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3.1 Matrix Multiplication

In the previous lecture, we discussed the complexity of Matrix Vector Multiplication ,which was the following
problem. Given a fixed matrix A ∈ Fm×m,
Input: x = (x1, x2, ..., xm) ∈ Fm

Output: y = A.x ∈ Fm

We were particularly interested in this problem when the matrix A was a Vandermonde Matrix, because that
is the case we need to take care of during the evaluation and interpolation steps of polynomial multiplication.

In this lecture, we look at a much more general problem, Matrix Multiplication which is an integral part
of various other complex computational problems. It is defined as follows:
Input: 2 matrices X,Y ∈ Fn×n

Output: Z = X.Y , the product matrix

One of the most direct applications of an efficient matrix multiplication algorithm is the Graph Reachability
problem.
Input: A directed graph, G = (V,E) represented as an adjacency matrix, A such that

Aij =

{
1 if (i, j) ∈ E
0 otherwise

Output: The reachability matrix B such that

Bij =

{
1 if there is a path in G from vertex i to vertex j

0 otherwise

where Aij and Bij refer to the jth entry in the ith row of matrices A and B respectively. There is a simple
algorithm to solve the above problem, once we observe that if we compute the matrix Ak (for any integer
k), then the element (Ak)ij will be a non-zero quantity iff there is a path from i to j of length at-most k.
Thus, all we need to do is compute the matrix An from A by repeated squaring, which would require log n
matrix multiplications, and as the length of any path can be at-most n, the required output matrix B can
be computed from the matrix An as follows: for all i, j ∈ [n], Bij = 1 iff (An)ij 6= 0. Hence, the complexity
of graph reachability would be log n times the complexity of matrix multiplication.

Remark: Also, it is worthwhile to note here that matrix multiplication reduces to matrix powering. Sup-

pose we have two n × n matrices A and B. We create a 2n × 2n matrix C =

[
0 A
B 0

]
, i.e the upper right

sub-matrix of C would have all the entries of A, the lower left sub-matrix will have the entries of matrix B
and all the other entries in C will be zero. We can compute both products AB and BA by just computing
the square of this matrix C. [

0 A
B 0

] [
0 A
B 0

]
=

[
AB 0
0 BA

]
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Let us look at an upper bound, how high can the complexity of multiplying two n×n matrices be. Observe
that there are 2n2 inputs (n2 in each input matrix), and the output matrix contains n2 output elemants.
The most trivial algorithm involves computing each output independently, by the following formula:

zij =

n∑
k=1

xik.ykj

where zij refers to the usual notation of the entry in the output matrix Z, corresponding to row i and column
j. Thus, each output computes n multiplications, and then adds them up, requiring total O(n) operations.
As there are n2 such outputs, the overall complexity of this trivial algorithm is O(n3). For a long time, it
was thought that this was optimal, but in 1970, Strassen came up with a substantially improved algorithm
which computed the product of two n× n matrix in O(nlog2 7) operations.

3.2 Strassen’s Algorithm (1969)

The Strassen’s algorithm for matrix multiplication is a remarkable example of the recursive technique: Divide
and Conquer. Assume that n is a power of 2, we divide each of the two input n× n matrices X and Y into
four smaller n/2×n/2 sub-matrices. Also, we compute the output matrix Z as 4 smaller n/2×n/2 matrices
Z1, Z2, Z3, Z4. Then, the equation Z = X.Y becomes[

Z11 Z12

Z21 Z22

]
=

[
X11 X12

X21 X22

] [
Y11 Y12
Y21 Y22

]
=

[
X11.Y11 +X12.Y21 X11.Y12 +X12.Y22
X21.Y11 +X22.Y21 X21.Y12 +X22.Y22

]
where all the Xij ’s and Yij ’s are n/2×n/2 matrices. Thus, each of the four parts of the output matrix requires
two smaller multiplications and then addition of the two obtained products. So, to compute the complete
product matrix Z, we need eight recursive multiplications of n/2×n/2 matrices and O(n2) additions. Hence,
if T (n) denotes the time complexity of multiplying two n× n matrices, it can be expressed as the following
recurrence:

T (n) = 8.T (n/2) +O(n2)

On solving the above recurrence, we get T (n) = O(n3), which is no faster than the trivial algorithm.

However, suppose we could compute the four sub-matrices Z1, Z2, Z3, Z4, using less than eight recursive
multiplications, say seven. Then, assuming additions and scalar multiplications amount to O(n2) operations,
the above recurrence will become:

T (n) = 7.T (n/2) +O(n2)

which yields the result, T (n) = O(nlog2 7) = O(n2.81) which is a definite improvement in the earlier asymp-
totic time complexity. This is exactly how the Strassen’s algorithm works. In every intermediate recursive
step, it starts with 8 inputs, X11, X12, X21, X22, Y11, Y12, Y21, Y22, and computes the following 7 products of
half the size:

M1 = (X11 +X22).(Y11 + Y22)

M2 = (X21 +X22).Y11

M3 = X11.(Y12 − Y22)

M4 = X22(Y21 − Y11)

M5 = (X11 +X12).Y22

M6 = (X21 −X11).(Y11 + Y12)

M7 = (X12 −X22).(Y21 + Y22)
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Claim 3.1 All the required outputs Z11, Z12, Z21, Z22 belong to the linear subspace spanned byM1,M2, ...,M7.

Proof: When we consider the linear subspace spanned by the matrices M1,M2, ...,M7, we know that it
contains only those matrices which can be obtained usng linear combinations of these 7 matrices. We show
that our output sub-matrices obey the above constraint:

Z11 = M1 +M4 −M5 +M7

Z12 = M3 +M5

Z21 = M2 +M4

Z22 = M1 −M2 +M3 +M6

The above equations are obtained by solving a simple system of linear equations, with variables as the
coefficients of the Mi’s above.

Now, having seen that reducing the number of intermediate recursive multiplications from 8 to 7 leads to
a significant improvement in the time complexity of the algorithm, it is natural to ask whether it can be
further optimized by computing less than 7 multiplications. Interestingly, it has been proved that we need
at-least 7 multiplications for computing the product of two 2×2 matrices[2]. It is also interesting to note that
the above 7 products M1,M2, ...,M7 form the only way of achieving this improvement, and there is no other
way of multiplying the intermediate sub-matrices such that Z11, Z12, Z21, Z22 are obtained by simple linear
combinations of the products. We now present a possible explanation of this lower bound of 7 multiplications,
by showing how computation of polynomials is related to the concept of tensor-rank.

3.3 Tensors and Tensor-Rank

Given a polynomial in 2n variables, p(x1, x2, ..., xn, y1, ..., yn) =
∑

i,j∈[n] αijxiyj (such a polynomial is called

a bilinear polynomial), we ask what is the fewest number of multiplications required to compute p, such that
every multiplication has one multiplicand as a linear combination of xi’s, and other multiplicand as a linear
combination of yj ’s. We define the n × n matrix corresponding to the polynomial p, M(p) such that every
entry in M(p) corresponds to a coefficient of the polynomial. Precisely, the jth entry of the ith column in
M(p), (M(p))ij = αij .

Claim 3.2 Minimum number of such multiplications required to compute p is equal to rank of the matrix
M(p)[1].

Before we prove the above claim, let us first define the notion of matrix rank as follows: rank of a matrix M ,
rank(M) = r iff M can be expressed as the sum of r matrices, M = M1 +M2 + ...+Mr, where each matrix
Mk is a rank one matrix, i.e it can be expressed as a tensor product of two vectors uk, vk ∈ Fn. (Tensor
product, Mk = uk ⊗ vk implies Mk(a, b) = uk(a).vk(b) for a, b ∈ [n])

Note that the above notion complies with the familiar notion of matrix rank, being equal to the number
of linearly independent columns (or rows). By that notion, a rank one matrix implies that all columns are
constant multiples of a particular column, say u, then the matrix can be written as M = [ v1.u v2.u ... vn.u],
where v1, v2, ...vn are scalars. Observe that this is the same as writing M as a tensor product M = u ⊗ v,
where v = (v1, v2, ..., vn) is a vector, and that is how we have now defined rank one matrices. Similarly,
by the previous notion, if a matrix has rank r, every column is a linear combination of r fixed columns,
say u1, u2, ..., ur, and therefore can be written as a sum of r rank-one matrices, each corresponding to a
particular ui, exactly as defined by the new notion.
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Proof:[Proof of claim 3.2]
Let r be the rank of the matrix M(p), then by the above definition of rank, M(p) = M1+M2+...+Mr, where
each Mk is a tensor-product, Mk = uk ⊗ vk. Now, consider the polynomial pk (k = 1, 2, ..., r) corresponding
to the matrix Mk, just as p corresponds to the matrix M(p). Observe that the entry (Mk)ij = uk(i).vk(j),
is equal to the coefficient of xiyj in polynomial pk. Hence, pk can be written as a product of two linear
polynomials

pk = (uk �X).(vk � Y )

where X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) are vectors and � refers to dot-product. As uk �X and
vk�Y are only linear combinations of the variables x1, x2, ..., xn, y1, ..., yn, only one multiplication is required
to compute the polynomial pk. Now, because of the way these matrices are related to their corresponding
bilinear polynomials, if M(p) = M1 + M2 + ... + Mr, it directly implies p = p1 + p2 + ... + pr (every entry
of matrix corresponds to coefficient of a particular monomial). Thus, from the above correlation, if every pk
requires 1 multiplication, then r multiplications would suffice for the overall computation of the polynomial
p. Thus, if the minimum number of multiplications required is s (say), The above argument implies that
s ≤ r.

On the other hand, s is the minimum number of required multiplications, then we can write

p = q1 + q2 + ...+ qs

where every qi is a product of a linear form in X and a linear form in Y . Rewriting the above equation
in terms of the matrices corresponding to bilinear polynomials (as defined above), we get M(p) = M(q1) +
M(q2) + ... + M(qs), where M(qi) is a rank-one matrix for all i = 1, 2, ..., s. However, if M(p) has rank r,
then r is the minimum number of rank-one matrices M1,M2, ...,Mr such that M1 + M2 + ... + Mr = M .
Thus, it is clear to see that, by definition of matrix-rank, s ≥ r. Combining the above two arguments, we
get s = r which completes the proof of claim 3.2.

From the above discussion, we have a definite lower bound for the number of multiplications required to
compute any bilinear polynomial. Now, consider the case when we have a bunch of bilinear polynomials,
p1(X,Y ), p2(X,Y ), ..., pn(X,Y ) where X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) are vectors. This intro-
duces us to the concept of tensors, which can be thought to be a generalization of matrices for higher
dimensions.

Formally, a tensor is a function T : [n]r → F. It is easy to see that a matrix is a special case of a tensor
where r = 2. Thus, just like we defined a matrix corresponding to one polynomial, we define a 3-dimensional
tensor M : [n]3 → F, corresponding to the bunch of polynomials p1, p2, ..., pn such that M(i, j, k) is equal to
the coefficient of the monomial xiyj in the polynomial pk. Similar to the correspondence between matrix-rank
and a polynomial, we make the following claim:

Claim 3.3 If m is the minimum number of multiplications (i.e product of two linear forms l1(X,Y ) and
l2(X,Y )) required to compute the bunch of polynomials p1, p2, ..., pn, (meaning, every pi is a linear combi-
nation of these m products) and r is the tensor-rank of M , then

r/2 ≤ m ≤ r

where tensor-rank is only a generalization of matrix-rank, defined similarly, as follows: The tensor M :
[n]3 → F is said to have rank r if r is the minimum number such that M can be expressed as a sum of
r rank one tensors, M = M1 + M2 + ... + Mr, and Mi is rank-one if it is a tensor product of 3 vectors,
Mi = ui ⊗ vi ⊗ wi for all i (Mi(a, b, c) = ui(a).vi(b).wi(c) for a, b, c ∈ [n]).
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Proof:[Proof of Claim 3.3]
We will abuse notation slightly and write the tensor M equivalently as the following degree-3 polynomial in
3n variables x1, ..., xn, y1, ..., yn, z1, ..., zn:

M = z1p1 + z2p2 + ...+ znpn

This polynomial is just an equivalent/alternate representation of the tensor M defined earlier because every
term in the above expression is a monomial of the form xiyjzk, and the coefficient of this monomial is exactly
the entry M(i, j, k). We know that the above tensor M has rank r, and therefore it can be written as a sum
of r rank-one tensors as follows:

M =

r∑
l=1

ul ⊗ vl ⊗ wl

Let Ml denote the lth term in the above sum, i.e Ml = ul ⊗ vl ⊗ wl and Ml(i, j, k) = ul(i).vl(j).wl(k). On
rewriting the tensor Ml as a degree 3-polynomial like before, we get

Ml = (
∑
i∈[n]

ul(i).xi).(
∑
j∈[n]

vl(j)yj).(
∑
k∈[n]

wl(k).zk)

= (ul �X).(vl � Y ).(wl � Z)

which implies

M =

r∑
l=1

(ul �X).(vl � Y ).(wl � Z)

expanding wl � Z, and collecating coefficients of zk together,

=

n∑
k=1

zk

r∑
l=1

wl(k).(ul �X).(vl � Y )

which finally means

n∑
k=1

zkpk =

n∑
k=1

zk

r∑
l=1

wl(k).(ul �X).(vl � Y )

where old notations have been borrowed for dot-product and other vectors denoting variable-sets. From the
final equation, we can easily see that every pk (k = 1, 2, ..., n) belongs to the linear span of {(ul �X).(vl �
Y ), l ∈ [r]}. So, m ≤ r.

Now, we need to prove the lower bound on the required multiplications m. We have represented the tensor
M as the polynomial

M =

n∑
k=1

zkpk(X,Y ) (3.1)

And by definition, m is the minimum number of polynomials q1(X,Y ), ..., qm(X,Y ) (each qi is a product of
two linear forms in the variables x1, x2, ..., xn, y1, ..., yn), such that for all k, pk =

∑m
i=1 cikqi(X,Y ) (a linear

combination of the qis). So, by replacing the expansion of every pk in equation 3.1, we can rewrite M as

M =

m∑
i=1

f(z)qi(X,Y ) =

m∑
i=1

f(z)gi(X,Y )hi(X,Y ) (3.2)
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where gi and hi are linear polynomials in variables x1, x2, ..., xn, y1, ..., yn and qi = gi.hi for all i.

Further, we break gi(X,Y ) into g1i(X) and g2i(Y ), and hi(X,Y ) into h1i(X) and h2i(Y ) similarly. Sub-
stituting this in equation 3.2, we get

M =

m∑
i=1

f(z)(g1i(X) + g2i(Y ))(h1i(X) + h2i(Y )) (3.3)

=

m∑
i=1

f(z)g1i(X)h2i(Y ) +

m∑
i=1

f(z)g2i(Y )h1i(Y ) (3.4)

and the monomials of the form xixj and yiyj cancel out because the left hand side polynomial (tensor M)
contains only monomials of the form zkxiyj . From the above equation 3.4, it is clear that the tensor cannot
be a sum of more than 2m rank-one tensor, and hence proved that r ≤ 2m⇒ r/2 ≤ m.

3.3.1 Tensor Rank and Matrix Multiplication

From the above discussion, it is easy to observe that in the process of computing the product of two n× n
matrices, using a Strassen-inspired divide and conquer recursive algorithm, we essentially compute four poly-
nomials in each step of recursion, Z11, Z12, Z21, Z22, in the 8 variables X11, X12, X21, X22, Y11, Y12, Y21, Y22.
Therefore, by claim 3.3, the minimum number of computations in this process corresponds to the rank of a
(4× 4× 4) tensor (T : [n]3 → F for n = 4). Tensors of the form T : [n]k → F are known as order-k tensors.
Hence, for analyzing matrix multiplication, we would be concerned primarily with order-3 tensors.

Unlike Matrix-rank, which is fairly easy to compute using techniques like Gaussian Elimination, Tensor-
Rank computation has been proven to be an NP-Complete problem by H̊astad[3]. However, we can try to
get some upper bound on the rank of a 3-dimensional (order-3) tensor which we require in case of matrix
multiplication. For that, we first observe that over a given finite field F of cardinality q (say), the total

possible (n× n× n) tensors are qn
3

. Among these, let us consider the number of possible rank-one tensors,
i.e the number of different ways to choose 3 vectors u, v, w, each of length n. This gives us 3n degrees of
freedom (number of values that can be arbitrarily chosen). However, observe that 2.2.2 = 1.1.8, so choosing
3n field elements arbitrarily need not always produce a distinct tensor u⊗ v⊗w. To take care of this, while
choosing the 3 vectors (u = (u1, u2, ..., un), v = (v1, v2, ..., vn) and w = (w1, w2, ..., wn)), we restrict the first
elements of u and v, u1 = v1 = 1, by dividing the entire vector appropriately. This gives us only 3n−2 degrees
of freedom and hence total possible rank-one vectors are q3n−2. Now, given any random 3-dimensional tensor,
if it is of rank r, it can be written as a sum of r rank one tensors. Therefore, r(3n− 2) = n3, which implies:

r =
n3

3n− 2

Substituting n = 4 gives us the rank of a (4 × 4 × 4) matrix to be approximately equal to 7, justifying
Strassen’s choice. Thus, counting arguments like the one show that with high probability, most order-3
tensors have rank Ω(n2). However, it is an open problem to find an explicit three-dimensional tensor whose
rank is ω(n).

Specifically, the rank of the matrix multiplication tensor corresponding to multiplication of two 2 × 2
matrices, represented as the polynomial, (x11y11 + x12y21)z1 + (x11y12 + x12y22)z2 + (x21y11 + x22y21)z3 +
(x21y12 + x22y22)z4 has been proved to be 7 by Landsberg(2006), but for the tensor corresponding to 3× 3
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matrix multiplication, it is still unknown. The 3 × 3 matrix multiplication tensor corresponds to matrix
multiplication when at every recursion step, all matrices are broken into 9 sub-matrices of size (n/3× n/3),
instead of four (n/2 × n/2) sub-matrices as in Strassen’s algorithm. A trivial upper bound to rank of the
above tensor is 27, and currently known upper bound is 23, and best known lower bound is 19[4]. There
have been constant efforts to improve the complexity of multiplication of two n× n matrices, mostly based
on techniques that try to generalise Strassen’s algorithm. The current best known algorithm by Francois Le
Gall[5] has complexity O(n2.372), which is a generalisation of Coppersmith-Winograd algorithm.

3.4 Parallelization of Computation

We now introduce another topic of how the basic simple operations of integer addition and multiplication,
can be computed by much time-efficient algorithms if we allow parallelization i.e the possibility of multiple
operations being processed at the same instant of time. Also, to simulate parallel computation, we use the
computational model of boolean circuits. We will formally introduce these models in the next lecture.

Now, let us just observe the process of addition of two integers, n-bit each.
Input: 2 integers a = an−1an−2...a1a0 and b = bn−1bn−2...b1b0.
Output: The sum of a and b, c = cncn−1...c1c0.
We know that trivially, by a non-parallelized algorithm, this can be done in O(n) time. We will prove in the
next lecture how this can also be done in constant time, if we allow parallel computation. More formally,
Integer Addition can be solved by constant-depth polynomial sized boolean circuits having unbounded fan-in.
The terms used above will be explained in the next lecture.
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