Topics in Complexity Theory

11 March, 2015

Lec. 13: Monomial Ordering

Lecturer: Neeraj Kayal

Scribe: Vineet Nair

In this lecture we introduce the concept of monomial ordering and look at problems where it is useful.

Idea: Say we have two univariate polynomials:

$$f(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_d x^d$$
$$g(x) = \beta_0 + \beta_1 x + \dots + \beta_e x^e$$
$$f(x)g(x) = \alpha_0\beta_0 + (\alpha_0\beta_1 + \alpha_1\beta_0)x + \dots + \alpha_d\beta_e x^{d+e}$$

Claim 13.0.1. Given two univariate polynomials f and g of degree d and e respectively as above, the polynomial fg has degree d+e.

Proof. We order the monomials in a univariate polynomial as follows: $x^i > x^j$ if i > j. x^i is the leading monomial in a polynomial h, if x^i is greater than all other monomials in h. It is easy to see that, f is a degree d polynomial iff the leading monomial in f is x^d . If the leading monomial in h_1 and h_2 is x^i and x^j then the leading monomial in h_1h_2 is $x^i \cdot x^j = x^{i+j}$. Hence the leading monomial in fg is x^{d+e} . Hence degree of fg is d+e.

We wish to generalize the monomial ordering concept used in the above proof for univariate polynomials to multivariate monomials. From here on X represents the set of variables $X = \{x_1, x_2, ..., x_n\}$, $\overline{\alpha}$ represents the vector $(\alpha_1, \alpha_2, ..., \alpha_n)$ and $X^{\underline{\alpha}}$ represents the monomial $x_1^{\alpha_1} x_2^{\alpha_2} ... x_n^{\alpha_n}$. We want to establish a variable ordering such that the following holds.

- 1. For any two monomials $X^{\underline{\alpha}}$ and $X^{\underline{\beta}}$ either $X^{\underline{\alpha}} > X^{\underline{\beta}}$ or $X^{\underline{\alpha}} < X^{\underline{\beta}}$.
- 2. For all α and β , $X^{\underline{\alpha}}X^{\underline{\beta}} > X^{\underline{\alpha}}$.
- 3. For any monomial $X^{\underline{\alpha}}$, there are a finite number of monomials samller than it, i.e $\{m : X^{\underline{\alpha}} > m\}$ is finite.

Examples of variable ordering

1. Pure lexicographic ordering:

In this the variables are ordered as $x_1 > x_2 > ... > x_n$ and for any two degree vectors $\overline{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_n)$ and $\overline{\beta} = (\beta_1, \beta_2, ..., \beta_n)$ where $\overline{\alpha} \neq \overline{\beta}$ for $\alpha_1 \neq \beta_1$ and $\alpha_1 > \beta_1 \Rightarrow X^{\underline{\alpha}} > X^{\underline{\beta}}$ else for $\alpha_2 \neq \beta_1$ and $\alpha_2 > \beta_2 \Rightarrow X^{\underline{\alpha}} > X^{\underline{\beta}}$

else for $\alpha_n \neq \beta_n$ and $\alpha_n > \beta_n \Rightarrow X^{\underline{\alpha}} > X^{\underline{\beta}}$

2. Graded lexicographic ordering

For any two degree vectors $\overline{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_n)$ and $\overline{\beta} = (\beta_1, \beta_2, ..., \beta_n)$ where $\overline{\alpha} \neq \overline{\beta}$

if
$$\sum_{i=1}^{n} \alpha_i > \sum_{i=1}^{n} \beta_i$$
 then $X^{\underline{\alpha}} > X^{\underline{\beta}}$

else if $\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \beta_i$ then use pure lexicographic ordering to order $X^{\underline{\alpha}}, X^{\underline{\beta}}$.

Leading Monomial and Trailing Monomial:

Given

$$f = \sum_{\overline{\alpha} \in \mathbb{Z}^n} a_{\overline{\alpha}} X^{\overline{\alpha}}$$

we say a monomial $X^{\overline{\alpha}}$ is the leading monomial of f, represented as LM(f) if for all $X^{\overline{\beta}} > X^{\overline{\alpha}}$, $a_{\overline{\beta}} = 0$. Similarly we can define the trailing monomial of f, represented as TM(f) if for all $X^{\overline{\beta}} < X^{\overline{\alpha}}$, $a_{\overline{\beta}} = 0$.

Claim 13.0.2. Given two multivariate polynomials f and g, LM(fg)=LM(f)LM(g).

Proof. Say for contradiction $\operatorname{LM}(fg) \neq \operatorname{LM}(f) \operatorname{LM}(g)$. Let $X^{\overline{\alpha}}$ and $X^{\overline{\beta}}$ be the leading monomial of $\operatorname{LM}(f)$ and $\operatorname{LM}(g)$ respectively. Let $\operatorname{LM}(fg) = X^{\overline{\alpha_1}} X^{\overline{\beta_1}}$ where $X^{\overline{\alpha_1}}$ and $X^{\overline{\beta_1}}$ are monomials in f and g respectively. Hence either $X^{\overline{\alpha_1}} < X^{\overline{\alpha}}$ or $X^{\overline{\beta_1}} < X^{\overline{\beta}}$. W.l.o.g assume $X^{\overline{\alpha_1}} < X^{\overline{\alpha}}$. This implies $\overline{\alpha_1} < \overline{\alpha}$ (since the ordering is implicitly on the degree vectors). Since $X^{\overline{\alpha_1}} X^{\overline{\beta_1}}$ is the leading monomial, $\overline{\alpha_1} + \overline{\beta_1} > \overline{\alpha} + \overline{\beta}$. But $X^{\overline{\alpha}}$ and $X^{\overline{\beta}}$ are the leading monomials of $\operatorname{LM}(f)$ and $\operatorname{LM}(g)$ respectively, hence $\overline{\alpha} + \overline{\beta} > \overline{\alpha_1} + \overline{\beta_1}$. Thus we get a contradiction.

We will see a couple of examples where we can use monomial ordering to solve the problem.

1. Show that the monomial x^2y^3 cannot be expressed as a power of any polynomial, i.e $x^2y^3 \neq f^e$ where f is polynomial and $e \neq 1$.

Say for contradiction $x^2y^3 = f^e$. This implies $LM(x^2y^3) = LM(f^e) = LM(f)^e$. Thus $x^2y^3 = x^{em}y^{en}$. Since gcd(2,3)=1 we have e = 1, m = 2 and y = 3. Hence a contradiction. This method also extends to show $x^2y^3 + \alpha_t x^2y^2 + \ldots + \alpha_0 x_0$ is not power of any polynomial.

2. Suppose we have two multivariate polynomials $f(\underline{X})$ and $g(\underline{X})$ where $\underline{X} = \{x_1, x_2, ..., x_n\}$ and we need to determine whether $f(\underline{X})$ and $g(\underline{X})$ have a common root.

Observe that if $f(\underline{X})$ and $g(\underline{X})$ have a common root then $\deg(\gcd(f(\underline{X}), g(\underline{X}))) > 0$. Hence we perform euclids algorithm on $f(\underline{X})$ and $g(\underline{X})$ to determine their gcd. Suppose $\deg(f(\underline{X})) > \deg(g(\underline{X}))$. We divide $f(\underline{X})$ by $g(\underline{X})$. Say we get

$$f(\underline{X}) = g(\underline{X})q(\underline{X}) + r(\underline{X})$$

where $q(\underline{X})$ and $r(\underline{X})$ are the qoutient and remainder polynomials respectively. We know $gcd(f(\underline{X}), g(\underline{X})) = gcd(g(\underline{X}), r(\underline{X}))$. In multivariate case we need to determine which of the polynomials $g(\underline{X})$ or $r(\underline{X})$ is smaller to continue the recursion. $r(\underline{X})$ is smaller than $g(\underline{X})$ iff $LM(r(\underline{X})) < LM(g(\underline{X}))$.