
E0 309: Topics in Complexity Theory Spring 2015

Lecture 5: Feb 4, 2015
Lecturer: Neeraj Kayal Scribe: Sumant Hegde

5.1 Recap

In the last lecture we showed a constant-depth polynomial-size boolean circuit (of unbounded fanin) that
computed the sum of two n-bit integers, implying the parallel time complexity of Integer Addition is constant.
Then we wondered whether the following problems also have constant parallel time complexity: Iterated In-
teger Addition, Integer Multiplication and Iterated Integer Multiplication.

In the case of iterated addition, we observed that the least significant bit (LSB) of the sum of the n n-
bit inputs is actually the parity of LSB’s of the n inputs. But parity of n bits cannot be computed by any
constant-depth boolean circuit:

Theorem 5.1 Any ∆-depth circuit computing the parity of n bits using ∧,∨,¬ gates (of unbounded fanin)

must have size 2n
1/∆

[1].

(Proof not covered here.) Therefore, parallel time complexity of Iterated Addition is not constant.

5.2 Classes AC0,TC0

Definition 5.2 AC0 is the class of boolean functions computed by boolean circuits having ∨,∧ and ¬ gates,
with constant depth and polynomial size, having unbounded fanin for ∧,∨.

From the discussion above, integer addition ∈ AC0 and Iterated Integer Addition/∈ AC0.

Theorem 5.3 Integer Multiplication /∈ AC0

Proof: We show an AC0 reduction from PARITY to Integer Multiplication.
Let the input be x1, . . . , xn. We consider the binary string x1 . . . xn. Between each xi and xi+1 for i ∈ [n−1],
we insert log n many zeros to get another binary string y. y is of length n+(n−1) log n. Let z be the binary
string of length |y| such that it has 1 at the positions corresponding to xi’s of y, and 0 everywhere else. An AC0

circuit can easily form y, z. Treating y, z as integers, let w be their product with bits w0(LSB),w1, w2, · · · .
From the naive algorithm it is clear that wn−1+(n−1) logn = PARITY (x1, . . . , xn, cn−1+(n−1) logn), where

ci is the ith carry bit. A closer inspection reveals that cn−1+(n−1) logn = 0: Columns n − 2 + (n − 1) log n
through n−1+(n−2) log n “absorb” all carries propagated from the lower columns. Thus wn−1+(n−1) logn =
PARITY (x1, . . . , xn).
It follows that Iterated Integer Multiplication/∈ AC0.

We now consider threshold gates (slightly more powerful than the basic gates) and see if they give us
constant-depth polynomial-sized circuits for Iterated Integer Addition, Integer Multiplication and Iterated
Integer Multiplication.

5-1

5-2 Lecture 5: Feb 4, 2015

Definition 5.4 For inputs x1, . . . , xn ∈ {0, 1}, the output of a threshold gate is

Th(x1, . . . , xn) =

{
1 if a1x1 + · · ·+ anxn ≥ θ
0 otherwise

where θ, a1, . . . , an ∈ Z. θ, a1, . . . , an may depend on n, but they do not depend on the input x1, . . . , xn.

Remarks
1. If we set ai = 1 ∀i ∈ [n] and θ = 1 then we get an ∨ gate.
2. If we set ai = 1 ∀i ∈ [n] and θ = n then we get an ∧ gate.
3. If we set a1 = −1 and θ = 0 then we get a ¬ gate.
4. If we set ai = 1 ∀i ∈ [n] and θ = n/2 then we get a MAJORITY gate. A MAJORITY gate outputs 1 if
at least half the (boolean) inputs are 1 and outputs 0 otherwise.
5. One of the motivations to study threshold gates comes from Artificial Neural Networks. In a simplistic
view, neurons behave like threshold gates. A neuron receives signals from several neurons, and fires if the
weighted sum of inputs exceeds some threshold.

Definition 5.5 TC0 is the class of boolean functions computed by constant-depth poly(n)-size circuits with
threshold gates.

Observation From the remarks above it follows that AC0 ⊆ TC0. It turns out that the containment is
strict, i.e., AC0 (TC0, since MAJORITY ∈ TC0 (from Remark 4 above) and

Theorem 5.6 MAJORITY /∈ AC0.

(Proof not covered here.)

5.3 Iterated Integer Addition ∈ TC0

Definition 5.7 (symmetric boolean functions) A boolean function f : {0, 1}n → {0, 1} is symmetric if
for all permutations σ : [n]→ [n], f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, . . . , xn).

Theorem 5.8 Every symmetric boolean function f(x1, . . . , xn) ∈ TC0.

Proof: We observe that

∃S = {b1, . . . , bm} ⊆ [n] such that

f(x1, . . . , xn) =1 ⇐⇒
∑
i∈[n]

xi ∈ S. Hence we can rephrase f as

f(x1, . . . , xn) =
∨
j∈[m]

(
∑
i∈[n]

xi = bj) .It’s a conditional =.

=
∨
j∈[m]

((
∑
i∈[n]

xi ≥ bj) ∧ (
∑
i∈[n]

(−xi) ≥ −bj))

The two inequalities in the last line can be implemented by two threshold gates, one with ai = 1 ∀i ∈
[n], θ = bj and the other with ai = −1 ∀i ∈ [n], θ = −bj , respectively. Combining these two threshold gates
with an ∧ gate gives a subcircuit Cj of size 3 and depth 1. Making m such subcircuits, one for each bj , and
combining them in parallel using an ∨ gate results in a circuit of size 3m+ 1 and depth 2. Since m ≤ n, it’s

Lecture 5: Feb 4, 2015 5-3

a poly-size constant depth circuit. Finally we can turn ∧ and ∨ into threshold gates as explained before and
get a TC0 circuit.
Since PARITY is symmetric, we have

Corollary 5.9 PARITY ∈ TC0.

Theorem 5.10 Iterated Addition ∈ TC0.

Proof:

Input: n integers a1, . . . , an of n bits each.
Output: s = a1 + · · ·+ an.
Let c0, c1, . . . , cn be the carries as shown:

cn cn−1 cn−2 . . . c2 c1 c0 = 0

a1(n−1) a1(n−2) . . . a12 a11 a10

+ · · · · · · · · · · · · · · · · · ·
+an(n−1) an(n−2) . . . an2 an1 an0

Just like in the algorithm of addition of two integers, we would like to first compute all the carry bits
in parallel and then compute parities in parallel. But there are two differences here. First, the carries
c1, . . . , cn are not single bits; they are small integers. So, our parity computation step now looks like
∀0 ≤ i ≤ n, si = PARITY (ci,0, a1,i, . . . , an,i), where ci,j is the jth LSB of ci. The second difference is that
for each output bit we have to compute parity of n+ 1 bits, not 3 bits. But this is doable in constant depth
with threshold gates as we saw earlier. We now show that computation of carries also is possible in constant
depth with threshold gates.

As an example we discuss computing cn−1,0 and generalize it for all ci,0’s later.

Let us first estimate the size of cn−1. For this we consider t = b1 + b2 + · · · + bn, where each bi is an
integer obtained by retaining n − 1 LSBs of ai and dropping the rest (here ai,n−1). The reasoning is that
cn−1 depends only on n− 1 LSBs of ai’s.
Since bi < 2n−1 ∀i ∈ [n], clearly t < n2n−1. And the number of bits in t = log t ≤ log n + n − 1. Dropping
the n− 1 LSBs of t we get cn−1 which has at most log n bits.
Thinking of binary representation of t ,

t = tm · 2m + · · ·+ tn−1 · 2n−1 + · · ·+ t1 · 2 + t0,

the bits of cn−1 are tm, tm−1, . . . , tn+1, tn. We can safely assume cn−1 has exactly log n bits. Thus, m is
fixed for a fixed n.
Now we show how we can compute these bits using small number of threshold gates. We observe that

tm = 1 ⇐⇒ 2m+1 − 1 ≥ t ≥ 2m (5.1)

tm−1 = 1 ⇐⇒ (2m − 1 ≥ t ≥ 2m−1)

∨(2m + 2m − 1 ≥ t ≥ 2m + 2m−1) (5.2)

5-4 Lecture 5: Feb 4, 2015

tm−2 = 1 ⇐⇒ (2m−1 − 1 ≥ t ≥ 2m−2)

∨(2m−1 + 2m−1 − 1 ≥ t ≥ 2m−1 + 2m−2)

∨(2m + 2m−1 − 1 ≥ t ≥ 2m + 2m−2)

∨(2m + 2m−1 + 2m−1 − 1 ≥ t ≥ 2m + 2m−1 + 2m−2) (5.3)

. . .

tn = 1 ⇐⇒ (2n − 1 ≥ t ≥ 2n−1)∨
...

∨(2m + · · ·+ 2n+1 + 2n + 2n − 1 ≥ t ≥ 2m + · · ·+ 2n+1 + 2n + 2n−1) (5.4)

Clearly it is tn that requires the maximum number of inequalities. Specifically, tn requires 2 · 2m−n ≤
2 · 2logn = O(n) inequalities. Also the bounds in the inequalites are fixed for a fixed n. This means LSB of
cn−1 can be computed by O(n) threshold gates, with depth 2 (taking into account the ∨ gate as well).

The above procedure can be generalized to compute any ci,0 by defining bi as the i− 1 LSBs of ai. One can
verify that ci has at most log n bits for all i. Thus we can compute all ci,0’s in parallel using n subcircuits
each of size O(n) and depth 2.

On top of this layer, finally, for 0 ≤ i ≤ n we can introduce TC0 parity circuits to compute si =
PARITY (ci,0, a1,i, . . . , an,i). This makes total size O(n3) and depth 5. For n + 1 ≤ i ≤ m, si = ti
which too can be computed by inequalities like 5.1, 5.2, 5.3 in parallel with the main computation. Thus we
have a constant depth polynomial size threshold circuit for the problem.

Remark The above TC0 circuit is not the optmial one. TC0 circuits with smaller size for iterated ad-
dition are known.

Corollary 5.11 Integer Multiplication ∈ TC0

Proof: The grade school algorithm for multiplying two n-bit integers first performs n2 bitwise multiplications
to get n n-bit integers and then performs iterated addition over them (with appropriate shifts). The first
step is clearly in TC0. The second step also is in TC0 from Theorem 5.10.

5.4 Analogy between Integers and Polynomials

We informally discuss some similarities between integers and univariate polynomials as it will be helpful in
the later discussions.
Consider the ring of integers Z = {{0,±1,±2 . . . },+,×} and the ring of polynomials F[X] where F is R,C,
or Fp (where p is prime). We can compare the two on the following aspects:

Size and Degree While the size of an integer is the number of bits required to represent it, the de-
gree of a polynomial determines the number of field elements required to represent it.

Prime numbers and Irreducible polynomials A prime number is an integer greater than 1 such that
it is not a product of two integers greater than 1. Similarly, an irreducible polynomial over a field is a
nonconstant polynomial such that it is not a product of two nonconstant polynomials in that field.

Unique factorization Any integer greater than 1 can be written as a unique product of prime num-
bers (ignoring the order). Similarly, any nonconstant polynomial over a field can be written as a unique

Lecture 5: Feb 4, 2015 5-5

product of irreducible polynomials (ignoring the order) in that field.

Remainder is unique Given two integers a, b, b 6= 0, there exist unique integers q, r such that a = bq + r
and 0 ≤ r < |b|. Similarly, given two polynomials a, b, b 6= 0 over a field, there exist two unique polynomials
q, r such that a = bq + r and 0 ≤ deg(r) < deg(b).

5.5 Iterated Integer Multiplication ∈ TC0

Input: n-bit integers a1, . . . , an
Output: P = a1 · a2 · · · an
Since ai < 2n ∀i ∈ [n], we have P < 2n

2

, i.e., P has at most n2 bits.
Let us translate the problem to the world of polynomials and analyze it.

5.5.1 Iterated Polynomial Multiplication

Input: n polynomials of degree (n− 1) each:

a1(x) =a1,0 + a1,1x+ · · ·+ a1,n−1x
n−1

. . .

an(x) =an,0 + an,1x+ · · ·+ an,n−1x
n−1

Output: p(x) = a1(x)a2(x) · · · an(x)
The naive approach requires in total exponentially many (nn) multiplications and thus does not give us a
TC0 circuit.
However, we can try the interpolation technique which we encountered before. For now we assume addition,
subtraction and scalar multiplication are free. Here are the steps:
1. Choose n2 points α1, . . . , αn2 from the field and get evaluation lists for ai’s:

a1(x) ≡(a1(α1), a1(α2), . . . , a1(αn2))

· · ·
an(x) ≡(an(α1), an(α2), . . . , an(αn2))

Each evaluation is essentially an addition, so if we allow addition gates with unbounded fanin then this step
costs depth 1.
2. Do pointwise multiplication to get

p(x) ≡ (
∏
i∈[n]

ai(α1),
∏
i∈[n]

ai(α2), . . . ,
∏
i∈[n]

ai(αn2))

If we allow multiplication gates with unbounded fanin then this step costs depth 1.
3. Interpolate p to get the coefficients p0, . . . , pn2−n. Again, allowing addition gates with unbounded fanin,
this step costs depth 1.
Thus we have a depth 3 circuit with addition gates and multiplication gates of unbounded fanin, for the
problem of iterated multiplication of polynomials.

5-6 Lecture 5: Feb 4, 2015

5.5.2 Chinese Remaindering Theorem

The counterpart of the above technique in the integer world is really Chinese Remainder Theorem (CRT)
which we describe now. Henceforth we assume that ∀i ∈ [n] ai 6= 0, since otherwise the product is trivially
0.

Step 1. Pick a few distinct (and small) prime numbers α1, . . . , αm such that their product exceeds 2n
2

, the
upper bound of

∏
i∈[n]

ai = P (say). Let’s say we pick the first n2 prime numbers.

Fact 5.12 For each ai, the tuple (ai mod α1, . . . , ai mod αm) uniquely determines ai.

Compute the tuples for all ai’s.

Step 2. For each αj , j ∈ [m], let b′j :=
∏
i∈[n]

ai mod αj . Compute bj := b′j mod αj .

Fact 5.13 The tuple (b1 mod α1, . . . , bm mod αm) uniquely determines P .

Step 3. For all j ∈ [m] let Qj :=
∏

t∈[m],t6=j
αt. For all j ∈ [m], let Rj ∈ [1, αj − 1] such that QjRj ≡ 1

mod αj . Call Rj the inverse of Qj .

Fact 5.14 For each Qj there exists exactly one inverse Rj.

Let p′ :=
∑
j∈[m]

bjQjRj . Compute p′ mod (α1α2 · · ·αm), which is P .

Back to analogy. Steps 1,2 and 3 of CRT are the analogues of evaluation, pointwise multiplication and
interpolation respectively. Let’s elaborate the analogy for Step 1.
Evaluation of a polynomial p(x) at a point α is equivalently the remainder obtained by dividing p(x) by
(x − α). i.e., p(x) ≡ p(α) mod (x − α). (For example, suppose p(x) = x2 + 1 and α = 1. Then p(1) = 2.
Also, since x2 + 1 = (x− 1)(x+ 1) + 2, we have p(x) ≡ 2 mod (x− 1).) Noticing that x− α is irreducible,
the above operation naturally translates to taking modulo a prime number in the integer world.

5.5.3 Discrete Logarithms

We need one more trick before designing the circuit. Step 2 of CRT still involves iterated multiplications
of numbers, albeit modulo small primes. The trick is to reduce this problem into iterated additions of their
discrete logarithms as follows.
For a prime number α, the set of positive integers modulo α forms a cyclic group under multipication modulo
α. Thus there exists an element 2 ≤ g ≤ α− 2 such that for every 1 ≤ a ≤ α− 1 there exists 0 ≤ e ≤ α− 2
such that ge ≡ a mod α. (g is called a generator.) Call e the discrete logarithm of a (to the base g). Now,
given 1 ≤ a1, . . . , an ≤ α− 1, their product b modulo α is

b = a1 · · · an mod α =ge1 · · · gen mod α where gei ≡ ai mod α,∀i ∈ [n]

=ge1+···+en mod α.

Thus the problem is reduced to iterated addition e1 + · · ·+ en (at the added overhead of logarithm compu-
tation and exponentiation though).

Lecture 5: Feb 4, 2015 5-7

5.5.4 The circuit

We are now ready to detail the TC0 circuit for iterated integer mutiplication. Broadly, the levels in the
circuit can be partitioned into 3 layers, one for each step of CRT. For simplicity, when explaining layers 1
and 2 (steps 1 and 2 of CRT) we pretend there is only one prime number α to work with, instead of n2-many.
The idea is that the circuitry described for α can be replicated m = n2 times in parallel, one for each αi.
This replication causes only polynomial blowup in size and no change in depth.

Layer 1: Task: Given ai, compute ai mod α. Let ai,k denote, as always, k’th LSB of ai. The solution
starts with having the following values precomputed: 2n−1 mod α, 2n−2 mod α, . . . , 21 mod α, 20 mod α.
Then, computing the sum

Ai = ai,n−1 · 2n−1 mod α+ ai,n−2 · 2n−2 mod α+ · · ·+ ai,1 · 2 mod α+ ai,0 · 1 mod α

costs a standard TC0 circuit for the iterated addition. Call this circuit φ. Crucially, φ gives us Ai that is
much smaller than ai and has the property Ai ≡ ai mod α. Specifically, Ai ≤ nα, a polynomial upper
bound, which lets us take the “exhaustive approach” to find Ai mod α (= ai mod α), as follows.

We can have with us the following values precomputed: α, 2α, . . . , nα. We’ll have small TC0 circuits
C1, . . . , Cn in parallel (on top of φ) such that Cl computes Ai − lα. Exactly one of them outputs a value in
[0, α− 1]. And that is our ai mod α. (There is another level above Cl’s to do this range-checking.)
Throughout, we have used polynomially many threshold gates and incurred constant depth.

Layer 2: Task: Implement Discrete Logarithms described in section 5.5.3. Input is of course a1 mod α, a2
mod α, . . . , an mod α. We assume ai 6= 0 ∀i ∈ [n], since otherwise the product is trivially 0.

We will have the following values precomputed: g (a generator), g2 mod α, g3 mod α, . . . , gα−1 mod α.
(Precomputation is possible because g depends only on α which is fixed.) We’ll have small TC0 circuits
D1, . . . , Dα−1 in parallel such that Dl computes (ai mod α) − gl mod α. Exactly one of them, say Dl′ ,
outputs 0. l′ is our ei, i.e., gei ≡ ai mod α. (There is one more level above Dl’s to “select” l′ and present
it as ei to the upper level.)
The depth of layer 2 so far is a constant. The size of layer 2 so far is roughly O(poly(α)). In the worst case
α is n2th prime number, which is less than n3. Thus the size of layer 2 so far is O(poly(n)).

We now have e1, . . . , en as outputs. We simply place a standard iterated addition TC0 circuit over them to
compute s =

∑
i∈[n]

ei.

The last step is to compute gs mod α (which equals b mod α). Let s′ = s mod (α − 1). Notice that gs
′

mod α = gs mod α, since gα−1 ≡ g0 ≡ 1 mod α. Thus it suffices to compute gs
′

mod α.

We need to find s′ from s. For this we observe that s ≤ n(α − 1), and hence decide to have the following
multiples of α− 1 precomputed: α− 1, 2(α− 1), . . . , n(α− 1). Now, very similar to Cl’s mentioned before,
there will be a setup of n-many TC0 circuits that can find the right s′ using the precomputed multiples of α−1.

Now that we know s′, computing gs
′

mod α is a matter of merely selecting the right element from the
lot {g0, g1, g2, . . . , gα−2 mod α}, all of which are precomputed. A bunch of poly(α) many threshold gates
wired in parallel can do this. Thus we have computed gs

′
mod α which is b mod α.

One can verify that layer 2 in total costs polynomial size and constant depth. This is true even after tak-
ing into account the fact that the above procedure has to be replicated (in parallel) for all n2 prime numbers.

Layer 3: Input: b1 mod α1, . . . , bm mod αm. We borrow the notations from (step 3 of) section 5.5.2.
αj are fixed. So, for all j ∈ [m], product QjRj can be precomputed. Further, we can have the following

5-8 Lecture 5: Feb 4, 2015

multiples of QjRj precomputed: QjRj , 2QjRj , . . . , (αj − 1)QjRj . Then computing bjQjRj amounts to se-
lecting the appropriate multiple which can be done using a TC0 circuit. As usual we have m such circuits in
parallel one for each j. On top of them we have an iterated addition circuit to compute p′ :=

∑
j∈[m]

bjQjRj .

It remains to compute P = p′ mod (
∏

j∈[m]

αj). This task is essentially the same as what we did with α in

layer 1, hence we replicate that here. Of course, this time the divisor is larger:
∏

j∈[m]

αj ≤ αmm ≤ m2m =

(n2)2n
2

< 2n
3

implying that it has at most n3 bits. Accordingly we have to make a few changes, like pre-
computing the multiples up to the factor of n3 instead of n− 1 or so, etc.

One can verify that for layer 3, and thus altogether, the size is polynomial in n and the depth is constant.�

5.6 References

[1] M. Furst, J. B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time hierarchy. Math-
ematical Systems Theory, 17(1):13–27, Apr. 1984

[2] Neil Immerman,Susan Landau, The complexity of iterated multiplication, Information and
Computation 116(1) (1995), 103-116,

[3] Paul W. Beame,Stephen A. Cook,H. James Hoover, Log Depth Circuits for Division
and Related Problems, SIAM(1986) Vol. 15 No. 4.

[4] John Reif, On Threshold Circuits and Polynomial Computation, Second Annual Structure in
Complexity Theory Symp(1987), 118-123

[5] David Cox,John Little,Donal O’Shea, Ideals, Varieties and Algorithms, Second Edition,
Springer (1996)

