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15.1 Lower Bounds for Depth-3 homogeneous circuits

The theme of this lecture is to prove that any depth three homogeneous circuit computing the 2dth elemen-

tary symmetric polynomial in n variables must have size at least (
n

4d
)d over fields of characteristic zero.

Remark :
1) When d = n/c (for some constant c), we obtain an O(cn) exponential lower bound.
2) It is clear that symmetric polynomial in n variables must have degree d less than n. However the result
does not apply for polynomials of degree d much greater than n.

15.2 Partial Derivative Method

Let f be a polynomial. We define the partial derivative measure by

PD(f) = dim[span{∂f}]

where ∂f is the set of all partial derivatives of f . In other words we write,

PD(f) = dim[span{∂Sf : S ⊆ [n]}]

where ∂Sf is the partial derivative
∂f

∂x1 · · ·xk
such that S = {x1, · · · , xk}.

15.2.1 Properties of Partial Derivatives

Any two polynomials f and g over field F holds the following properties.

1. Subadditivity : PD(f + g) ≤ PD(f) + PD(g).

2. Summultiplicativity : PD(f.g) ≤ PD(f).PD(g).

3. PD(α.f) = α.PD(f), for any α ∈ {F\0}

15.3 Homogeneous Depth three circuits

Consider a homogeneous circuit C computing a homogeneous polynomial of degree d in n variables {x1, x2, · · · , xn}.
Let C be

C = T1 + T2 + · · ·+ Ts
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such that Ti =

d∏
j=1

lij , where lij are linear forms in variables x1, x2, · · · , xn.

Lemma 15.1 PD(C) ≤ s · 2d
Proof:

PD(C) ≤
s∑
i=1

PD(Ts) (using subadditivity)

≤
s∑
i=1

d∏
j=1

PD(lij) (using submultiplicativity)

≤
s∑
i=1

2d

≤ s.2d

Notation : Let S2d
n denote the 2dth degree elementary symmetric polynomial in n variables.

Theorem 15.2 PD(S2d
n ) ≥

(
n
d

)
over fields of characteristic zero.

Before proving the theorem, let us prove the required lower bound. From theorem 15.2 and lemma 15.1, we
get, (

n

d

)
≤ s.22d, if C computes the polynomial S2d

n

=⇒ s ≥
(
n
d

)
22d

≥ (
n

4d
)
d

(using Stirling formula)

Hence we have proved the required lower bound. Now the remainder of the proof is to prove theorem 15.2.

15.3.1 Proof of Theorem 15.2

Here we restrict our focus only to partial derivatives of order d. Let T ⊆ {x1, · · · , xn} and |T | = d. Now,

∂TS
2d
n =

∑
W⊆[n] & |W |=d&W∩T=φ

∏
i∈W

xi (15.1)

Let us define a column vector m(n
d)×1

, whose rows are indexed by subsets of [n] of size d. We define the

entries by ∂TS
2d
n for any row identified by T . That is

m(n
d)×1

= [∂TS
2d
n ] (15.2)

From (15.1) and (15.2), we write

m = D.v
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where, D(n
d)×(n

d)
is a 0/1 matrix whose rows and columns are identified by subsets of [n] of size d such that

DT,W = 1 iff T ∩W = φ. Here, v(n
d)×1

is a column vector whose rows are identified similar to columns of D

such that vW =
∏
i∈W

xi.

From now on let us call D as the disjoint matrix.

Theorem 15.3 The disjoint matrix D has maximal rank over any field of characteristic zero. That is,
rank(D) =

(
n
d

)
.

Since D has maximal rank, we can say that dth order partial derivatives of S2d
n , that is, the entries of m are

all linearly independent. Therefore, we obtain the result PD(S2d
n ) ≥

(
n
d

)
. Now let us prove theorem 15.3.

15.4 Proof of Theorem 15.3

Let S = {1, 2, · · · , n}. Let us call any subset of S of size l and k as l-set and k-set respectively. For any
two positive integers l, k (k ≤ l) we construct a 0/1 incidence matrix B whose rows and columns are indexed
by the set of all possible l-sets and k-sets respectively such that, Bij = 1, iff the l-set corresponding to the
ith row contains the k-set corresponding to the jth column. Clearly B has

(
n
l

)
rows and

(
n
k

)
columns. It

has been proved by Gottlieb [2] that the rank of such matrix B is maximal. That is rank(B) = min{
(
n
l

)
,
(
n
k

)
}.

The idea here is to show a reduction from disjoint matrix D to matrix B and hence claiming that rank(D)
is
(
n
d

)
. The reduction is as follows.

Suppose d ≤ n/2. Here the ith row is identified by the set Ti of size d. Also the jth column is identified
by a set with d elements (say Wj). We can also identify the same column j by the set [n]\Wj . Clearly we
observe that, Ti and Wj are disjoint if and only if Ti is contained in the set [n]\Wj . Therefore, we claim that
the disjoint matrix D is same as an incidence matrix B. Hence D has maximal rank. That is, rank(D) =

(
n
d

)
.

Similarly we can prove the case when d > n/2.

15.5 The incidence matrix B has maximal rank[2]

We recall the 0/1 matrix B whose rows and columns are indexed by set of all possible l-sets and k-sets
respectively. The (i, j) element of matrix B takes value 1, only if the l-set corresponding to the ith row
contains the k-set corresponding to the jth column.

Let us define lexicographical ordering form-sets and n-sets. We represent anym-set by the vector (a1, a2, · · · , am),
where ai < ai+1, for i ∈ [m − 1]. Also we say (a1, a2, · · · , am) < (b1, b2, · · · , bm), if and only if ai < bi for
the smallest value of i such that ai 6= bi. Let us call this ordering the canonical ordering.

Now we define the canonical matrix Anl,k obtained by ordering the rows and columns of B in their canonical
order. Clearly rank(Anl,k) = rank(B). Therefore, it is sufficient to prove that rank of Anl,k is maximal.
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Notations : We use the notation Rnl,k, Cnl,k to represent the row null space and column null space of the
matrix Anl,k respectively.

Lemma 15.4 It is easy to observe that the matrix Anl,k has,

1.
(
n
l

)
rows

2.
(
n
k

)
columns

3.
(
l
k

)
1’s in each row

4.
(
n−l
l−k
)

1’s in each column

Lemma 15.5 We can also verify the following

1. A1
1,1 = A1

1,0 = A1
0,0 = A0

0,0 = [1]

2. Anl,l = Inl , where Inl is the
(
n
l

)
×
(
n
l

)
identity matrix.

Lemma 15.6 By definition of Anl,k, we represent Anl,k by the following partition formula.

Anl,k =

[
An−1l−1,k−1 An−1l−1,k

O An−1l,k

]
(n
l)×(n

k)

Lemma 15.7 For n ≥ l ≥ p ≥ k ≥ 0,

Anl,p ·Anp,k =

(
l − k
p− k

)
Anl,k

Proof sketch : The above formula is proved by induction on n. Clearly the base case (n = 1) can be
verified (using lemma 15.5). The induction step uses the partition formula (lemma 15.6) thus facilitating
the multiplication of Anl,p and Anp,k, which results in

(
l−k
p−k
)
Anl,k.

Theorem 15.8 dim(Rn−1l−1,k) + dim(Rn−1l,k−1) = dim(Rnl,k).

Proof Sketch : Let us define a matrix T =

[
Il−1 0

−1

l − k
An−1l,l−1 Im

]
(n
l)×(n

l)

.

On premultiplying Anl,k by T we get,

T.Anl,k =

 An−1l−1,k−1 An−1l−1,k
−(l − k + 1)

l − k
An−1l,k−1 0


(n
l)×(n

k)

Consider a vector v = (x,y) such that

v.T.Anl,k = (x.An−1l−1,k−1 −
(l − k + 1)

(l − k)
y.An−1l,k−1, x.An−1l−1,k)
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On solving v.T.Anl,k = 0, we get x.An−1l−1,k = 0 and y.An−1l,k−1 = 0. (uses lemma 15.7 and the fact that field F
has characteristic zero).
Also since T is a non-singular matrix, we obtain that v is a direct sum of x and y, implying

dim(Rn−1l−1,k) + dim(Rn−1l,k−1) = dim(Rnl,k).

Theorem 15.9 dim(Cn−1l−1,k) + dim(Cn−1l,k−1) = dim(Cnl,k).
(We can prove the theorem similar to theorem 15.8).

Corollary 15.10 .

1. dim(Rnl,k) =

{
0 if l + k > n,(
n
l

)
−
(
n
k

)
if l + k ≤ n.

2. dim(Cnl,k) =

{(
n
k

)
−
(
n
l

)
if l + k > n,

0 if l + k ≤ n.

Proof Sketch : We prove this by induction on n. We can easily verify the base case when n = 1. We
analyze the induction by two cases. Suppose l+k > n. This implies (l−1)+k > n−1 and l+(k−1) > n−1.
By induction hypothesis, we get dim(Rn−1l−1,k) = dim(Rn−1l,k−1) = 0. Using theorem 15.8 we get, dim(Rnl,k) = 0.

Also by rank-nullity theorem we obtain dim(Cnl,k) =
(
n
k

)
−
(
n
l

)
. Therefore (by rank-nullity theorem) we get,

the rank of the matrix is equal to the number of rows, that is rank(Anl,k) =
(
n
l

)
.

Similarly when l + k ≤ n, we get, rank(Anl,k) =
(
n
k

)
. Thus we conclude by stating that the rank of matrix

Anl,k is maximal.

15.6 Motivation for homogeneous circuits

Consider the polynomial

f(z, x1, x2, · · · , xn) = (z + x1) · (z + x2) · · · (z + xn)

= cnz
n + cn−1z

n−1 + · · ·+ c0

where the coefficient of zn−d, cn−d is exactly the elementary symmetric polynomial Sdn(x1, x2, · · · , xn).
Let the evaluations of f(z, x1, x2, · · · , xn) at z = α1, α2, · · · , αn+1 be g1(x), g2(x), · · · , gn+1(x), where
α1, α2, · · · , αn+1 are distinct field elements. That is, for all i ∈ [n+ 1],

f(αi, x1, x2, · · · , xn) = gi(x)

= cnα
n
i + cn−1α

n−1
i + · · ·+ c0

In matrix notation we write,

g = Ac

where, g =


g1(x)
g2(x)

...
gn+1(x)


(n+1)×1

, A =


α0
1 α1

1 α2
1 · · · αn1

α0
2 α1

2 α2
2 · · · αn2

...
...

...
. . .

...
α0
n+1 α1

n+1 α2
n+1 · · · αnn+1


(n+1)×(n+1)

, c = ·


c0
c1
...
cn


(n+1)×1
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Since A is a Vandermonde matrix, we know that inverse of A exists. Therefore the coefficient vector c can
be computed by,

c = A−1 · g

That is, for 0 ≤ j ≤ n,

cj =

n−1∑
k=1

βk · gk(x)

where, βk ∈ F is a field constant. Clearly cj can be computed by a depth three circuit (not homogeneous) of
polynomial size. That is, there exists a depth three circuit of polynomial size that computes the elementary
symmetric polynomial. Thus we state the following corollary.

Corollary 15.11 We cannot homogenize a depth-three circuit without a superpolynomial loss in size.
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