
E0 309: Topics in Complexity Theory Spring 2015

Lecture 2: Jan 24, 2015
Lecturer: Neeraj Kayal Scribe: Saravanan K

2.1 A Small Recap

In the last lecture, it was shown that multiplication of two (n − 1)-degree univariate polynomials f(x) and
g(x) requires at least (2n−1) multiplications over the base ring, assuming addition and scalar multiplication
operations are completely free. The following ideas were discussed to derive the above bound.

Given two (2n−1)-degree polynomials as evaluations, we can compute the product polynomial by pointwise
product of the evaluations. This product polynomial is in evaluations form. We can convert it into coefficient
vector form using Interpolation technique.

Evaluation: Suppose the input polynomials are represented as coefficient vectors. We can process the
coefficient vectors into (2n− 1) evaluation values. Let α1, α2, α3, · · · , α2n−1 be the evaluation points. Using
these points we construct a Vandermonde matrix A such that Ax = y, where x is the coefficient vector and
y is the list of evaluation values. Clearly we can compute y as a linear combination of the coordinates of x.

Interpolation: Using the evaluation points α1, α2, α3, · · · , α2n−1 we construct a Vandermonde matrix A
such that Ax = y, where A is the Vandermonde matrix, x is the coefficient vector and y is the list of evalu-
ation values. Since A is invertible and independent of input, we can precompute A and A−1. Hence we can
compute the coefficient vector by x = A−1y. Clearly x is a linear combination of the coordinates of y.

Under the assumption that additions and scalar multiplications are free, computing a linear combination
takes linear time and thus x or y can be computed in linear time.

2.2 Polynomial Multiplication (Continuation)

Now we will discuss the complexity of polynomial multiplication while the addition and scalar multiplica-
tion operations are not assumed to be free. Thus, the linear combination cannot be considered to take linear
time. We need to find the complexity of computing evaluation and interpolation.

Note: Proving a tight lower bound for this problem is still an open question.

However the trivial lower bound is given by Complexity(PM) = Ω(n). This is because reading the in-
puts itself will take time Ω(n).
In the following discussion we will show that Complexity(PM) = O(n log n)

2-1

2-2 Lecture 2: Jan 24, 2015

Let the product polynomial be

h(x) = a0 + (a1)x+ (a2)x2 ++ (a2n−2)x2n−2

and the evaluations of h(x) at α1, α2, α3, · · · , α2n−1 be h(α1), h(α2),, h(α2n−1)

Now,

h(α1) = a0 + (a1)α1 + (a2)α2
1 ++ (a2n−2)α2n−2

1

h(α2) = a0 + (a1)α2 + (a2)α2
2 ++ (a2n−2)α2n−2

1

...

h(α2n−1) = a0 + (a1)α2n−1 + (a2)α2
2n−1 ++ (a2n−2)α2n−2

2n−1

Therefore we get

y = Ax

where, y =


h(α1)
h(α2)

...
h(αm)


m×1

, A =


α0
1 α1

1 α2
1 · · · αm−1

1

α0
2 α1

2 α2
2 · · · αm−1

2
...

...
...

. . .
...

α0
m α1

m α2
m · · · αm−1

m


m×m

, x = ·


a0
a1
...

am−1


m×1

and m = 2n− 1

The above illustration gives us the motivation to find out the complexity of Matrix Vector Multiplication.

2.3 Matrix Vector Multiplication (MVM)

Input: Fixed Matrix A ∈ Fm×m , Input Vector x ∈ Fm , where F = Fp

Output: y = Ax ∈ Fm

Observation: It is trivial to see that MVM = O(m2) (Since naive multiplication requires time O(m2),
because for each row of A we require m scalar multiplications and m additions. Therefore m rows takes time
O(m2)). Also it has been observed that for most matrices A, with overwhelming probability,

MVMA = Ω(m2)

The above complexity can be proved using the concept of SLP(Straight Line Programs). Let x = (a0, · · · , am−1) ∈
Fm. Consider the following SLP with s computations

Lecture 2: Jan 24, 2015 2-3

l1 = a0

l2 = a1

...

lm = am−1

lm+1 = α1lr1 + β1lt1
...

lm+i = αilri + βilti
...

ls = αs−mlr(s−m)
+ βs−mlt(s−m)

where αi, βi are field constants, ∀i ∈ [s−m]
and ri, ti < m+ i, ∀i ∈ [s−m].

Without loss of generality, higher degree terms are ignored (in lm+i, i ∈ [s−m]) because the output contains
only single degree terms.

Now,

Number of possible matrices = pm
2

Number of programs of length s =
∏
i≤s

(p2(i− 1)
2
) ≤ p2ss2s (say p > m2)

Therefore,

Pr[Ax can be computed by a program of length s = m2/4] ≤ (p)2m
2/4 ∗ (m2/4)2m

2/4

pm2 =
(m2/4)m

2/2

(p)m2/2
= (m2/4p)m

2/2

= extremely small even when p = m2

The above probability is taken over the random choice of a program of size s.

Therefore even when the size of the program is s = m2/4, the probability of computing Ax is very low. Thus
for most matrices A, with overwhelming probability MVMA = Ω(m2).

Open Problem: Is it possible to find a specific A ∈ Fm×m such that MVMA = Ω(m1+ε) for some ε > 0
? But till now we don’t know of any explicit A that provides the above bound.

2.4 Fast Fourier Transform

Since A is a fixed Vandermonde matrix, naturally the question arises that can we choose (α) [α denotes that
α is a vector] such that A(α)x has low complexity ?

2-4 Lecture 2: Jan 24, 2015

Fortunately the answer turns out to be yes. We can choose (α) such that the complexity of finding Ax
can be improved to O(m logm).

Technique(Divide and Conquer): Without loss of generality assume m = 2k(if m is not a power of 2
then increase m to its nearest power of 2 and fill the vectors with zero for the newest entries), let ωm = e2πi/m

(mth primitive root of unity).
Let,

(α1, α2, α3, · · · , αm) = (ω0
m = 1, ωm, ω

2
m, ω

3
m, · · · , ωm−1

m)

We have,

h(x) = a0 + a1x+ a2x
2 + · · ·+ am−1x

m−1

Now for 0 ≤ i ≤ m− 1, the ith component of y is given by

(Ax)i = h(αi+1) = h(ωim) = a0 + a1(ωm)i + a2(ωm)2i + · · ·+ am−1(ωm)i(m−1)

=⇒ (Ax)i = (Ai0) + (Ai1)ωim

where, Ai0 = (a0 + a2(ω2
m)i + a4(ω2

m)2i · · ·+ am−2(ω2
m)i(m−2)/2

and Ai1 = (a1 + a3(ω2
m)i + a5(ω2

m)2i · · ·+ am−1(ω2
m)i(m−2)/2

Let, ωm/2 = ω2
m. As ωm/2 is the (m/2)th primitive root of unity, we can recursively compute Ai0 and Ai1

individually.

Let T (m) = Time taken to compute A(ωm)x
On continuing the above recursive process we can observe that

T (m) = 2T (
m

2
) +O(m)

= O(m logm)

∴ Time taken for evaluation = O(m logm)

Such a computation of A(ωm).x, where ωm is a primitive mth root of unity is known as Fast Fourier
Transform.

2.4.1 Inversion of Vandermonde matrix:

The above Vandermonde matrix is of the form

A
1 1 1 · · · 1
1 ωm ω2

m · · · ωm−1
m

1 ω2
m ω4

m · · · ω
2(m−1)
m

...
...

...
. . .

...

1 ωm−1
m ω

2(m−1)
m · · · ω

(m−1)(m−1)
m


m×m

Lecture 2: Jan 24, 2015 2-5

Summation Lemma: For any integer n ≥ 1, and k (k 6= 0 and k not divisible by n),

n−1∑
j=0

(ωn)k)j = 0

Proof:

n−1∑
j=0

(ωn)k)j =
(ωkn)n − 1

ωkn − 1
=

(ωnn)k − 1

ωkn − 1
=

(1)k − 1

ωkn − 1
= 0,

as ωn is a primitive nth root of unity and k is not divisible by n, ωkn − 1 6= 0.

Theorem: The (i, j)th entry of A−1 is
ω−ji
m

m
, for 0 ≤ i, j < m

Proof:

[A−1A]ij =

m−1∑
k=0

(
ω−ki
m

m
)(ωkjm) =

m−1∑
k=0

(
ω
k(j−i)
m

m
)

The above summation equals to 1 iff i = j.
Also by the summation lemma, the above summation equals 0 if i 6= j.
Thus A−1A = Im×m

2.4.2 Interpolation using inversion:

Therefore we can interpolate the coefficients, given the list of evaluations of the polynomial using another
Fast Fourier transform as ω−1 is also primitive mth root of unity. This takes O(m logm) operations.

Thus we are able to multiply any two n-degree polynomials in time O(n log n) with inputs either in coeffient
form or in evaluations form. Therefore

Complexity(PM) = O(n log n) operations.

2.5 Credits

[1] Discussion with Abhijat Sharma

[2] My T. Thai @ UF, www.cise.ufl.edu/class/cot5405sp11/slides/ch30.pdf

