
E0 309: Topics in Complexity Theory Spring 2015

Lecture 14: March 13, 2015
Lecturer: Neeraj Kayal Scribe: Sumant Hegde

14.1 A lower bound for the determinant

In lecture 12 we saw that the size of a diagonal depth three circuit computing a polynomial f is lower
bounded by dim(Fspan(∂=k(f))) for any integer k. We also saw that if f(x1, . . . , xn) = x1 · · ·xn then
dim(Fspan(∂=k(f))) is

(
n
k

)
, which is maximum when k = n/2. Today we will analyze the value of

dim(Fspan(∂=k(f))), where f = DET (Xn×n).

Claim 14.1 Let f = DET (Xn×n). Then dim(Fspan(∂=kf)) =
(
n
k

)2
.

Proof: Any element in ∂=k(f) is a derivative (∂kf)/(∂xi1j1 . . . ∂xikjk) for some i1, . . . , jk. Now, (∂kf)/
(∂xi1j1 . . . ∂xikjk) is actually the minor obtained by removing exactly rows i1, . . . , ik and columns j1, . . . , jk
from X. Thus ∂=k(f) is the set of all (n− k)× (n− k) minors of X.

Consider any two (n − k) × (n − k) minors m1,m2 of X. There must be some row (or column) i of X
that is a “removed” row (column) w.r.t. m1 but not w.r.t. m2. It follows that every monomial in m1

is devoid of variables of row (column) i while every monomial in m2 contains a variable of row (column)
i. Therefore, the elements in ∂=k(f) are pairwise monomial-disjoint, and the dimension of Fspan(∂=k(f))

equals the number of elements in ∂=k(f). This number is
(
n
k

)2
, the number of ways of choosing k rows and

k columns independently from X.(
n
k

)2
is maximum when k = n/2. Thus we now have a size lower bound of

(
n

n/2

)2 ≈ (2n/
√
n)2 = 22n/n

for diagonal depth three circuits computing DET (Xn×n).

14.2 A detour on binomial coefficients

If we plot a graph of f(k) =
(
n
k

)
vs. k for a fixed n, we see that f(k) is maximum at k = n/2, and that

f(k) decreases rapidly as |k − n/2| increases. When f(k) is scaled by a factor of 1/2n, the graph resembles
the binomial distribution B(n, p) with p = 1/2. That is, if X is the random variable with this distribu-
tion, then Pr[X = k] =

(
n
k

)
pk(1 − p)k =

(
n
k

)
/2n. The expected value is E[X] = np = n/2, variance is

var[X] = np(1− p) = n/4 and standard deviation is σ[X] =
√
var[X] =

√
n/2. Thus we see that X takes a

value most likely in [n/2−
√
n/2, n/2 +

√
n/2], a small interval of length

√
n.

Now we consider an exercise which will be useful in future when discussing multilinear formula lower bounds.
Question Suppose we toss n fair coins t times (t “batches”). For batch i, 1 ≤ i ≤ t, let the vector
bi = (bi,1, . . . , bi,n) represent the outcomes of n coins, where bi,j ∈ {−1, 1}. (Say -1 is tail and 1 is head.)
Let

imbalance(bi) = |
n∑

j=1

bi,j |
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Let I =
t∑

i=1

imbalance(bi). How is I distributed?

Hint Consider Pr[I = 0]. For any i, Pr[imbalance(bi) = 0] =
(

n
n/2

)
/2n ≈ 1/

√
2πn. Also, imbalance(bi) is

always nonnegative. Therefore Pr[I = 0] = Pr[
t⋂

i=1

imbalance(bi) = 0] ≈ 1/
√

2πn
t
.

14.3 A slightly generalized model for lower bound

Let t be a positive integer. For a random n-variate degree d polynomial f , we consider expressing f as

f(x1, . . . , xn) = Qe1
1 + · · ·+Qes

s where deg(Qi) ≤ t, (14.1)

and we try to lower bound s. Before further analysis we note that diagonal ΣΠΣ circuits are a special case
of this model (i.e. when t = 1).

Let F be a finite field. We will identify F with the size of F.

Total number of n-variate degree d polynomials (f ’s) is F(n+d
d ).

Total number of n-variate degree t polynomials (Qi’s) is F(n+t
t ).

Maximum number of f ’s that the Qei
i ’s as in equation 14.1 can cover is (F(n+t

t ))s. In order to cover all f ’s,
it is necessary that

(F(n+t
t ))s ≥F(n+d

d )

s ≥
(
n+ d

d

)
/

(
n+ t

t

)
Assume n = d2 (as in determinant). Then

s ≥
(
d2 + d

d

)
/

(
d2 + t

t

)
Using the fact that

(
n
k

)
≈ ek log(n/k)+k ≈ (en/k)k, we have

s ≥(e(d2 + d)/d)d/(e(d2 + t)/t)t

≈(d2)d−t + lower order terms

≈nd−t.

Thus, most polynomials require nd−t = n
√
n−t sized circuits in this model. Naturally we now want to find

(show) an explicit polynomial with “large” lower bound on the size in this model. The lower bound nω(d/t)

is of great interest here: for t ≥ log2 d, showing such a polynomial will resolve a fundamental question in the
area of arithmetic complexity theory: “Is VP = VNP?”.

Definition 14.2 VP is the class of (families of) polynomials f(x1, . . . , xn) whose degree is polynomial in n
and which can be computed efficiently, i.e., by (families of) arithmetic circuits of size polynomial in n.

VNP is the class of polynomials f(x1, . . . , xn) such that given any monomial of f , its coefficient can be
computed efficiently. Roughly, VP and VNP can be thought of as analogues of P and NP in boolean circuit
complexity.
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Theorem 14.3 (Valiant,Agrawal-Vinay,Koiran,Fischer) If there exists an explicit polynomial f(x1, . . . , xn)
of degree d (n ≥ d2, say) such that for some t ≥ log2 d the number s is roughly nω(d/t) then VP 6= VNP. i.e.,
this polynomial would not have a polynomial size circuit.

A typical choice of t is t =
√
d.

So far, we have been able to show the following.

Theorem 14.4 There is an explicit polynomial (in VNP) f(x1, . . . , xn) of degree d where n = d2, such that
for all t the number of summands s ≥ n(1/4)(d/t) = nΩ(d/t).

It appears that the known proof techniques are not sufficient to prove the nω(d/t) lower bound.

14.4 Homogeneous Depth Three Circuits

A depth three circuit is homogeneous if every node in it computes a homogeneous polynomial. A degree d
polynomial f(x1, . . . , xn) is homogeneous if it is of the form

f(x1, . . . , xn) =

s∑
i=1

(li1 · · · lid)

where each lij is a linear form, i.e. lij =
n∑

i=1

αixi (αi is a field constant). Clearly homogeneous depth three

circuits are a special form of depth three circuits model. We try to prove lower bounds in this model.

14.4.1 Partial Derivatives Measure

Let f(x1, . . . , xn) be a polynomial of degree d. We extend the notion of ∂=kf to define ∂∗f as follows. Let
∂=0f = {f}.

Definition 14.5 ∂∗f =
d⋃

i=0

∂=if .

Now dim(Fspan(∂∗f)) forms a complexity measure. This measure was introduced by Nisan and Wigderson[4].

Lemma 14.6 Subadditivity: dim(Fspan(∂∗(f + g))) ≤ dim(Fspan(∂∗f)) + dim(Fspan(∂∗g))
Submultiplicativity: dim(Fspan(∂∗(f · g))) ≤ dim(Fspan(∂∗f)) · dim(Fspan(∂∗g))

Proof: Subadditivity: This can be proved along the lines of lemma 12.11 of lecture 12.
Submultiplicativity: Let m and n be dimensions of Fspan(∂∗f) and Fspan(∂∗g) respectively. Let f1, . . . , fm
and g1, . . . , gm be basis vectors (polynomials) of the vector spaces respectively.

Any polynomial h in Fspan(∂∗(fg)) is a linear combination of polynomials from ∂∗(fg). That is, h =
k∑

i=1

hi

such that hi ∈ ∂∗(fg). Now each hi is of the form ∂di(fg)/(∂xi1∂xi2 . . . ∂xidi ) where 0 ≤ di ≤ d. Applying
product rule repeatedly, we eventually get hi as a sum of products, where each product is of the form f ′g′
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such that f ′ ∈ ∂∗(f) and g′ ∈ ∂∗(g). Since f ′ can be expressed in the form
m∑
i=1

βifi and g′ in the form
n∑

i=1

γigi,

the product f ′g′ can be expressed in the form
m∑
i=1

n∑
j=1

δijfigj . (αi, βi, γi, δi are field constants.) In fact ev-

ery f ′g′ in the expanded form of hi can be written as a linear combination of polynomials f1g1, . . . , fmgn.
Finally, h being the sum of all hi’s, can itself be written as a sum of linear combination of aforementioned
polynomials. This proves that all polynomials in Fspan(∂∗(f · g)) are linear combinations of at most mn
polynomials.

14.4.2 Homogeneous ΣΠΣ circuit lower bound for determinant

Claim 14.7 Any homogeneous ΣΠΣ circuit computing DET (Xn×n) must have size 2Ω(n).

Proof: We use counting argument. Fspan(∂∗(DETn)) has all the minors of Xn×n. The number of k × k
minors is

(
n
k

)2
as we saw in claim 14.1. Therefore the total number of minors is

(
n
0

)2
+ · · ·+

(
n
n

)2
=
(

2n
n

)
≈

22n/
√

2π2n. This is equal to the dimension of Fspan(∂∗(DETn)) as all the minors are pairwise monomial
disjoint.
Any homogeneous ΣΠΣ circuit computing DETn is of the form

C =

s∑
i=1

(li1 · · · lin)

where lij ’s are linear forms.
We claim that dim(Fspan(∂∗lij )) ≤ 2 for every lij . To see why, we first observe that ∂=1lij contains only
constants, while ∂=0lij contains only lij , a linear polynomial. The proof follows since ∂∗lij = ∂=0lij ∪∂=1lij .
From submultiplicativity (lemma 14.6), the product lij · · · lin contributes at most 2n to the dimension. From
subadditivity, dim(Fspan(∂∗C)) ≤ s · 2n.
Since C = DETn, it follows that

22n/
√

2π2n ≤s · 2n

s ≥2n/
√

2π2n

s =2Ω(n)
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