
E0309 Topics in Complexity Theory Spring 2015

Lecture 7-8:GCD and Bipartite Matching
Lecturer: Neeraj Kayal Scribe: Abhijat Sharma

7.1 Greatest Common Divisor

In the last lecture, we proved that computation of the determinant of a n × n matrix was possible using
boolean circuits of size polynomial in n and depth polynomial in log n (specifically O(log2 n)). In other
words, the determinant is in NC, and so are most of the problems in linear algebra, such as computing the
inverse of a matrix, solving a system of linear equations etc. as they can all be reduced to the problem of
computing the determinant of a n× n matrix.

Now, we would like to extend the notion of efficient parallel computation (the class NC) to problems
beyond linear algebra. Therefore, let us consider a problem which has been studied by mathematicians for
hundreds of years, and is one of the most basic problems related to all number theoretic algorithms, the
problem of computing the greatest common divisor (GCD) of two integers.
Input: two integers a, b ∈ Z (1 ≤ a, b ≤ 2n)
Output: an integer g = gcd(a, b), such that g | a (g divides a), g | b and for any other common divisor h of
a and b, h ≤ g.

7.1.1 Euclid’s Algorithm (300 BC)

The first algorithm for computing the GCD of two integers was given by the greek mathematician Euclid,
as early as 300 BC. It is based on a very simple observation, which is as follows: if r is the remainder you
get when you divide a by b,

gcd(a, b) = gcd(b, r) (7.1)

It is easy to observe from the above equation, that if the remainder r = 0, i.e b | a, then gcd(a, b) = b. The
proof of equation 7.1 can be shown by similar arguments in both directions:

1. we know that r ≡ a(mod b) so we can write

a = t.b+ r

for some integer t. For any common divisor h of a and b,

h | a and h | b =⇒ h | r
⇒gcd(a, b) | r

every common divisor of b and r divides gcd(b, r),

⇒ gcd(a, b) | gcd(b, r)

7-1

7-2 Lecture 7: -8:GCD and Bipartite Matching

2. looking at the same equation as above: a = t.b+ r, for any common divisor h of b and r,

h | b and h | r =⇒ h | a
⇒gcd(b, r) | a

every common divisor of a and b divides gcd(a, b),

⇒ gcd(b, r) | gcd(a, b)

Combining the above two steps, we prove the basis for Euclid’s algorithm, gcd(a, b) = gcd(b, r). When we try
to develop an efficient parallel algorithm to implement this algorithm, we observe that it requires at-most n
levels of recursion, and therefore the depth of any circuit simulating the Euclid’s algorithm would be O(n).
If n is the length of the input, we would like to obtain a circuit with depth polynomial in log n, to claim that
Integer-GCD is in NC, i.e solvable efiiciently in parallel.

7.1.2 Polynomial GCD

As we have seen in earlier lectures, while trying to analyze the complexity of integer multiplication, it
is helpful to look at polynomial multiplication and use the analogy between n-bit integers and n-degree
univariate polynomials. Similarly, to analyze Integer-GCD, we look at the problem of computing GCD of
two univariate polynomials:
Input: two degree-d polynomials a(x), b(x) ∈ Q[X] (coefficients are rational numbers),
Output: the polynomial g(x) = gcd(a(x), b(x)), defined similarly as in integers. (gcd of polynomials is
well-defined due to unique factorization of polynomials)

Fact: For any two integers a and b, g = gcd(a, b) is the smallest positive integer that can be written as
g = a.x + b.y for some x, y ∈ Z. Similarly, for any two polynomials a(x) and b(x), g(x) = gcd(a(x), b(x) is
the smallest degree polynomial, such that g = a.p+ b.q for some p, q ∈ Q[X].

Theorem 7.1 Polynomial-GCD can be computed by a family of circuits having size poly(d) and depth
poly(log d), assuming field operations have unit-cost.

Proof: Let e be degree of the polynomial g(x), 0 ≤ e ≤ d. The family of circuits claimed to exist by theorem
7.1 can be described as follows:

• The input is given as (d + 1) coefficients, each of a(x) and b(x). For a given input, there are (d + 1)
possible values of e, as mentioned above. So, the circuit has (d+1) branches, one branch for each value
of e, and all the branches are computed in parallel.

• Every branch assumes a fixed value of e. Then, it uses the property that g(x) = a(x).p(x) + b(x).q(x)
(degree(p), degree(q) < d), substituting a(x) and b(x) that are known to the circuit, and the coefficients
of g(x), p(x), q(x) as variables:

g(x) = g0 + g1.x+ ...+ ge.x
e

p(x) = p0 + p1.x+ ...+ pd−1.x
d−1

q(x) = q0 + q1.x+ ...+ qd−1.x
d−1

Lecture 7: -8:GCD and Bipartite Matching 7-3

• Substituting the above polynomials transforms g(x) = a(x).p(x) + b(x).q(x) to a system of linear
equations in O(d) variables, that are the coefficients of the polynomials g(x), p(x), q(x). We also
substitute the leading coefficient, ge = 1 so that we only get a non-trivial solution for g of degree
exactly equal to e (if it exists), and the trivial solution (g0 = g1 = ... = ge = p0 = ... = pd−1 = q0 =
... = qd−1 = 0) is avoided. As discussed in the previous lecture, solving a system of linear equations in
O(d) variables, reduces to computing the determinant of a O(d) × O(d) matrix, which we know is in
NC. (poly(d) size and poly(log d) depth)

• The circuit solves the above system of linear equations for all branches, and chooses the smallest value
of e, for which we obtain a non-trivial solution. Such a solution corresponds to the smallest-degree
polynomial g(x) that can be written as g = a.p+b.q, and this implies that g(x) is definitely the required
output, gcd of polynomials a(x), b(x). Hence, the (e + 1) coefficients of this polynomial are the final
outputs of our circuit.

Observe that the above circuit has (d+1) branches, each having poly(d) size and poly(log d) depth, as solving
a system of linear equations is in NC. Therefore, the overall size of circuit is also polynomial in d, and its
depth is equal to any of its branches, i.e polynomial in log d, which completes the proof of theorem 7.1.

We proved above that computing GCD of two degree-d polynomials can be done efficiently in parallel.
However, the same question, when asked with respect to integers, is one of the major open problems currently.

Open Question 7.1 Integer −GCD ∈ NC?

7.2 Bipartite Matching

Now, we try to analyze one of the popular problems from graph theory, the Bipartite Matching problem,
which has wide applications in other fields of computer science and mathematics.
Input: A bipartite graph G = (V1, V2, E), |V1| = |V2| = n
Output: YES, if there is a perfect matching in G, NO otherwise.
A perfect matching can be represented as a bijection, σ : V1 7→ V2 such that for all i ∈ V1, (i, σ(i)) ∈ E. In
simple words, given a bipartite graph with n vertices in both partititons, a perfect matching chooses a set
of n out of all the edges, such that all 2n vertices are adjacent to exactly one of the edges in the set.

Theorem 7.2 (Edmond’s Algorithm (1961)) Computing a matching in any graph G = (V,E) (not
necessarily bipartite) can be done in polynomial time, precisely O(

√
|V |.|E|) time. [2]

With the Edmond’s algorithm, it was clear that Matching can be done efficiently in polynomial time for
any graph. However, it is another major open question whether Matching can also be solved efficiently in
parallel.

Open Question 7.2 Matching ∈ NC?

Still, as some respite, we will prove the following theorem for finding a perfect bipartite matching:

Theorem 7.3 Bipartite−Matching ∈ Randomized− NC.

Before we start describing a randomized parallel algorithm to prove the above theorem, we first introduce
two basic inter-related problems related to matrices, that also form the basic steps of other problems in
computer science and graph theory such as bipartite matching, the Determinant and the Permanent.

7-4 Lecture 7: -8:GCD and Bipartite Matching

7.2.1 Permanent and Determinant

Consider any given bipartite graph G = (V1, V2, E), with V1 = {u1, u2, ..., un} and V2 = {v1, v2, ..., vn}, it
can be represented as a boolean n× n matrix X with entries xij (1 ≤ i, j ≤ n) as follows:

xij =

{
1 if the edge (ui, vj) ∈ E
0 otherwise

Observe that every perfect matching in the graph G is a bijection σ : V1 7→ V2, so the following polynomial,
known as the permanent of the n× n matrix X, is exactly equal to the number of perfect matchings in G:

PERM(X) =
∑

σ:[n]7→[n]

x1σ(1).x2σ(2).....xnσ(n) (7.2)

Every monomial in the above polynomial corresponds to one possible matching, and it would equal to 1 iff
every variable in the monomial is 1, which would be true only when σ corresponds to a perfect matching in
G.

Now, note that the above described polynomial, the permanent of a n×n matrix, is very similar in syntax,
to the determinant of the matrix. Given a n×n matrix X, the determinant can be written as the polynomial:

DET (X) =
∑

σ:[n]7→[n]

sgn(σ).x1σ(1).x2σ(2).....xnσ(n) (7.3)

where sgn(σ) refers to the sign of the permutation σ, which depends on the number of swaps required to get
σ from the identity permutation (σ(i) = i for i = 1, 2, ..., n). A formal way to compute the sign of a given
permutation is as follows:

1. given a permutation σ : [n] 7→ [n], try to find cycles of the form (a1, a2, ..., ak) such that σ(a1) =
a2, σ(a2) = a3, ..., σ(ak) = a1. Note that such cycles will definitely exist because σ is a bijection.

2. proceeding as above, break every permutation into disjoint cycles covering all numbers from 1 to n.
Every permutation has a unique representation as a union of such cycles.

3. Then, sgn(σ) = (−1)no. of cycles of even length. It can be easily verified that the identity permutation has
sign +1 because all its cycles are of length 1. This definition can also be directly compared to the
number of swaps required to obtain the premutation σ, and you will see that the sign is positive if even
number of swaps are required, and negative otherwise.

Although, syntactically the two polynomials permanent and determinant are very similar syntactically
except for the sgn factor, when we consider the complexity of computing these polynomials, they differ
widely. While we have seen that DET (X) can be computed by a NC circuit, O(n3) size and O(log2 n) depth,
there is no known polynomial-time algorithm, neither sequential nor parallel, for computing PERM(X). In
fact, it is a widely believed conjecture that PERM(X) cannot be computed in polynomial time, (in fact not
even in sub-exponential time). We will now see how the problem of bipartite matching is related to the two
polynomials DET (X) and PERM(X).

7.2.2 Back to Bipartite Matching

Claim 7.4 If the permanent can be computed by a circuit of size s, then bipartite matching can be solved by
a circuit of size s.

Lecture 7: -8:GCD and Bipartite Matching 7-5

Proof: As we stated earlier, it can be inferred from equation 7.2 that the value of the polynomial PERM(X),
evaluated at the appropriate values for xijs corresponding to any given bipartite graph G, is exactly equal
to the number of perfect matchings in G. In other words,

G ∈ Bipartite−Matching ⇐⇒ PERM(X) > 0 (7.4)

Hence, if the permanent of a n×n matrix can be computed by a family of circuits having size s, we can use
the same family of circuits to solve the bipartite matching problem, and just check if PERM(X) > 0 in the
end.

Unfortunately, the best known circuit to compute PERM(X) is of size roughly 2n given by Ryser’s formula[1].

But, as we have efficient poly-sized circuits to compute the determinant in parallel, we would like an
equation similar to equation 7.4, with the permanent replaced by the determinant. Observe that the
determinant consists of the same monomials as the permanent, but along with an additional coefficient,
sgn(σ). Therefore, just like the permanent, every monomial in the determinant also corresponds to a
perfect matching, but unlike the permanent, the value of DET (X) does not exactly refer to the number
of perfect matchings in graph G. Some permutations σ corresponding to perfect matchings might have
sgn(σ) = −1, and would cancel out other monomials corresponding to perfect matchings but with sign +1.
For example, consider the graph G = (V1, V2, E) defined as follows: V1 = {u1, u2, u3}, V2 = {v1.v2, v3}, E =
{(u1, v1), (u1, v2), (u2, v1), (u2, v2), (u3, v3)}. The matrix X for this graph would be:

X =

1 1 0
1 1 0
0 0 1

Here, we have two perfect matchings, M1 = {(u1, v1), (u2, v2), (u3, v3)},M2 = {(u1, v2), (u2, v1), (u3, v3)},
but the permutations corresponding to these 2 matchings, σM1

= (1, 2, 3) and σM2
= (2, 1, 3) have opposite

signs, which makes DET (X) = 0. Hence, if the matrix X is described this way, it is difficult to find a
relation between DET (X) and perfect matchings in G.

Hence, we define X in a slightly different way, related to the Tutte’s Matrix [3]: 1

Xij =

{
xij if the edge (ui, vj) ∈ E
0 otherwise

So, DET (X) will be a polynomial in the formal variables, xij (1 ≤ i, j ≤ n) i.e at-most n2 variables. Now,
we can claim something similar to equation 7.4 for the determinant,

Claim 7.5 Determinant of X will be a zero polynomial if and only if G has no perfect matching. In other
words,

G ∈ Bipartite−Matching ⇐⇒ DET (X) 6= 0

Proof: Recall that the determinant of the n× n matrix X, can be written as in equation 7.3:

DET (X) =
∑

σ:[n] 7→[n]

sgn(σ).x1σ(1).x2σ(2).....xnσ(n)

1For any general n-vertex graph, the Tutte matrix T is a n× n matrix defined as follows:

Tij =

xij if (i, j) ∈ E and i < j

−xji if (i, j) ∈ E and i > j

0 otherwise

7-6 Lecture 7: -8:GCD and Bipartite Matching

We know that each permutation σ corresponds to a possible perfect matching {(u1, vσ(1)), (u2, vσ(2)), ..., (n, vσ(n))}
in G. Note that if this perfect matching does not exist in G (i.e. some edge (ui, vσ(i)) /∈ E), then the term
corresponding to σ in the summation is 0. Hence, equation 7.3 can be rewritten as:

DET (X) =
∑
σ∈P

sgn(σ).x1σ(1).x2σ(2).....xnσ(n)

where P is the set of perfect matchings in G. It is clear to see that the above polynomial is zero if P = ∅ i.e
G has no perfect matching. This proves one side of the claim.

For the other side, if G has a perfect matching, there is a σ ∈ P and the monomial corresponding to
σ,

∑n
i=1 xiσ(i) 6= 0. Additionally, there is no other term in the summation that contains the same set of

variables. Therefore, this term is not cancelled by any other term. So in this case, DET (X) 6= 0.

From the above claim, the problem of checking whether a given bipartite graph G has a perfect matching,
reduces to the problem of just checking if a given polynomial in n2 variables, DET (X) is zero or not. This
problem is a case of the Polynomial Identity Testing (PIT) problem.

But sadly, finding an efficient algorithm to solve PIT is an open problem.

Open Question 7.3 Polynomial Identity Testing is in P?

But PIT, like Bipartite Matching can be solved by an efficient randomized algorithm. The randomized
algorithms for both the problems are based on a very important result which is now discussed.

7.2.3 Schwartz-Zippel Lemma and Polynomial Identity Testing

Theorem 7.6 (Schwartz-Zippel Lemma) Let p ∈ F[y1, y2, ..., ym] be a non-zero polynomial of (total)
degree d, and S ⊂ F be a finite subset of the underlying field F, then

Pra∈S [p(a) = 0] ≤ d

|S|
(7.5)

where a = (a1, a2, ..., am) are m field-elements selected uniformly at random from the set S.

Before we prove the above lemma, we first describe how it helps to prove theorem 7.3, i.e Bipartite −
Matching ∈ Randomized− NC.

1. To apply the Schwartz-Zippel lemma to solve Bipartite Matching, we take the set S to be the set of
integers {1, 2, ..., n2}.

2. We have the polynomial DET (X) in n2 variables xij (1 ≤ i, j ≤ n). We choose the values of each
variable xij uniformly at random from S, and evaluate DET (X) for these values. Let (a) denote the
randomly chosen values, then we call the evaluation DET (a).

3. If DET (a) 6= 0 (i.e DET (X) evaluated at the randomly chosen xij is non-zero), then DET (X) is
definitely a non-zero polynomial, and therefore we output G ∈ Bipartite−Matching.

4. Otherwise, if DET (X) is evaluated and it is equal to zero, we output that G has no perfect matching.
But, in this case it is possible that the polynomial DET (X) is not identically zero, in which case our
output would be incorrect, and that failure probability is given by equation 7.5 (degree(DET (X)) = n):

Pra∈S [DET (a) = 0] ≤ n

n2

= 1/n

Lecture 7: -8:GCD and Bipartite Matching 7-7

5. We can also repeat the algorithm by choosing another random set of xij ’s and output NO only if
DET (X) is evaluated to zero in every iteration, thus reducing the overall failure probability.

This proves that Bipartite Matching is in Randomized-NC, as DET (X) can be computed in NC. This can
also be extended to Matching in general (non-bipartite) graphs using Tutte’s Matrix. Now, we proceed to
prove the basis of above analysis, the Schwartz-Zippel lemma.

Proof:(Of Theorem 7.6) We prove the lemma by induction on m. For the base case m = 1, the polynomial
is p(y1) = pdy

d
1 + ... + p0. It is known that any univariate polynomial of degree d, over a field, can have

at-most d roots irrespective of the set S. So the base case is proved.

Now, we assume that the result holds upto m variables and prove that it also holds for (m+ 1) variables.
We can consider p to be a polynomial in the new variable ym+1 by writing it as follows:

p(y1, y2, ..., ym+1) =
d∑
i=0

qi(y1, y2, ..., ym).yim+1

⇒ p = qd.y
d
m+1 + ...+ q1.ym+1 + q0

where qis, coefficients of yim+1, are polynomials of degree at-most (d − i), i.e qd is a constant. Let e be the
degree of polynomial p with respect to the variable in ym+1. Then, qe is the first non-zero polynomial (of
degree d− e starting from the left, and qi = 0 for all e < i ≤ d.

p(y1, y2, ..., ym+1) = qe(y1, ..., ym).yem+1 + ...+ q1.ym+1 + q0

Now, let A be the event that p(y1, ..., ym+1) = 0, and B be the event that qe(y1, ..., ym) = 0. Then we can
write:

Pr[A] = Pr[A ∩B] + Pr[A ∩B]

= Pr[B].P r[A/B] + Pr[B].P r[A | B]

B denotes the complement event of B. As, Pr[A | B], P r[B] ≤ 1, so

Pr[A] ≤ Pr[B] + Pr[A | B]

By induction hypothesis, Pr[B] = Pr[qe(y1, ..., ym) = 0] ≤ (d − e)/|S| and similarly, Pr[A | B] is the
Pr[p(y1, ..., ym+1) = 0] given that qe(y1, ..., ym) 6= 0 i.e degree(p) = e so Pr[A | B] ≤ e/|S|

Pr[A] ≤ d− e
|S|

+
e

|S|
= d/|S|

Apart from the randomized algorithm for bipartite-matching discussed above, the Schwartz-Zippel Lemma
has several other applications. Most of the applications involve the Polynomial Identity Testing problem
mentioned above. Let us define the problem more formally:

Definition 7.7 (Polynomial Identity Testing) Given an arithmetic circuit of size s computing the poly-
nomial C(y1, ..., ym), output YES if the polynomial C is identically zero, i.e when all the monomials computed
by the circuit cancel out to give the zero polynomial.

As mentioned earlier, solving PIT in deterministic poly(s) time is an open problem. The trivial algorithm
has exponential running time, which independently checks whether each coefficient of C is zero or not.

7-8 Lecture 7: -8:GCD and Bipartite Matching

Polynomial Identity Testing and the randomized algorithm for it (based on Schwartz-Zippel Lemma), form
a handy tool in a lot of other problems in computer science and mathematics. Especially, if we have to prove
a specific property for a given input, we can sometimes represent the task as a polynomial in some set of
variables, and claim that the property is true iff the polynomial is identically zero. For example, consider
the Centroid Property in Euclidean Geometry. For any triangle ABC with vertices A = (a1, a2), B =
(b1, b2), C = (c1, c2), if we draw the medians i.e line joining one vertex to the mid-point of the opposite side,
we claim that the three medians are always concurrent. We first write the equations of the three medians in
the variables (a1, a2, b1, b2, c1, c2), then express the concurrency condition of these medians as a polynomial
p(a1, a2, b1, b2, c1, c2) being identically zero. We generate random triangles by selecting random values for
the 6 variables, and solve the PIT problem for polynomial p using randomization, and output the correct
answer with high probability. Similar techniques can be thought of to solve other related problems as well.

7.3 References

[1] Amir Shpilka and Amir Yehudayaoff, Arithmetic Circuits: A survey of recent results and
open questions, 2010.

[2] Jack Edmonds, Paths, trees, and flowers. ,Canad. J. Math, 1965.

[2] W.T Tutte, The factorization of Linear Graphs. ,J. London Mathematical Society, 1947.

