E0 309: Topics in Complexity Theory

Lecture 14: March 13, 2015

Lecturer: Neeraj Kayal

Scribe: Sumant Hegde

Spring 2015

14.1 A lower bound for the determinant

In lecture 12 we saw that the size of a diagonal depth three circuit computing a polynomial f is lower bounded by $dim(Fspan(\partial^{=k}(f)))$ for any integer k. We also saw that if $f(x_1, \ldots, x_n) = x_1 \cdots x_n$ then $dim(Fspan(\partial^{=k}(f)))$ is $\binom{n}{k}$, which is maximum when k = n/2. Today we will analyze the value of $dim(Fspan(\partial^{=k}(f)))$, where $f = DET(X_{n \times n})$.

Claim 14.1 Let $f = DET(X_{n \times n})$. Then $dim(Fspan(\partial^{=k} f)) = {\binom{n}{k}}^2$.

Proof: Any element in $\partial^{=k}(f)$ is a derivative $(\partial^k f)/(\partial x_{i_1j_1}\dots\partial x_{i_kj_k})$ for some i_1,\dots,j_k . Now, $(\partial^k f)/(\partial x_{i_1j_1}\dots\partial x_{i_kj_k})$ is actually the minor obtained by removing exactly rows i_1,\dots,i_k and columns j_1,\dots,j_k from X. Thus $\partial^{=k}(f)$ is the set of all $(n-k) \times (n-k)$ minors of X.

Consider any two $(n-k) \times (n-k)$ minors m_1, m_2 of X. There must be some row (or column) i of X that is a "removed" row (column) w.r.t. m_1 but not w.r.t. m_2 . It follows that every monomial in m_1 is devoid of variables of row (column) i while every monomial in m_2 contains a variable of row (column) i. Therefore, the elements in $\partial^{=k}(f)$ are pairwise monomial-disjoint, and the dimension of $Fspan(\partial^{=k}(f))$ equals the number of elements in $\partial^{=k}(f)$. This number is $\binom{n}{k}^2$, the number of ways of choosing k rows and k columns independently from X.

 $\binom{n}{k}^2$ is maximum when k = n/2. Thus we now have a size lower bound of $\binom{n}{n/2}^2 \approx (2^n/\sqrt{n})^2 = 2^{2n}/n$ for diagonal depth three circuits computing $DET(X_{n \times n})$.

14.2 A detour on binomial coefficients

If we plot a graph of $f(k) = \binom{n}{k}$ vs. k for a fixed n, we see that f(k) is maximum at k = n/2, and that f(k) decreases rapidly as |k - n/2| increases. When f(k) is scaled by a factor of $1/2^n$, the graph resembles the binomial distribution B(n,p) with p = 1/2. That is, if X is the random variable with this distribution, then $Pr[X = k] = \binom{n}{k}p^k(1-p)^k = \binom{n}{k}/2^n$. The expected value is E[X] = np = n/2, variance is var[X] = np(1-p) = n/4 and standard deviation is $\sigma[X] = \sqrt{var[X]} = \sqrt{n/2}$. Thus we see that X takes a value most likely in $[n/2 - \sqrt{n}/2, n/2 + \sqrt{n}/2]$, a small interval of length \sqrt{n} .

Now we consider an exercise which will be useful in future when discussing multilinear formula lower bounds. **Question** Suppose we toss n fair coins t times (t "batches"). For batch i, $1 \le i \le t$, let the vector $b_i = (b_{i,1}, \ldots, b_{i,n})$ represent the outcomes of n coins, where $b_{i,j} \in \{-1,1\}$. (Say -1 is tail and 1 is head.) Let

$$imbalance(b_i) = |\sum_{j=1}^n b_{i,j}|$$

Let $I = \sum_{i=1}^{t} imbalance(b_i)$. How is I distributed?

Hint Consider Pr[I=0]. For any *i*, $Pr[imbalance(b_i)=0] = \binom{n}{n/2}/2^n \approx 1/\sqrt{2\pi n}$. Also, $imbalance(b_i)$ is always nonnegative. Therefore $Pr[I=0] = Pr[\bigcap_{i=1}^{t} imbalance(b_i)=0] \approx 1/\sqrt{2\pi n}^t$.

14.3 A slightly generalized model for lower bound

Let t be a positive integer. For a random n-variate degree d polynomial f, we consider expressing f as

$$f(x_1, \dots, x_n) = Q_1^{e_1} + \dots + Q_s^{e_s}$$
 where $deg(Q_i) \le t$, (14.1)

and we try to lower bound s. Before further analysis we note that diagonal $\Sigma \Pi \Sigma$ circuits are a special case of this model (i.e. when t = 1).

Let \mathbb{F} be a finite field. We will identify \mathbb{F} with the size of \mathbb{F} .

Total number of *n*-variate degree *d* polynomials (f's) is $\mathbb{F}^{\binom{n+d}{d}}$.

Total number of *n*-variate degree *t* polynomials (Q_i) is $\mathbb{F}^{\binom{n+t}{t}}$.

Maximum number of f's that the $Q_i^{e_i}$'s as in equation 14.1 can cover is $(\mathbb{F}^{\binom{n+t}{t}})^s$. In order to cover all f's, it is necessary that

$$(\mathbb{F}^{\binom{n+t}{t}})^{s} \ge \mathbb{F}^{\binom{n+d}{d}}$$
$$s \ge \binom{n+d}{d} / \binom{n+t}{t}$$

Assume $n = d^2$ (as in determinant). Then

$$s \ge \binom{d^2 + d}{d} / \binom{d^2 + t}{t}$$

Using the fact that $\binom{n}{k} \approx e^{k \log(n/k) + k} \approx (en/k)^k$, we have

$$s \ge (e(d^2 + d)/d)^d / (e(d^2 + t)/t)^t$$

$$\approx (d^2)^{d-t} + \text{ lower order terms}$$

$$\approx n^{d-t}.$$

Thus, most polynomials require $n^{d-t} = n^{\sqrt{n-t}}$ sized circuits in this model. Naturally we now want to find (show) an explicit polynomial with "large" lower bound on the size in this model. The lower bound $n^{\omega(d/t)}$ is of great interest here: for $t \ge \log^2 d$, showing such a polynomial will resolve a fundamental question in the area of arithmetic complexity theory: "Is $\mathsf{VP} = \mathsf{VNP}$?".

Definition 14.2 VP is the class of (families of) polynomials $f(x_1, \ldots, x_n)$ whose degree is polynomial in n and which can be computed efficiently, i.e., by (families of) arithmetic circuits of size polynomial in n.

VNP is the class of polynomials $f(x_1, \ldots, x_n)$ such that given any monomial of f, its coefficient can be computed efficiently. Roughly, VP and VNP can be thought of as analogues of P and NP in boolean circuit complexity.

Theorem 14.3 (Valiant, Agrawal-Vinay, Koiran, Fischer) If there exists an explicit polynomial $f(x_1, \ldots, x_n)$ of degree d $(n \ge d^2$, say) such that for some $t \ge \log^2 d$ the number s is roughly $n^{\omega(d/t)}$ then $\mathsf{VP} \ne \mathsf{VNP}$. i.e., this polynomial would not have a polynomial size circuit.

A typical choice of t is $t = \sqrt{d}$. So far, we have been able to show the following.

Theorem 14.4 There is an explicit polynomial (in VNP) $f(x_1, \ldots, x_n)$ of degree d where $n = d^2$, such that for all t the number of summands $s \ge n^{(1/4)(d/t)} = n^{\Omega(d/t)}$.

It appears that the known proof techniques are not sufficient to prove the $n^{\omega(d/t)}$ lower bound.

14.4 Homogeneous Depth Three Circuits

A depth three circuit is homogeneous if every node in it computes a homogeneous polynomial. A degree d polynomial $f(x_1, \ldots, x_n)$ is homogeneous if it is of the form

$$f(x_1,\ldots,x_n) = \sum_{i=1}^{s} (l_{i_1}\cdots l_{i_d})$$

where each l_{i_j} is a linear form, i.e. $l_{i_j} = \sum_{i=1}^n \alpha_i x_i$ (α_i is a field constant). Clearly homogeneous depth three circuits are a special form of depth three circuits model. We try to prove lower bounds in this model.

14.4.1 Partial Derivatives Measure

Let $f(x_1, \ldots, x_n)$ be a polynomial of degree d. We extend the notion of $\partial^{=k} f$ to define $\partial^* f$ as follows. Let $\partial^{=0} f = \{f\}$.

Definition 14.5 $\partial^* f = \bigcup_{i=0}^d \partial^{=i} f.$

Now $dim(Fspan(\partial^* f))$ forms a complexity measure. This measure was introduced by Nisan and Wigderson^[4].

Lemma 14.6 Subadditivity: $dim(Fspan(\partial^*(f+g))) \le dim(Fspan(\partial^*f)) + dim(Fspan(\partial^*g))$ Submultiplicativity: $dim(Fspan(\partial^*(f \cdot g))) \le dim(Fspan(\partial^*f)) \cdot dim(Fspan(\partial^*g))$

Proof: Subadditivity: This can be proved along the lines of lemma 12.11 of lecture 12. Submultiplicativity: Let m and n be dimensions of $Fspan(\partial^* f)$ and $Fspan(\partial^* g)$ respectively. Let f_1, \ldots, f_m and g_1, \ldots, g_m be basis vectors (polynomials) of the vector spaces respectively.

Any polynomial h in $Fspan(\partial^*(fg))$ is a linear combination of polynomials from $\partial^*(fg)$. That is, $h = \sum_{i=1}^{\kappa} h_i$ such that $h_i \in \partial^*(fg)$. Now each h_i is of the form $\partial^{d_i}(fg)/(\partial x_{i_1}\partial x_{i_2}\dots\partial x_{i_{d_i}})$ where $0 \le d_i \le d$. Applying product rule repeatedly, we eventually get h_i as a sum of products, where each product is of the form f'g' such that $f' \in \partial^*(f)$ and $g' \in \partial^*(g)$. Since f' can be expressed in the form $\sum_{i=1}^m \beta_i f_i$ and g' in the form $\sum_{i=1}^n \gamma_i g_i$, the product f'g' can be expressed in the form $\sum_{i=1}^m \sum_{j=1}^n \delta_{ij} f_i g_j$. $(\alpha_i, \beta_i, \gamma_i, \delta_i \text{ are field constants.})$ In fact every f'g' in the expanded form of h_i can be written as a linear combination of polynomials f_1g_1, \ldots, f_mg_n . Finally, h being the sum of all h_i 's, can itself be written as a sum of linear combination of aforementioned polynomials. This proves that all polynomials in $Fspan(\partial^*(f \cdot g))$ are linear combinations of at most mnpolynomials.

14.4.2 Homogeneous $\Sigma \Pi \Sigma$ circuit lower bound for determinant

Claim 14.7 Any homogeneous $\Sigma \Pi \Sigma$ circuit computing $DET(X_{n \times n})$ must have size $2^{\Omega(n)}$.

Proof: We use counting argument. $Fspan(\partial^*(DET_n))$ has all the minors of $X_{n \times n}$. The number of $k \times k$ minors is $\binom{n}{k}^2$ as we saw in claim 14.1. Therefore the total number of minors is $\binom{n}{0}^2 + \cdots + \binom{n}{n}^2 = \binom{2n}{n} \approx \frac{2^{2n}}{\sqrt{2\pi 2n}}$. This is equal to the dimension of $Fspan(\partial^*(DET_n))$ as all the minors are pairwise monomial disjoint.

Any homogeneous $\Sigma \Pi \Sigma$ circuit computing DET_n is of the form

$$C = \sum_{i=1}^{s} (l_{i_1} \cdots l_{i_n})$$

where l_{i_i} 's are linear forms.

We claim that $dim(Fspan(\partial^* l_{i_j})) \leq 2$ for every l_{i_j} . To see why, we first observe that $\partial^{=1}l_{i_j}$ contains only constants, while $\partial^{=0}l_{i_j}$ contains only l_{i_j} , a linear polynomial. The proof follows since $\partial^* l_{i_j} = \partial^{=0}l_{i_j} \cup \partial^{=1}l_{i_j}$. From submultiplicativity (lemma 14.6), the product $l_{i_j} \cdots l_{i_n}$ contributes at most 2^n to the dimension. From subadditivity, $dim(Fspan(\partial^*C)) \leq s \cdot 2^n$.

Since $C = DET_n$, it follows that

$$2^{2n} / \sqrt{2\pi 2n} \le s \cdot 2^n$$
$$s \ge 2^n / \sqrt{2\pi 2n}$$
$$s = 2^{\Omega(n)}$$

14.5 References

- [1] AMIR SHPILKA, AMIR YEHUDAYOFF, Arithmetic Circuits: A survey of recent results and open questions, 2010.
- [2] M. AGRAWAL, V. VINAY, Arithmetic Circuits: A chasm at depth four. FOCS 2008
- [3] P. KOIRAN, Arithmetic Circuits: The chasm at depth four gets wider. *CoRR*, *abs/1006.4700*, 2010
- [4] NOAM NISAN, AVI WIGDERSON Lower Bounds on Arithmetic Circuits via Partial Derivatives. Computational Complexity, 1996