coefficient of xi is equal to

(
d
i

)
aibd−ixi. The problem with the above strategy

is when the underlying field is F = C, there can be d possible dth roots of a number, which means that we
would need to check all the coefficients for all possible values of a and b which would not be an efficient
process. There exists an efficient algorithm that answers Question 12.4 and leads us to finding the required
”hard” polynomial, eventually proving a strong lower bound, but first we look at a little stronger problem:

Question 12.5 Given a univariate polynomial f(x) with coefficients from the field F = C, and an integer
s, is there an efficient algorithm that outputs YES or NO, whether f can be written as

f(x) = (a1x+ b1)d + (a2x+ b2)d + ...+ (asx+ bs)
d (12.2)

A trivial method to solve this problem is to think of a1, a2, ..., as, b1, b2, ..., bs as unknowns, and let f(x) =
c0 + c1x + c2x

2 + ...cdx
d. On comparing the coefficients of xi on both sides of equation 12.2, we can

see that every coefficient of ci is equal to an explicit polynomial gi(a, b), where a = (a1, a2, ..., as) and
b = (b1, b2, ..., bs). This gives us a system of d+ 1 polynomial equations in 2s unknowns (a1, .., as, b1, ..., bs),
degree of each equation being at-most d. Now, the best known result of solving such a system of polynomial
equations is given by the following theorem:
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Theorem 12.6 Any system of polynomial equations in m variables,

g1(z1, z2, ...zm) = 0

g2(z1, z2, ...zm) = 0

.

.

gr(z1, z2, ...zm) = 0

where degree(gi) ≤ e for all i = 1, 2, ..., r, can be solved in time polynomial in r.em.

The above result gives us an exponential time algorithm for solving question 12.5, and unfortunately finding
a more efficient algorithm, that answers the question in lesser time, is an open problem. It is also easy to
see that an efficient solution to the multivariate analog of question 12.5 would also answer question 12.4, as
well as lead us to the required explicit polynomial to prove a strong lower bound.

Now, coming back to question 12.4, we were trying to distinguish between a random d-degree univariate
polynomial R and a polynomial f of the form f(x) = (ax+b)d. Let us observe the behaviour of the first-order
derivatives of these polynomials. When we differentiate f(x) with respect to x, we get f ′(x) = d.a.(ax+b)d−1,
which means that the greatest common divisor(GCD) of f and f ′ is the polynomial (ax + b)d−1. Thus,the
degree of the polynomial GCD(f, f ′) = d− 1, which is not the case, in general, for any arbitrary polynomial
R.

Claim 12.7 With high probability, degree of the polynomial GCD(R,R′) is zero.

Proof: Let us first look at the simple case when R is a univariate polynomial of degree d (say). Assuming,
the underlying field is such that all the roots or zeroes of the polynomial R exist, and are well-defined (for
example, complex numbers). Thus, in general, let α1, α2, ..., αd be the roots, and

R = (x− α1)(x− α2)...(x− αd)

where α1, α2, ..., αd may not all be distinct. Differentiating the above equation, we get

R′ =
∂R

∂x
=

R

(x− α1)
+

R

(x− α2)
+ ...+

R

(x− αd)

It can be observed that the polynomial GCD(R,R′) will have a root αi iff αi is a repeated root of R, i.e R
has a factor (x − αi)k for some k > 1. Clearly, R and R′ have no common roots if all of α1, α2, ..., αd are

distinct, which happens with very high probability, p =
d!.(q

d)
qd

if q is the cardinality of the underlying field F.

Thus, with the high probability p, for an arbitrary polynomial R, the polynomial GCD(R,R′) is a constant
and therefore has degree equal to zero. The above argument can be extended to multivariate polynomials,
where instead of one polynomial R′, we would consider the first-order partial derivatives of R with respect
to each of the variables, as we describe in the following paragraph.

Thus, we have the answer to question 12.4. The algorithm, when given the arbitrary polynomial R(X) as
input (where X = (x1, x2, ..., xn)), just has to compute partial derivatives of R with respect to each of the
n variables seperately and then compute the GCD of the polynomials, R, ∂R∂x1

, ∂R∂x2
, ..., ∂R∂xn

, and if this GCD

polynomial has higher degree then with high probability, we can output that R is of the form ld where l is
an affine form. This algorithm is known to run efficiently because of the following claim.

Claim 12.8 Given two polynomials f1 and f2 with degrees d1 and d2 respectively, it is possible to compute
the polynomial GCD(f1, f2), in time approximately O(poly(d1, d2)).
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Proof: The proof of the above claim follows from an algorithm very similar in operation to the Euclidean
Algorithm for computing GCD of integers. Again, if we consider f1 and f2 to be univariate polynomials, we
have the polynomial GCD(f1, f2) defined upto multiplication by a field constant, and the algorithm follows
straight from the analogy between n-digit integers and n-degree univariate polynomials. As long division of
one univariate polynomial, by another univariate polynomial is clearly defined just like integers, the Euclid’s
algorithm correctly computes the required GCD in time O(poly(d1, d2)).

The greatest common divisor is defined and exists, more generally, for multivariate polynomials over a
field or the ring of integers, and also over a unique factorization domain. There exist algorithms to compute
them as soon as one has a GCD algorithm in the ring of coefficients. These algorithms proceed by a recursion
on the number of variables to reduce the problem to a variant of Euclid’s algorithm.[4]

Now, coming back to our quest of finding the explicit polynomial f in n-variables of degree d, which we
use to prove a lower bound on the number of summands s, when f is expressed as a sum of powers of affine
forms f =

∑s
i=1 l

d
i . For any given polynomial h ∈ F[x1, x2, ..., xn], we define the set of first-order partial

derivatives of h,

∂=1h = { ∂h
∂x1

,
∂h

∂x2
, ...,

∂h

∂xn
}

Similarly, we can define the set of k’th order partial derivatives denoted by ∂=kh. Consider the polynomial
g = ld = (a0 + a1x1 + a2x2 + ...+ anxn)d, then

∂=1g = { ∂g
∂x1

,
∂g

∂x2
, ...,

∂g

∂xn
}

= {a1.d.ld−1, a2.d.ld−1, ..., an.d.ld−1}

If each of the n polynomials of degree d−1, are expressed as vectors, with entries corresponding to coefficients
of particular monomials, as it has been described earlier, we define the F− span(∂=1g) as the set of linear
combinations of polynomials from ∂=1g (where f = ld), with coefficients coming from the field F.

Claim 12.9 The dimension, dim(F− span(∂=1ld)) ≤ 1.

Proof: We have computed and seen that every polynomial in ∂=1ld is a constant multiple of the polynomial
ld−1, and that would be true for any linear combination of these polynomials. Thus, every polynomial in
F− span(∂=1ld) would be a constant multiple of ld−1 which would imply that the vectors representing these
polynomials too would be a constant multiple of the vector representing the polynomial ld−1, which proves
the claim as the ld−1 would be the single vector that forms the basis of the set F− span(∂=1ld).

We can make the same claim for kth order partial derivatives, as every polynomial on the set ∂=kld would
be a constant multiple of the polynomial ld−k. For example,

∂(a0 + a1x1 + a2x2 + ...+ anxn)d

∂x1x2...xk
= a1a2...ak.d(d− 1)(d− 2)...(d− k + 1).ld−k

Similarly, other such polynomials in ∂=1f would only have different value of the outer constants being
multiplied, but would all be multiples of ld−k, making the vector representing ld−k as the basis of F −
span(∂=kld), hence we claim:

Claim 12.10 The dimension, dim(F− span(∂=kld)) ≤ 1.
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We make another important observation about this quantity, the dimension of F− span of k’th order partial
derivatives:

Lemma 12.11 (Subadditivity) For any two polynomials g and h,

dim(F− span(∂=k(g + h))) ≤ dim(F− span(∂=kg)) + dim(F− span(∂=kh)) (12.3)

Proof: To prove this lemma,let us look at any polynomial p ∈ F−span(∂=k(g+h)). The vector representing
p would be a linear combination of vectors from ∂=k(g + h), i.e

p = α1q1 + α2q2 + ...+ αmqm (12.4)

where q1, q2, ..., qm ∈ ∂=k(g + h). By expanding the partial derivative over (g + h), we can write for all i,
qi = ri1 + ri2 where ri1, ri2 are polynomials in the sets ∂=kg,∂=kh respectively.

Let d1 = dim(F − span(∂=kg)) and d2 = dim(F − span(∂=kh)). Then, for all i, ri1 and ri2 are linear
combinations of d1 and d2 independent vectors respectively, which makes every qi also a linear combination
of at-most d1 + d2 linearly independent vectors. Substituting the qi’s in equation 12.4, we see that every
polynomial p is a combination of at-most d1 + d2 independent polynomials. This implies that the basis of
the set F− span(∂=k(g + h)) is of size ≤ d1 + d2, which completes the proof of the lemma.

The results stated above in Claim 12.10 and Lemma 12.11 lead us to a direct relation between the number
of summands when a polynomial f is expressed as f = α1l

d
1 + α2l

d
2 + ...αsl

d
s , where the li’s are affine forms.

Applying subaddditivity (Lemma 12.11) on the expansion,

dim(F− span(∂=kf)) ≤
s∑
i=1

dim(F− span(∂=kldi )) (12.5)

from Claim 12.10, every term on the right hand side is ≤ 1,

dim(F− span(∂=kf)) ≤ s (12.6)

We have seen that the partial derivatives of any order obey specific patterns when the polynomial is of
the form g = ld, where l is an affine form. However, for an arbitrary random polynomial R in n variables,
it can be said as a rough heuristic, ”the partial derivatives behave like independent random polynomials”.
For example, consider the polynomial f =

∏n
i=1 xi. Then,∂=1f = { fx1

, fx2
, ..., fxn

}, Similarly, ∂=2f would

be the set { f
xixj
} for all 1 ≤ i, j ≤ n (i 6= j). Extending the observed pattern, ∂=kf would be the set of

all multi-linear monomials of degree (n − k) over the set of variables X = {x1, x2, ..., xn}. Note that all
such monomials would be linearly independent as each monomial corresponds to a different subset of (n−k)
variables from X. Thus,

dim(F− span(∂=kf)) =

(
n

n− k

)
=

(
n

k

)
(12.7)

As the number of k’th order partial derivatives is exactly equal to number of ways of choosing a subset of
(n− k) variables out of n. Thus, combining equations 12.6 and 12.7, we get s ≥

(
n
k

)
, and to obtain a lower

bound on s, the maximum value of
(
n
k

)
is chosen i.e k = n/2. Hence, s ≥

(
n
n/2

)
' 2n

2π
√
n

using approximation

from the binomial distribution.

Thus, we can conclude that the lower bound on the number of summands is exponential in n (and in d)
which is pretty close to the bound expected for an arbitrary polynomial, from the counting argument. Also,
it is a good exercise to consider f as the Determinant polynomial and execute the same argument to obtain
a lower bound on s for the Determinant polynomial.
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