
E0 309: Topics in Complexity Theory Spring 2015

Lecture 6: Feb 6, 2015
Lecturer: Neeraj Kayal Scribe: Saravanan K

6.1 A Small Recap

In the last lecture we have seen two complexity classes AC0 and TC0. We then proved some important
facts such as,

1. Integer addition ∈ AC0

2. Iterated Integer Addition /∈ AC0 but Iterated Integer addition ∈ TC0

3. Integer Multiplication ∈ TC0

4. Iterated Integer Multiplication /∈ AC0 but Iterated Integer Multiplication ∈ TC0

In the complexity classes discussed above (AC0 and TC0) we were allowed to use gates with unbounded
fanin. We wonder about the efficiency of computation when we restrict gates to bounded fanin. This question
leads us to introduce a new class NC.

6.2 Class NC (Nick’s Class) [1]

NCd is the class of all boolean functions computed by boolean circuits of polynomial size and polylogarith-
mic depth O(logd n).

The class NC is the union of NCd for d >= 1 (i.e., NC = ∪d≥1NCd).

In other words we can say that the set of all problems which can be solved efficiently in parallel belongs to
the class NC (Because parallel time complexity corresponds to depth of circuits).

Theorem 6.1 A problem has efficient parallel algorithm (meaning, an algorithm that runs in poly-log time
using polynomially many processors) iff it belongs to the class NC.[1]

Proof: Suppose a problem p belongs to the class NC. This implies there exists a circuit with polynomial
size and polylogarithmic depth that solves the problem p. We can compute all the outputs of nodes of the
bottom layer by using multiple processors parallelly at time instant t = 1. After computing the outputs of
nodes of the first layer we move up to the second layer. At time t = 2 all the nodes of the second layer can
be computed using multiple processors parallelly. On continuing this way, we observe that the output of the
root node can be computed in polylogarithmic time with polynomial number of processors.

Suppose we have a parallel algorithm that solves problem p in polylogarithmic time. From the algorithm
we can design a circuit such that the tasks of all parallel computations at a specific time instant t are assigned
to multiple nodes at layer t. On careful observation we note that the depth of this circuit is O(logd n) (since
the algorithm takes time O(logd n), for some constant d).

6-1



6-2 Lecture 6: Feb 6, 2015

6.3 P-completeness

Linear Programming(LP): Any linear program can be expressed in the inequality form as

maximize c.x

subject to A.x ≤ b

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n are the input data and x ∈ Rn are the output variables.

Linear programming belongs to the class P. However till now, no efficient parallel implementation algo-
rithm exist for linear programs. It is still an open question that whether P = NC or P 6= NC. This question
motivates the notion of P-completeness.

P-complete (Definition): A problem p is P-complete if it is in P and every problem in P is logspace
reducible to it.

Theorem 6.2 If problem p is P-complete then p ∈ NC iff P = NC.

Theorem 6.3 Linear Programming(LP) is P-Complete. That is, if LP ∈ NC then P = NC. In other
words, linear programming has a fast parallel algorithm if and only if P = NC.

6.4 Determinant of Matrices

Let A =


A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

...
...

...
. . .

...
An1 An2 An3 · · · Ann


n×n

where, Aij ∈ Rn×n, ∀ 1 ≤ i, j ≤ n

Now the Determinant of A is given by,

Det(A) =
∑
σ

sign(σ)

n∏
j=1

Ajσ(j)

where σ is the set of all permutaions of [n]. The signature sign(σ) is +1, when the number of swaps in the
permutation is even and is −1, otherwise.

6.4.1 Properties of the Determinant

1. The determinant of any triangular matrix is the product of all the diagonal elements. For example if

Aut =


A11 A12 A13 · · · A1n

0 A22 A23 · · · A2n

...
...

...
. . .

...
0 0 0 · · · Ann


n×n

then, Det(Aut) = A11A22A33 · · ·Ann.



Lecture 6: Feb 6, 2015 6-3

2. Multiplication of a scalar to a row corresponds to scalar mulplication of the determinant value. For

example if Aα =


A11 A12 A13 · · · A1n

α.A21 α.A22 α.A23 · · · α.A2n

...
...

...
. . .

...
An1 An2 An3 · · · Ann


n×n

then, Det(Aα) = α.Det(A).

3. Interchanging any two rows corresponds to negation of the determinant value. For example if

Ai =


A21 A22 A23 · · · A2n

A11 A12 A13 · · · A1n

...
...

...
. . .

...
An1 An2 An3 · · · Ann


n×n

then Det(Ai) = −Det(A).

4. Adding any row with another row corresponds to no change in the determinant value. For example if

Aa =


A11 A12 A13 · · · A1n

A21 +A11 A22 +A12 A23 +A13 · · · A2n +A1n

...
...

...
. . .

...
An1 An2 An3 · · · Ann


n×n

then Det(Aa) = Det(A)

6.4.2 Importance of the Determinant

Efficient computation of the determinant value has various applications in linear algebra. Here we shall see
one such example which is Cramer’s rule. Let,

An×n.x = b

where An×n ∈ Rn×n,b ∈ Rn are the input data and x ∈ Rn is the output vector with variables x1, x2, · · · , xn.
By Cramer’s rule we know that,

xi =
Det(Ai)

Det(A)
∀i ∈ [n]

where Ai is the matrix obtained from A by substituting the ith column of A by the vector b.

Here we need to first compute Det(A). Then the xi’s can be computed using n parallel computations
thus forming two levels. Also both the levels involve the computation of the determinant value. Thus if we
can find out the determinat value efficiently, then we can also solve the linear equations efficiently. Therefore
if computing the determinant belongs to NC then the problem of solving linear equations also belongs to
NC.

6.5 Parallel computation of matrix inverse and determinant

Theorem 6.4 The problem of computing the determinant value of a matrix is in NC(Csanky’s algorithm).

Theorem 6.5 The problem of computing the inverse of a matrix is in NC(Csanky’s algorithm).



6-4 Lecture 6: Feb 6, 2015

Before proving the above theorems, let us revise some basic properties of matrices and eigen values.

Given a matrix A ∈ Rn×n, let λ1, λ2, λ3, · · · , λn be the eigen values of A. Now,

1. Det(A) = λ1λ2λ3 · · ·λn

2. Trace(A) =
∑n
i=1(Aii) = λ1 + λ2 + λ3 + · · ·+ λn

3. The trace of Ai = (λi1 + λi2 + λi3 + · · ·+ λin)

4. Finding the product of any two matrices is in NC.

Proof: Without loss of generality let us consider only n×n square matrices. Let Pn×n = Xn×n ·Yn×n,
where Pn×n, Xn×n, Yn×n ∈ Rn×n. Here Xn×n, Yn×n are the input matrices and Pn×n is the product
matrix. Let Pij be the element in the ith row and jth column of P . By definition of matrix multipli-
cation we observe that Pij =

∑n
k=1AikBkj .

Computing a Pij involves n field multiplications and (n − 1) additions. This can be computed us-
ing n number of processors in time O(log n). This implies computing a Pij is in NC.

We also note that, for all i, k, j ∈ [n], Aik and Bik are known values (as they are input data). Therefore
all the n2 Pij values can be computed parallelly in time t with total number of processors = O(n2 · n)
= O(n3). Therefore computing the product of two matrices belongs to the class NC.

5. For 1 ≤ i ≤ n, computing Ai is in NC.

Proof: We know that finding A2 is in NC. Using repetitive squaring we can compute any Ai (for

example A7 = A4 ·A3 = (A2)
2 · (A2)A). This takes at most O(log n) number of matrix multiplications.

Therefore the problem of finding Ai belongs to the class NC.

6. Cayley Hamilton Theorem[2] : Let p(λ) = Det(λI −A) be the characteristic polynomial of A. By
definition the roots of p(λ) are the eigen values λ1, λ2, · · · , λn of A. As p(λ) is a polynomial of degree
n, we can write p(λ) = λn + c1λ

(n−1) + · · · + cn. Cayley Hamilton theorem states that every square
matrix satisfies its characteristic equation. Therefore we can write,

p(A) = An + c1A
(n−1) + · · ·+ cnI = 0 , where cn = (−1)nDet(A)

If A is non-singular then A−1 exists and cn 6= 0. By multiplying the above equation by A−1 we get,

A(n−1) + c1A
(n−2) + · · ·+ cnA

−1 = 0 (6.1)

=⇒ A−1 =
A(n−1) + c1A

(n−2) + · · ·+ cn−1I

−cn
(6.2)

If we could somehow compute the coefficients ci in NC, then we could use this formula to evaluate
A−1(Because we know that finding Ai belongs to the class NC). This evaluation can be computed
parallelly with O(n) number of processors. The following gives a way to compute the coefficients in
NC.



Lecture 6: Feb 6, 2015 6-5

6.5.1 Newton Identities:

For 1 ≤ i ≤ n, let Pi(λ1, λ2, λ3, · · · , λn) be the sum of the ith power of the eigen values. For example,

P1 =

n∑
j=1

λj

P2 =

n∑
j=1

λ2j

P3 =

n∑
j=1

λ3j

...

Pn =

n∑
j=1

λnj

For 1 ≤ i ≤ n, let Ei(λ1, λ2, λ3, · · · , λn) be the sum of all distinct products of i distinct variables.
Ei(λ1, λ2, · · · , λn) is the ith symmetric polynomial in λ1, λ2, · · · , λn. For example,

E1 =
∑

λ1

E2 =
∑
i<j

λiλj

E3 =
∑
i<j<k

λiλjλk

...

En = λ1λ2 · · ·λk

Since finding Ai is in NC , all of P1,P2,P3, · · · , Pn can be computed in NC (By finding the trace of Ai).
Therefore from now on, for i ∈ [n], the Pi’s are treated as known values.

As defined earlier p(λ) = λn+c1x
(n−1) + ...+cn is a monic polynomial of degree n, with roots λ1, λ2, · · · , λn.

On careful observation we can note that ck = (−1)kEk.

Using the definition of Pi and Ei we can verify that,

E1 = P1

2E2 = (−)P2 + P1E1

3E3 = (+)P3 − P2E1 + P1E2

4E4 = (−)P4 + P3E1 − P2E2 + P1E3

...

In general,

kEk = (−1)k+1(Pk − Pk−1E1 + Pk−2E2 + · · ·P1Ek−1)

=⇒ Ek =
(−1)k+1(Pk − Pk−1E1 + Pk−2E2 + · · ·P1Ek−1)

k



6-6 Lecture 6: Feb 6, 2015

The above relation between polynomials Pi and Ej is called Newton’s Identity[3]. In matrix notation we
write,

P = MC

where, P =


−P1

−(P2)/2
...

−(Pn−1)/(n− 1)
−Pn/n


n×1

, M =


1 0 0 · · · 0

−P1/2 1 0 · · · 0
P2/3 −P1/3 1 · · · 0

...
...

...
. . .

...
(−1)n−1Pn−1/n · · · P2/n −P1/n 1


n×n

, C =


c1
c2
...

cn−1
cn


n×1

Now C can be computed by

C = M−1 · P (6.3)

Now we note that M can be written as the sum of an identity matrix and a nilpotent matrix. That is
M = I +N where,

N =


0 0 0 · · · 0

−P1/2 0 0 · · · 0
P2/3 −P1/3 0 · · · 0

...
...

...
. . .

...
(−1)n−1Pn−1/n · · · P2/n −P1/n 0


n×n

and I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 1


n×n

Hence,

M−1 = (I +N)−1

= I +N +N2 +N3 + · · · · · ·
= I +N +N2 +N3 + · · ·+Nn (Since N i = 0, ∀i > n)

We know that every N j for j ≤ n can be computed in NC. Then we can compute M−1 parallelly with
polynomially bounded total number of processors. After finding out M−1 we can compute the coefficient
vector C by the matrix vector multiplication M−1P , which belongs to NC. Thus we have computed the
value of all the coefficients c1, c2, · · · , cn. Now, we can easily compute

1. The determinant of the Matrix Det(A) = (−1)ncn

2. The Inverse of the Matrix by substituting the values of c1, c2, · · · , cn in (6.1).

6.6 Parallel computation of rank of matrices

6.6.1 Prerequisites:

Before getting into the algorithm let us look at some basic concepts and lemmas that provides us the neces-
sary tools for proving the algorithm.

Permutation Matrix:
A permutation matrix is a matrix obtained by permuting the rows of the identity matrix in some order (say



Lecture 6: Feb 6, 2015 6-7

σ). Any matrix A when pre-multiplied by a permutation matrix, results in the permutation of rows of A in
the same order σ. On post-multiplication, we obtain the permutation of columns of A in the same order σ.
For example,

P
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


4×4

·

A
a b c d
e f g h
i j k l
m n o p


4×4

=

A
′

e f g h
a b c d
i j k l
m n o p


4×4

From now on, let us use the notation #S to denote the cardinality of S, where S is some finite set.

Lemma 6.6 Schwartz-Zippel lemma : Consider an arbitrary field F. Let S ⊆ F be a finite subset of cardi-
nality q = #S and p ∈ F[x1, x2, x3, · · · , xn] be a multivariate non-zero polynomial of (total) degree at most
d. Then

Proba∈rSn(p(a) = 0) ≤ d

q

where a = (a1, a2, · · · , an) is a random vector selected (uniformly at random) from Sn. The proof of this
lemma will be covered in the next lecture.

6.6.2 Computation of rank

Now let us see two theorems that provides the efficient parallel computation of rank of matrices.[4]. We apply
Schwartz-Zippel lemma and the parallel computation of determinant algorithm (that we have seen earlier)
along with several techniques to compute the rank of matrices.

Theorem 6.7 For any field F, there exists an algorithm in NC that computes the rank of matrices over F
with error probability < 0.95. [4]

Proof: Consider an arbitrary field F. Given a matrix A ∈ Fn×n, we need to find the rank of A. Take S ⊆ F
with cardinality q = #S ≥ 3n. If #F < 3n then we take S = F.

Here we assume that the input matrix is a square matrix. In case of rectangular matrices, we convert them
to square matrices by padding additional entries with 0’s.

For a matrix M ∈ Fnxn, let Pi(M) denotes the principal i × i submatrix of M , for 1 ≤ i ≤ n (i.e., the
submatrix formed by the first i rows and first i columns of M). We assume some random element generator
from S (with uniform distribution over the values of S).

The algorithm to compute rank(A) is as follows.

1. Choose the matrices B ∈ Sn×n, C ∈ Sn×n at random.



6-8 Lecture 6: Feb 6, 2015

2. For, 1 ≤ i ≤ n, compute fi = Det(Pi(BAC)).

3. Find s = max{i : fi 6= 0 or i = 0}

4. return s

Let r = rank(A). By definition, fi = 0, for all r < i ≤ n, implying s ≤ r. Hence the output of our algorithm
(that is, s) is always less than or equal to the rank of A. Now the remainder of proof is to show that the
error probability (s < r) is less than or equal to 0.95. That is,

Prob(s < rank(A)) ≤ 0.95

We introduce the polynomial gA(X,Y ) = Det(Pr(XAY )) ∈ F[X11, X12, · · · · · · , Ynn], where
X11, X12, · · · , Xnn, Y11, Y12, · · · , Ynn are indeterminate entries of matrices B and C respectively. We note
that there exists permutation matrices S, T such that gA(S, T ) = Det(Pr(SAT )) 6= 0. This implies gA(B,C)
is a non-zero polynomial whose degree is at most 2n. Based on the size of field F, we analyze two cases.

Case (i) : q ≥ 3n (that is, when F is large (#F ≥ 3n))

Using lemma 6.6,

Prob(s < r) = Prob(fr = 0) = ProbB,C∈rSn×n(gA(B,C) = 0) ≤ d

p
=

2n

3n
≤ 0.95

Case (ii) : S = F (that is, when F is small(#F < 3n))

Below lemma (lemma 6.8) along with certain techniques are used to prove the analysis (described in [4]).
We will not cover the proof here.

Lemma 6.8 Let F be any arbitrary field. Consider S ⊆ F such that #S ≥ 2. Let g be a n × n matrix
with entries gij ∈ F[xij ], ∀i, j ∈ [n], which are univariate polynomials of degree at most d, where xij’s are
indeterminates over F. Also let us define the function u(t,m) = 1 −

∏m
i=1(1 − ti). For a random matrix

A ∈r Snxn, let g(A) be the matrix with entries gij(Aij), ∀ i, j ∈ [n]. Then,

1. ProbA∈rSnxn(Det(g(A)) = 0) ≤ u(d/q, n)

2. If d = 1, then ProbA∈rSnxn(Det(g(A)) = 0) ≤ 3/4

The proof (described in [4]) is not covered here.

Theorem 6.9 For any field F, there exists an algorithm in NC that either computes the rank of n × n
matrices over F or returns failure with failure probability ≤ 2−n. (Proof is described in [4])

Therefore with high probability (1 − 2−n) we are able to efficiently compute the rank of a matrix over any
arbitrary field by an algorithm that runs in poly-log time using polynomially many processors.

6.7 Open Problems:

The following are some of the open problems.



Lecture 6: Feb 6, 2015 6-9

1. It is conjectured that computing the determinant of a matrix does not belong to TC0. Proving or
disproving this argument is still open.

2. Given two sequences a1, a2, · · · , an and b1, b2, · · · , bn of positive integers. Is A =
∑
i

√
ai less than,

equal to, or greater than B =
∑
i

√
bi. Finding out whether the above problem is in class P is still an

open problem.[5]

6.8 References

[1] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009

[2] http://www.cs.berkeley.edu/ demmel/cs267/lecture14.html

[3] http://en.wikipedia.org/wiki/Newton

[4] Allan Borodin, Joachim Von Zur Qathen and John Hopcroft, Fast Parallel Matrix and
GCD Computations, 23rd Annual Symposium on Foundations of Computer Science (FOCS’82),
1982

[5] http://cstheory.stackexchange.com/questions/79/problems-between-p-and-npc/4


