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Lec. 9: Lower Bounds

Lecturer: Neeraj Kayal Scribe: Vineet Nair

In this lecture we will look at some of the lower bound problems we will address to in this course. In
a lower bound problem we have some model of computation { (for example Turing macines, boolean
circuits, arithmetic circuits etc) computing a family of functions {f1(x1), f2(x1, x2), ..., fn(x1, x2, ..., xn)},
we want an explicit family of functions τ such that computing τ via { requires large size. In this
course we will mostly address lower bounds for arithmetic circuits. Below we define arithmetic
circuits.

Definition 9.0.1 (Arithmetic Circuit). An arithmetic circuit C over the field F and the set of
variables X is defined as a directed acyclic graph. The leaves of the graph (with indegree equal to
zero) are the input nodes and are labelled by input variables or field elements. The other gates are
labelled by × or + and are refered to as product gates or sum gates respectively.

Every gate of indegree zero is called an input gate (even when the gate is labelled by a field
element). Every gate of out-degree zero is called an output gate. The edges in an arithemtic circuit
are labelled by field elements. If an edge (u, v) is labelled by α ∈ F then the input to v is α times
the output of u. Similar to monotone boolean circuits we have monotone arithmetic circuits.

Definition 9.0.2 (Monotone Arithmetic Circuit). An arithmetic circuit C over reals in which all
edges and leaves are labelled by non-negative real numbers.

Basic facts about Arithmetic Circuits: From figure 1 we see that if we have two addition
gates (or two multiplication gates) such that one is a child of other, we can group them together
to form a single gate.

Similarly figure 2 shows, we can push all the constants on the edges, in the circuit, to edges
connected to the leaves. Thus we can assume without loss of generality that all constants on edges
except those connected to leaves are 1.

We can do a similar thing for boolean circuits. We can push all the negation gates in the
circuit, down to the leaves using De Moivre’s theorem as shown in figure 3.

Next we show that pushing all the negation gates in the circuit, down to the leaves increases
the size at most by a factor of two. We show this using straight line programs(SLPs). We know
there is a bijection between boolean straight line programs and boolean circuits such that the size of
straight line program is equal to number of nodes in circuit. Say we have a circuit C, we can reduce
it to a straight line program by traversing the circuit one level at a time starting from leaves and for
each node covered in the circuit we write an equivalent line in SLP. For example the corresponding
straight line program for the circuit shown on the left (before the reduction) in figure 3 is:
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Figure 1: Reduction from two gates to one

Figure 2:
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Figure 3:

S1 = x1

S2 = x2

S3 = x3

S4 = x4

S5 = S1 ∧ S2

S6 = S3 ∨ S4

S7 = ¬S5

S8 = S7 ∧ S6

Once we reduce the given circuit to a straight line program, we compute the negation of each line
in the straight line program. For example for the above straight line program we have:

S1 = x1 T1 = ¬S1

S2 = x2 T2 = ¬S2

S3 = x3 T3 = ¬S3

S4 = x4 T4 = ¬S4

S5 = S1 ∧ S2 T5 = ¬S5

S6 = S3 ∨ S4 T6 = ¬S6

S7 = ¬S5 T7 = ¬S7

S8 = S7 ∧ S6 T8 = ¬S8

It is easy to see we can construct a circuit such that all the negation gates are at the leaves from
such a straight line program. Since we have just doubled the size of the straight line program by
computing the negation of each line in the original straight line program, the size of the circuit we
get is at most twice the size of original circuit.
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Figure 4: First model of depth two circuit

9.1 Lower bounds on circuits

Jerrum and Snir gave exponential lower bounds for montone arithmetic circuits. They consider the
permanent of n× n matrix. Consider the symbolic n× n permanent.

Perm(A) =

∣∣∣∣∣∣∣∣∣∣
x11 x12 ...x1n

x21 x22 ...x2n

· · ... ·
· · ... ·
xn1 xn2 ...xnn

∣∣∣∣∣∣∣∣∣∣
=

∑
σ:[n]→[n]

n∏
i=1

xiσ(i)

Since there are n! monomials in permanent we know there exists a trivial monotone circuit of size
less than n!. Jerrum and Snir showed that this is almost optimal.

Theorem 9.1 ([JS82]). Every monotone arithmetic circuit computing the permanent has size equal
to 2θ(n)

We have an exponential lower bound for boolean montone circuits too by Razborov which was
later improved upon by Alon and Boppana. They showed the lower bound for clique. We define
the clique problem below and then give their result.

Clique: Given a graph G=(V,E), where |V| = n, and an integer k, is there a subset of size k
such that ∀(i, j) ⊆ S, the edge (i, j) ∈ E.

Theorem 9.2 ([Raz85],[AB87]). Every monotone boolean circuit for clique has size equal to 2Ω(n)

Before we state more results, we define two different ‘depth two arithmetic circuit’. The first
model has sum gate as root and product gates at level two as shown in figure 4, whereas the second
model has product gate as root and sum gates at level two as shown in figure 5. We understand
both models of depth two circuits completely. The size of the first model is equal to the number of
monomials in the circuit. Hence any depth two circuit computing the permanent or the determinant
requires at least n! size. Next we show that the determinant and permanent are irreducible. This
would imply the second model of depth two circuit cannot compute the permanent or determinant
polynomials.
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Figure 5: Second model of depth two circuit

Lemma 9.1.1. Determinant and permanent polynomials are irreducible.

Proof. We would prove the claim for determinant, the proof for permanent is similar. Consider the
symbolic n× n determinant.

det(A) =

∣∣∣∣∣∣∣∣∣∣
x11 x12 ...x1n

x21 x22 ...x2n

· · ... ·
· · ... ·
xn1 xn2 ...xnn

∣∣∣∣∣∣∣∣∣∣
=

∑
σ:[n]→[n]

sgn(σ)

n∏
i=1

xiσ(i)

Let X = {x11, x12, ..., xnn}. Say for contradiction the det(A) = P1P2 where P1 and P2 ∈ F[X]. Let
V ar(Pi) denote the set of variables appearing in Pi. We claim that V ar(P1) ∩ V ar(P2) = ∅. Say
for contradiction V ar(P1) ∩ V ar(P2) 6= ∅. This imples there exists a variable say xij that belongs
to both V ar(P1) and V ar(P2). Thus there would exist a monomial in P1P2 such that the degree
of variable xij in that monomial is greater than one. Since det(A) is a multilinear polynomial, we
get a contradiction.

Consider the variables x11 to x1n that appear in the first row of A. Since every monomial in
det(A) has n variables each from a unique row and column and V ar(P1) ∩ V ar(P2) = ∅, these
variables belong to either V ar(P1) or V ar(P2). W.l.o.g assume they belong to V ar(P1). Similarly
we can conclude the variables in the first column of A, {x11, x21, ..., xnn} belong to V ar(P1). Hence
considering each column at a time we conclude V ar(P1) = X, which implies V ar(P2) = ∅. Thus
P2 is just a field constant, a contradiction.

Our knowledge of lower bounds at present is very limited. As far as we know:

1. Permanent of an n× n symbolic matrix could be computed by circuits of size 100n2 log n.

2. Clique could be computed by circuits of size 6n2.
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3. Permanent could be computed by depth three circuits of size (number of nodes) n4.

4. Clique could be computed by depth two circuits of size n4.

We state some of the well known lower bounds below. Grigoriev and Karpinski proved the following
lower bound.

Theorem 9.3 ([GK98]). Any depth three arithmetic circuit computing the determinant of an n×n
symbolic matrix over a fixed finite field must have 2Ω(n) size.

It is not known whether the above theorem holds over Q. Also it is still open to show an
exponential lower bound for depth four circuits over a fixed finite field. The next theorem was also
stated in lecture note 4. It shows a lower bound for the ‘parity’ function.

Theorem 9.4 ([AKS83],[FSS84]). Any 4 depth circuit for computing the parity of n bits using

AND, OR and NOT gates (of unbounded fan-in) must have size 2O(n
1
4 ).

This was later made optimal by Håstad. Using his switching lemma [H̊as86], Håstad showed
that any constant depth circuit computing the parity function requires exponential size. The next
theorem in some sense shows why we are still not able to make progress on lower bounds in the
boolean world.

Theorem 9.5 ([RR97]). If ‘pseudorandom functions’ exist then a large set of techniques we know
(natural proofs) cannot prove superpolynomial lower bounds.

It is conjectured by most cryptographers and complexity theorists that pseudorandom functions
do exist, hence the above theorem implies most techniques used to prove lower bounds in the boolean
world may not be strong enough to prove superpolynomial lower bounds. Theorem 9.5 does not
apply to arithmetic circuits.
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