E0 309: Topics in Complexity Theory

Lecture 15: Mar 23, 2015

Lecturer: Saravanan K and Chandan Saha

Scribe: Saravanan K

Spring 2015

15.1 Lower Bounds for Depth-3 homogeneous circuits

The theme of this lecture is to prove that any depth three homogeneous circuit computing the $2d^{th}$ elementary symmetric polynomial in n variables must have size at least $(\frac{n}{4d})^d$ over fields of characteristic zero.

Remark :

1) When d = n/c (for some constant c), we obtain an $O(c^n)$ exponential lower bound.

2) It is clear that symmetric polynomial in n variables must have degree d less than n. However the result does not apply for polynomials of degree d much greater than n.

15.2 Partial Derivative Method

Let f be a polynomial. We define the partial derivative measure by

$$PD(f) = dim[span\{\partial f\}]$$

where ∂f is the set of all partial derivatives of f. In other words we write,

$$PD(f) = dim[span\{\partial_S f : S \subseteq [n]\}]$$

where $\partial_S f$ is the partial derivative $\frac{\partial f}{\partial x_1 \cdots x_k}$ such that $S = \{x_1, \cdots, x_k\}$.

15.2.1 Properties of Partial Derivatives

Any two polynomials f and g over field \mathbb{F} holds the following properties.

- 1. Subadditivity : $PD(f+g) \leq PD(f) + PD(g)$.
- 2. Summultiplicativity : $PD(f.g) \leq PD(f).PD(g)$.
- 3. $PD(\alpha.f) = \alpha.PD(f)$, for any $\alpha \in \{\mathbb{F} \setminus 0\}$

15.3 Homogeneous Depth three circuits

Consider a homogeneous circuit C computing a homogeneous polynomial of degree d in n variables $\{x_1, x_2, \dots, x_n\}$. Let C be

$$C = T_1 + T_2 + \dots + T_s$$

Lemma 15.1 $PD(C) \le s \cdot 2^d$ **Proof:**

$$PD(C) \leq \sum_{i=1}^{s} PD(T_s) \qquad (using subadditivity)$$
$$\leq \sum_{i=1}^{s} \prod_{j=1}^{d} PD(l_{ij}) \qquad (using submultiplicativity)$$
$$\leq \sum_{i=1}^{s} 2^d$$
$$\leq s.2^d$$

Notation : Let S_n^{2d} denote the $2d^{th}$ degree elementary symmetric polynomial in *n* variables.

Theorem 15.2 $PD(S_n^{2d}) \ge {n \choose d}$ over fields of characteristic zero.

Before proving the theorem, let us prove the required lower bound. From *theorem* 15.2 and *lemma* 15.1, we get,

$$\binom{n}{d} \leq s.2^{2d}, \quad \text{if } C \text{ computes the polynomial } S_n^{2d}$$

$$\implies s \geq \frac{\binom{n}{d}}{2^{2d}}$$

$$\geq \left(\frac{n}{4d}\right)^d$$
(using Stirling formula)

Hence we have proved the required lower bound. Now the remainder of the proof is to prove theorem 15.2.

15.3.1 Proof of Theorem 15.2

Here we restrict our focus only to partial derivatives of order d. Let $T \subseteq \{x_1, \dots, x_n\}$ and |T| = d. Now,

$$\partial_T S_n^{2d} = \sum_{W \subseteq [n] \& |W| = d \& W \cap T = \phi} \prod_{i \in W} x_i$$
(15.1)

Let us define a column vector $\mathbf{m}_{\binom{n}{d} \times 1}$, whose rows are indexed by subsets of [n] of size d. We define the entries by $\partial_T S_n^{2d}$ for any row identified by T. That is

$$\mathbf{m}_{\binom{n}{d}\times 1} = [\partial_T S_n^{2d}] \tag{15.2}$$

From (15.1) and (15.2), we write

 $\mathbf{m} = D.\mathbf{v}$

where, $D_{\binom{n}{d} \times \binom{n}{d}}$ is a 0/1 matrix whose rows and columns are identified by subsets of [n] of size d such that $D_{T,W} = 1$ iff $T \cap W = \phi$. Here, $\mathbf{v}_{\binom{n}{d} \times 1}$ is a column vector whose rows are identified similar to columns of D such that $\mathbf{v}_W = \prod_{i \in W} x_i$.

From now on let us call D as the disjoint matrix.

Theorem 15.3 The disjoint matrix D has maximal rank over any field of characteristic zero. That is, $rank(D) = \binom{n}{d}$.

Since D has maximal rank, we can say that d^{th} order partial derivatives of S_n^{2d} , that is, the entries of **m** are all linearly independent. Therefore, we obtain the result $PD(S_n^{2d}) \ge {n \choose d}$. Now let us prove theorem 15.3.

15.4 Proof of Theorem 15.3

Let $S = \{1, 2, \dots, n\}$. Let us call any subset of S of size l and k as l-set and k-set respectively. For any two positive integers $l, k \ (k \leq l)$ we construct a 0/1 incidence matrix B whose rows and columns are indexed by the set of all possible l-sets and k-sets respectively such that, $B_{ij} = 1$, iff the l-set corresponding to the i^{th} row contains the k-set corresponding to the j^{th} column. Clearly B has $\binom{n}{l}$ rows and $\binom{n}{k}$ columns. It has been proved by Gottlieb [2] that the rank of such matrix B is maximal. That is $rank(B) = \min\{\binom{n}{l}, \binom{n}{k}\}$.

The idea here is to show a reduction from disjoint matrix D to matrix B and hence claiming that rank(D) is $\binom{n}{d}$. The reduction is as follows.

Suppose $d \leq n/2$. Here the i^{th} row is identified by the set T_i of size d. Also the j^{th} column is identified by a set with d elements (say W_j). We can also identify the same column j by the set $[n] \setminus W_j$. Clearly we observe that, T_i and W_j are disjoint if and only if T_i is contained in the set $[n] \setminus W_j$. Therefore, we claim that the disjoint matrix D is same as an incidence matrix B. Hence D has maximal rank. That is, $rank(D) = \binom{n}{d}$.

Similarly we can prove the case when d > n/2.

15.5 The incidence matrix B has maximal rank^[2]

We recall the 0/1 matrix B whose rows and columns are indexed by set of all possible *l*-sets and *k*-sets respectively. The (i, j) element of matrix B takes value 1, only if the *l*-set corresponding to the i^{th} row contains the *k*-set corresponding to the j^{th} column.

Let us define lexicographical ordering for *m*-sets and *n*-sets. We represent any *m*-set by the vector (a_1, a_2, \dots, a_m) , where $a_i < a_{i+1}$, for $i \in [m-1]$. Also we say $(a_1, a_2, \dots, a_m) < (b_1, b_2, \dots, b_m)$, if and only if $a_i < b_i$ for the smallest value of *i* such that $a_i \neq b_i$. Let us call this ordering the canonical ordering.

Now we define the canonical matrix $A_{l,k}^n$ obtained by ordering the rows and columns of B in their canonical order. Clearly $rank(A_{l,k}^n) = rank(B)$. Therefore, it is sufficient to prove that rank of $A_{l,k}^n$ is maximal.

Notations : We use the notation $R_{l,k}^n$, $C_{l,k}^n$ to represent the row null space and column null space of the matrix $A_{l,k}^n$ respectively.

Lemma 15.4 It is easy to observe that the matrix $A_{l,k}^n$ has,

- 1. $\binom{n}{l}$ rows
- 2. $\binom{n}{k}$ columns
- 3. $\binom{l}{k}$ 1's in each row
- 4. $\binom{n-l}{l-k}$ 1's in each column

Lemma 15.5 We can also verify the following

1.
$$A_{1,1}^1 = A_{1,0}^1 = A_{0,0}^1 = A_{0,0}^0 = [1]$$

2. $A_{l,l}^n = I_l^n$, where I_l^n is the $\binom{n}{l} \times \binom{n}{l}$ identity matrix.

Lemma 15.6 By definition of $A_{l,k}^n$, we represent $A_{l,k}^n$ by the following partition formula.

$$A_{l,k}^{n} = \begin{bmatrix} A_{l-1,k-1}^{n-1} & A_{l-1,k}^{n-1} \\ O & A_{l,k}^{n-1} \end{bmatrix}_{\binom{n}{l} \times \binom{n}{k}}$$

Lemma 15.7 For $n \ge l \ge p \ge k \ge 0$,

$$A_{l,p}^{n} \cdot A_{p,k}^{n} = \binom{l-k}{p-k} A_{l,k}^{n}$$

Proof sketch : The above formula is proved by induction on n. Clearly the base case (n = 1) can be verified (using *lemma* 15.5). The induction step uses the partition formula (*lemma* 15.6) thus facilitating the multiplication of $A_{l,p}^n$ and $A_{p,k}^n$, which results in $\binom{l-k}{p-k}A_{l,k}^n$.

Theorem 15.8 $dim(R_{l-1,k}^{n-1}) + dim(R_{l,k-1}^{n-1}) = dim(R_{l,k}^{n}).$

Proof Sketch: Let us define a matrix $T = \begin{bmatrix} I_{l-1} & 0\\ -1\\ \overline{l-k} A_{l,l-1}^{n-1} & I_m \end{bmatrix}_{\binom{n}{l} \times \binom{n}{l}}.$ On premultiplying $A_{l,k}^n$ by T we get,

$$T.A_{l,k}^{n} = \begin{bmatrix} A_{l-1,k-1}^{n-1} & A_{l-1,k}^{n-1} \\ \frac{-(l-k+1)}{l-k} A_{l,k-1}^{n-1} & 0 \end{bmatrix}_{\binom{n}{l} \times \binom{n}{k}}$$

Consider a vector $\mathbf{v} = (\mathbf{x}, \mathbf{y})$ such that

$$\mathbf{v}.T.A_{l,k}^{n} = (\mathbf{x}.A_{l-1,k-1}^{n-1} - \frac{(l-k+1)}{(l-k)}\mathbf{y}.A_{l,k-1}^{n-1}, \ \mathbf{x}.A_{l-1,k}^{n-1})$$

On solving $\mathbf{v}.T.A_{l,k}^n = 0$, we get $\mathbf{x}.A_{l-1,k}^{n-1} = 0$ and $\mathbf{y}.A_{l,k-1}^{n-1} = 0$. (uses *lemma* 15.7 and the fact that field \mathbb{F} has characteristic zero).

Also since T is a non-singular matrix, we obtain that \mathbf{v} is a direct sum of \mathbf{x} and \mathbf{y} , implying

$$dim(R_{l-1,k}^{n-1})+dim(R_{l,k-1}^{n-1})=dim(R_{l,k}^{n}).$$

Theorem 15.9 $dim(C_{l-1,k}^{n-1}) + dim(C_{l,k-1}^{n-1}) = dim(C_{l,k}^{n}).$ (We can prove the theorem similar to theorem 15.8).

Corollary 15.10 .

1.
$$dim(R_{l,k}^n) = \begin{cases} 0 & if \ l+k > n, \\ \binom{n}{l} - \binom{n}{k} & if \ l+k \le n. \end{cases}$$

2. $dim(C_{l,k}^n) = \begin{cases} \binom{n}{k} - \binom{n}{l} & if \ l+k > n, \\ 0 & if \ l+k \le n. \end{cases}$

Proof Sketch : We prove this by induction on *n*. We can easily verify the base case when n = 1. We analyze the induction by two cases. Suppose l+k > n. This implies (l-1)+k > n-1 and l+(k-1) > n-1. By induction hypothesis, we get $dim(R_{l-1,k}^{n-1}) = dim(R_{l,k-1}^{n-1}) = 0$. Using theorem 15.8 we get, $dim(R_{l,k}^n) = 0$. Also by rank-nullity theorem we obtain $dim(C_{l,k}^n) = \binom{n}{k} - \binom{n}{l}$. Therefore (by rank-nullity theorem) we get, the rank of the matrix is equal to the number of rows, that is $rank(A_{l,k}^n) = \binom{n}{l}$.

Similarly when $l + k \leq n$, we get, $rank(A_{l,k}^n) = \binom{n}{k}$. Thus we conclude by stating that the rank of matrix $A_{l,k}^n$ is maximal.

15.6 Motivation for homogeneous circuits

Consider the polynomial

$$f(z, x_1, x_2, \cdots, x_n) = (z + x_1) \cdot (z + x_2) \cdots (z + x_n)$$
$$= c_n z^n + c_{n-1} z^{n-1} + \dots + c_0$$

where the coefficient of z^{n-d} , c_{n-d} is exactly the elementary symmetric polynomial $S_n^d(x_1, x_2, \dots, x_n)$. Let the evaluations of $f(z, x_1, x_2, \dots, x_n)$ at $z = \alpha_1, \alpha_2, \dots, \alpha_{n+1}$ be $g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_{n+1}(\mathbf{x})$, where $\alpha_1, \alpha_2, \dots, \alpha_{n+1}$ are distinct field elements. That is, for all $i \in [n+1]$,

$$f(\alpha_i, x_1, x_2, \cdots, x_n) = g_i(\mathbf{x})$$
$$= c_n \alpha_i^n + c_{n-1} \alpha_i^{n-1} + \cdots + c_0$$

 $\mathbf{g} = A\mathbf{c}$

In matrix notation we write,

where,
$$\mathbf{g} = \begin{bmatrix} g_1(\mathbf{x}) \\ g_2(\mathbf{x}) \\ \vdots \\ g_{n+1}(\mathbf{x}) \end{bmatrix}_{(n+1)\times 1}$$
, $A = \begin{bmatrix} \alpha_1^0 & \alpha_1^1 & \alpha_1^2 & \cdots & \alpha_1^n \\ \alpha_2^0 & \alpha_2^1 & \alpha_2^2 & \cdots & \alpha_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{n+1}^0 & \alpha_{n+1}^1 & \alpha_{n+1}^2 & \cdots & \alpha_{n+1}^n \end{bmatrix}_{(n+1)\times(n+1)}$, $\mathbf{c} = \cdot \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}_{(n+1)\times 1}$

Since A is a Vandermonde matrix, we know that inverse of A exists. Therefore the coefficient vector \mathbf{c} can be computed by,

$$\mathbf{c} = A^{-1} \cdot \mathbf{g}$$

That is, for $0 \leq j \leq n$,

$$c_j = \sum_{k=1}^{n-1} \beta_k \cdot g_k(\mathbf{x})$$

where, $\beta_k \in \mathbb{F}$ is a field constant. Clearly c_j can be computed by a depth three circuit (not homogeneous) of polynomial size. That is, there exists a depth three circuit of polynomial size that computes the elementary symmetric polynomial. Thus we state the following corollary.

Corollary 15.11 We cannot homogenize a depth-three circuit without a superpolynomial loss in size.

References

- [1] NOAM NISAN and AVI WIGDERSON, Lower Bounds on Arithmetic Circuits via Partial Derivatives, *Computational Complexity*, 1997
- D.H. GOTTLIEB, A certain class of Incidence Matrices, Proceedings of the American Mathematical Society, Volume 17, Issue 6, Dec., 1966