Lower Bounds for Non-Commutative Computation
Extended Abstract

Noam Nisan *

Abstract

We consider algebraic computations which are
not allowed to rely on the commutativity of mul-
tiplication. We obtain various lower bounds for
algebraic formula size in this model: (1) Com-
puting the determinant is as hard as computing
the permanent and tight exponential upper and
lower bounds are given. (2) Computation cannot
be parallelized, as opposed to in the commuta-
tive case — this solves in the negative an open
problem of Miller et al [8]. (3) The question of
the power of negation in this model is shown to
be closely related to a well known open problem
relating communication complexity and rank.

We then take modest steps towards extend-
ing our results to general, commutative alge-
braic computation, and prove exponential lower
bounds for monotone algebraic circuit size, as
well as for the size of certain types of constant
depth algebraic circuits.

1 Introduction

1.1 Overview

Algebraic complezity theory investigates the com-
plexity of computing algebraic functions using al-
gebraic operations, usually addition, subtraction,
multiplication, and division. The algebraic com-
putation is usually described by a straight line

*Department of Computer Science, Hebrew University,
Jerusalem. Supported by BSF 89-00126. Part of this work
was done while visiting MIT, supported by NSF 8912586-
CCR.

program or, equivalently as we will, by an alge-
braic circuit. Much research has been done de-
signing efficient algebraic computations for vari-
ous functions and that research has achieved re-
markable success and has produced many clever
algorithms. On the other hand, the equally large
effort put into trying to prove lower bounds to
algebraic complexity has achieved very little. To
date, the best lower bound known for the size of
algebraic circuits computing any (explicit, poly-
nomial degree) function is Q(nlogn). The only
lower bound known for algebraic circuit depth is
the trivial Q(logn). (See, e.g. [3] for a survey)

This situation is very similar to the situation in
boolean complexity theory where essentially no
nontrivial lower bounds are known. In boolean
complexity theory the line of attack taken by the
community is to prove lower bounds for restricted
circuits. Specifically, exponential lower bounds
are known for constant depth circuits and for
monotone circuits (see [2] for a survey). Sim-
ilarly, restricted algebraic circuits may be con-
sidered. Strassen [11] shows that restricting the
circuits not to use division gates does not change
(by more than a polynomial factor) the complex-
ity of computing any multivariate polynomial.
Monotone algebraic circuits (i.e. circuits using
only addition and multiplication and only pos-
itive constants) have been investigated about a
decade ago, and exponential lower bounds are
known for several functions [12, 13, 14, 6, 9]. For
constant depth algebraic circuits no lower bounds
are known.

In this paper we consider another restric-
tion, one of an algebraic flavor: we require
the circuits not to use the fact that multipli-
cation is commutative. Formally, we work in

Page 1

the non-commutative ring R{x1 ...z, } where the
indeterminates x; do not commute with each
other instead of, as usual, in the commutative
ring R[zy...zp]. We call such circuits non-
commutative circuits. This restriction has al-
ready been studied. For the case of bilinear
forms, Winograd [15] shows that restricting the
circuits not to rely on commutativity at most
doubles the complexity. Indeed, all of the work on
matrix multiplication (which is a bilinear form) is
implicitly done using only non-commutative cir-
cuits. Hyafil [4] considers the computation of the
determinant, and proves that non-commutative
circuits that compute the determinant require
exponential size. Unfortunately, Hyafil’s proof
is incorrect!. Although we conjecture that the
lower bound is still correct, we can only prove
a weaker statement, namely that the determi-
nant requires exponential formula size with non-
commutative circuits.

In this paper we study several complexity ques-
tions regarding non-commutative circuits. Most
of our work we do using a complexity measure
that can be viewed as the algebraic analogue of
branching program size. We first show that some
standard simulations in the commutative case
extend to the non-commutative case, and thus
lower bounds for this complexity measure also
give lower bounds for formula size. Conversely,
we show, that the gap in the other direction is
also not too big. We then give a simple charac-
terization for the complexity of a function in this
measure in terms of the combinatorial structure
of the monomials of the function. From this we
obtain several results.

1.2 Results regarding
non-commutative computation

Permanent and Determanent

We prove that the permanent and the determi-
nant functions have exactly the same complexity
in this measure. We then translate our bounds
to the usual measures of circuit size and depth

1 The error is in the proof of theorem 2 in the analysis
of case 2(a): because of the non-commutativity, the case
of deg(f') > d/3 is different from the case deg(f) > d/3,
and is not dealt with. The statement of theorem 2 itself is
false, and the function exhibited here in section 4.2 serves
as a counter example.

and formula size. The upper bound we obtain is
mostly of interest for the permanent function.

Theorem: The permanent function can be com-
puted by non-commutative algebraic circuits of
size O(n2"). The same is true for the determi-
nant function.

This matches the best algorithm known for the
computation of the permanent even in the com-
mutative case. The lower bound we obtain is of
interest mostly for the determinant function.

Theorem: The determinant function requires
29%(") non-commutative formula size. The same
bound holds for the permanent function.

This should be contrasted with the fact that
in the commutative case the determinant can be
computed by formulas of size n1°67) One’s
first impression of this contrast is to assume that
the efficient commutative formula for determi-
nant computes each of the monomials []; T o(i)
of the determinant in some different multiplica-
tive order. The situation is actually more compli-
cated. The lower bound mentioned applies to any
order of multiplication in each monomial. The
point is that the efficient commutative formulas
for determinant must rely on cancellations be-
tween un-needed monomials which differ in the
order of multiplication. They must rely on iden-
tities such as zy — yxr = 0, as for example in a
computation of % — y? by (z + y) * (z — y).

Parallelization of code

Hyafil [5] proves that any polynomial size alge-
braic circuit that computes a multivariate poly-
nomial of polynomial degree can be transformed
into an equivalent algebraic circuit of depth
O(log® n). Valiant et al [10] prove that this trans-
formation can be done while keeping the size
polynomial as well. Miller et al [8] improve the
construction and extend it to computation over
any commutative semi-ring. They ask whether
the same can be done in non-commutative semi-
rings or rings. We answer this question in the
negative.

Theorem: There exists (an explicitly given)
function of degree n which can be computed by a
linear size non-commutative circuit but any non-
commutative circuit for it requires depth Q(n).

Monotone vs. non-monotone computation

Page 2

Valiant [9] exhibits a monotone function (i.e.
that all of its monomials have positive coef-
ficients) that can be computed by polynomial
size algebraic circuits but any monotone alge-
braic circuit computing it requires exponential
size. We ask whether the same difference between
monotone and non-monotone also exists for non-
commutative computation. surprisingly, it turns
out that this question is very closely related to the
following question in communication complexity.

Consider a boolean function b(x,y). Denote
by C(b) the communication complexity of b and
by rank(b) the rank of the real matrix associated
with it (i.e. having a row for each possible value
of # and a column for each value of y). Tt is
known that for any function b, C'(b) > log, r(b).
Lovasz and Saks (see [7]) ask whether logr and

C' are polynomially related, i.e. whether C'(b) =
(log (b))

We show that this problem is intimately related
to questions regarding the power of negation in
non-commutative computation. In fact, we give
a necessary and sufficient condition for the an-
swer to be “Yes” in terms of certain measures of
complexity for monotone vs. non-monotone non-
commutative computation.

1.3 Commutative computation

Clearly the main motivation for studying non-
commutative computation is to gain insight into
the nature of general, commutative computation.
We have in fact been able to obtain some weak
results in this direction, using our lower bounds
for non-commutative computation in order to ob-
tain lower bounds for commutative computation
which is restricted in other ways:

Monotone circuits

As mentioned above, the lower bounds we get
for the complexity of the permanent hold for any
order of multiplication in each monomial. The
only way commutative circuits may compute the
function more efficiently is by using cancellations
of monomials of different order of multiplication.
In any monotone circuit there can not be any
cancellations at all. It thus follows that monotone
circuits can not compute the permanent function
in small size, even allowing commutativity. This

allows us to duplicate some of the known lower
bounds for monotone circuits and obtain a new
simple proof for:

Theorem: [13, 14] The monotone formula size
of the permanent is 2°4"). The monotone circuit
size of the permanent is 297,

Depth three circuits

Although for boolean circuits lower bounds
for constant depth circuits are known, no such
bounds are known for algebraic circuits. The sim-
plest types of circuit for which it is not trivial to
prove lower bounds is the following type of cir-
cuit: 1t has an addition gate of unbounded fanin
at the top; the middle layer has multiplication
gates of unbounded fanin; and each of these gates
is fed some linear function of the inputs (i.e. an-
other layer of addition gates). So far there is no
known lower bound for the size of such depth
three circuits. Ben-Or (as well as, undoubtly,
others) has shown that they are rather powerful
and can in particular compute in polynomial size
any symmetric function. This is in direct con-
trast to the boolean case where the lower bounds
known apply also to simple symmetric functions
such as majority.

Ben-Or’s construction uses two “un-tidy” fea-
tures: (1) The circuit is not homogeneous (2)
Computing a function of degree d << n re-
quires intermediate results of degrees as high as
n. In the case of bounded fanin circuits it is al-
ways possible to “correct” these problems: it only
takes a polynomial penalty in size to convert non-
homogeneous circuits to homogeneous ones, and
to ones that never use intermediate results of de-
gree more than d ([9, 11]). We prove exponential
lower bounds for the size of depth three circuits
that are further constrained in one of these ways,
showing that (1) Ben-Or’s construction cannot
be improved in any of these senses and (2) Con-
verting non-homogeneous depth three circuits to
homogeneous ones or to ones that do not use in-
termediate results of high degree requires an ex-
ponential blowup in size.

Theorem: Any homogeneous depth three cir-
cuit that computes the d’th elementary sym-
metric function requires size (n/d?’)ﬂ(d). Any
depth three circuit that computes the d’th el-
ementary symmetric function while using inter-
mediate results of degree at most D requires size

Page 3

(n/(D?d)H.

2 Circuits, formulas, and
algebraic branching pro-
grams

Formally we will be working in the ring
R{xy ...z}, i.e. the ring extension of the reals
by the non-commuting indeterminates z; ...xz,.
In this ring addition is commutative but multi-
plication is not. Algebraic circuits and formulas
are defined as usual, but the inputs to each mul-
tiplication gate are labeled by “left” and “right”,
specifying the order of multiplication. The oper-
ations allowed are addition, subtraction and mul-
tiplication, and each has unit cost. Any real con-
stants may be used. It will be easier for us to
use a related computation model, which is the
analogue of branching programs.

Definition 1 An Algebraic branching program
(ABP) is a directed acyclic graph with one source
and one sink. The vertices of the graph are parti-
tioned into “levels” numbered from 0 to d, where
edges may only go from level ¢ to level 1 + 1. d
15 called the degree of the ABP. The source is the
only vertex at level 0 and the sink is the only ver-
tex at level d. Fach edge is labeled with a homoge-
neous linear function of &1 ...xy, (i.e. a function
of the form 3, ¢;x;). The size of an ABP is the

number of vertices.

An ABP computes a function in the obvious
way: the sum over all paths form the source to
the sink, of the product of the linear functions
by which the edges of the path are labeled. It is
clear that an ABP of degree d computes a homo-
geneous (multivariate) polynomial of degree d.

Definition 2 The formula complexity of a func-
tion f is denoted by F(f), the circuit complexity
by C(f), the circuit depth complexity by D(f),
the ABP complexity by B(f).

The following lemma relates these complexity
measures. The proofs are similar to the proofs of
similar facts in the commutative case, and show

that the known simulations do not rely on com-
mutativity. They are stated only for homoge-
neous functions as ABPs can only compute ho-
mogeneous functions, but can be easily extended
to any function if, e.g. we allow each homoge-
neous component to be computed by a separate

ABP.

Lemma 1 1. For any homogeneous function f

of degree d: B(f) < d(F(f)+1).

2. For any homogeneous function f: C(f) <
O(nB(f)?).

3. For any homogeneous function f of degree d:

D(f) < O(log B(f)log d).
4. For any function f: F(f) < 2P,

Proof:

Proof of 1: (Sketch) The simulation is done in
two stages. In the first stage we transform the
formula to a non-homogeneous ABP, i.e. an ABP
where the nodes are not required to be parti-
tioned into levels, and where each edge may be
labeled by a constant or variable. This is done
by recursively converting the formula f; 4+ f> to a
parallel wiring of non-homogeneous ABPs for f;
and for f,, and the formula f; + f; to a sequen-
tial wiring. This stage builds a non-homogeneous
ABP of size at most F(f) + 1.

In the second stage we convert this non-
homogeneous ABP to a simple ABP. This is done
by partitioning the function computed at each
vertex to its homogeneous components. This
stage may increase the size by at most a factor of

d.
Proof of 2: (Sketch) Each vertex v of the ABP

is converted to an addition gate of fanin at most
B(f). Each edge (u,v) feeding into v is converted
to a multiplication gate feeding to that addition
gate. The multiplication gate multiplies the func-
tion computed at u by the linear form that labels
the edge (u,v). Computing the linear form takes
O(n) gates, and each addition gate of unbounded
fanin converts to B(f) addition gates of fanin 2.

Proof of 3: (Sketch) To simulate the ABP we
need to multiply d matrices each of size at most
B(f) by B(f). Multiplying two matrices takes

Page 4

depth O(log B(f)), and we multiply all d of them

in a binary tree fashion.

Proof of 4: Trivial.

3 A characterization of
ABP complexity

Let f be a homogeneous function of degree d
on n variables. For each 0 < k < d we define
a real matrix My (f) of dimensions n* by nd=*
as follows: there is a row for each sequence of
k variables (called k-term), and a row for each
d — k-term (sequence of d — k variables, out of
the possible n, allowing repetitions). The en-
try at < x;,...x5, >, < x5, ..., , > is de-
fined to be the real coefficient of the monomial
Ty Ty Xy, .. T, 10 f

Theorem 1 For any homogeneous function f of
degree d,

B(f) = rank(M(f))

k=0

Proof: (sketch) Fix an ABP that computes f.
For any 0 < k < d let vy ...vy be the vertices of
the ABP in the k’th level. We define two matrices
Ly and Ry as follows: L; will have a row for
each k-term and a column for each 0 < ¢ < ¢
and Ry will have a row for each 0 <7 <t and a
column for each d — k-term. For a k-term 7, and
i, Lg[r,1] is defined to be the coefficient of 7 in
function computed by the restricted ABP where
v; is the sink. For a d — k-term o, and 4, R[i, o]
is defined to be the coefficient of ¢ in the function
computed by the restricted ABP where v; is the
source. Using this notation, it 1s easy to verify

that Mk(f) = LkRk

The lower bound follows since rank(My(f)) <
rank(Lg) < t, and thus for each k, the num-
ber of vertices on the k’th level must be at least

rank(My(f)).

In order to prove the upper bound we will show
that if for some level k& the number of vertices of
the ABP is more than rank(M(f)) then we can

build a smaller ABP that computes f. Again,
let ¢ be the number of vertices on level k. If
rank(Ly) < t then there exists a column 7 in
L; that is a linear combination of the others.
This implies that the function computed by the
restricted ABP where v; 1s the sink is a linear
combination of the functions computed by the
restricted ABPs with the other vertices in this
level as sinks. It 1s not difficult to see that at this
point vertex v; can be eliminated from the ABP,
and each edge connecting it to a vertex u in the
k + st level should be replaced by edges con-
necting u to the appropriate linear combination
of other vertices in the &’th level. Similarly, if
rank(Ry) < t then we can reduce the size of the
ABP. Finally, it 1s a matter of simple linear alge-
bra to show that if L; and R; have a full rank of
t then also My(f) = Ly Ry, has rank ¢. a

4 Corollaries

4.1 Permanent and determinant

In the non-commutative case we must define the
order of multiplication in each monomial of the
permanent and determinant.

Definition 3

perm(zi1...2n,) = Z H Ti o(i)

cES, 1t

det(l‘lyl .. .l‘nyn) = Z sign(a) H Li,o(i)

gES,

Two functions f,g are weakly equivalent if for
each monomial of f with non-zero coefficient
there exists a monomial of g composed of the
same wvariables (but perhaps in different mul-
tiplicative order) with non-zero coefficient, and
vice-versa.

Lemma 2 For 0 <k <n,

rank(My(perm)) = rank(My(det)) = (Z)

Proof: (sketch) After eliminating duplicate rows
and columns in My (perm) we are left with a ma-
trix having a row for each subset of size k of

Page 5

{1...n} and a column for each subset of size
n — k. The value of an entry in the matrix is 1
if the sets describing this entry are disjoint, and
0 otherwise. Thus the matrix is diagonal and
has full rank. For the determinant, the non-zero
entries can have values +1 and —1, inspection
reveals that we get each row and each column
twice, one of them negated. ad

Lemma 3 For any function f which is weakly
equivalent to the permanent (or equivalently to
the determinant), and for every 0 < k < n,

rank(e(1) 2 ()

Proof: (Sketch) Each row of My (f) defines two
sets 51,5 C {l...n} of size k, S; being the
set of rows (of the input matrix) that is used in
the k-term defining the row, and S the set of
columns. Similarly each column defines two sets
T1 and T5 of size n — k. It 1s clear that an entry
of the matrix can be non-zero only if S; is the
complement of 7} and S5 the complement of T5.
Thus if we look at the matrix as composed of
blocks (defined according to S, S2, 71, T3) we get
a matrix that is diagonal “in blocks”. The rank
of the matrix is thus at least the number of non-
all-zero blocks. Let us compute the maximum
number of monomials of f that can be obtained
from one block. All monomials deriving from a
block given by S7,.52,71,7% must be composed
of variables defining a permutation mapping Sy
to Sp, and 77 to T5. Any such permutation is
possible, giving an upper bound of kl(n — k).
We conclude the proof by observing that the total
number of monomial that f must have is at least
nl. |

We can now prove the following theorems:

Theorem 2 For any function f which s weakly

equivalent to permanent or determinant, F(f) >
20n),

Proof: Using Theorem 1 sum the lower bounds
given by lemma 3 for all values of 0 < k < n.
Finally, apply lemma 1.1. a

Theorem 3
C(perm) < O(n2")
C(det) < O(n2")

Proof: (sketch) Direct usage of lemma 1.2 with
theorem 1 and lemma 2 gives a slightly weaker
bound of O(n4™). A more delicate study of the
ABP suggested by lemma 2, shows that (1) in
this case the fanin of each vertex on level k is
exactly k, and (2) each edge is labeled by single
variable. This suffices for fine-tuning the proof of
lemma 1.2 to get the improved bound. ad

4.2 Depth vs. size

Let w € {0,1}*. Denote by w' the reverse of w.

Denote by 2% the monomial Hl»ill To[i]-

Theorem 4 Let f4(xo, 1) = Zwe{o 174 2@’
Then

1. C(fa) = 0(d)
2. B(fq) = 2@
3. F(fq) =20
4. D(fa) = 6(d)

Proof: (Sketch) The upper bound in all cases is
obtained from the following linear size circuit for

fa:

fa=wmo* fa_1*zo+ 21 % fau1 * 21

The lower bound in all cases is obtained by
considering Mg(fq). This is easily seen to be a
diagonal matrix of size 2¢. Using theorem 1 to-
gether with lemma 1 concludes the proof. ad

4.3 Monotone vs. non-monotone

Definition 4 A circuit is called monotone if it
does not use subtractions, and all real constants
used are positive. An ABP is called monotone
of all constants used as coefficients in the linear
forms are positive. The monotone complexities of

f are denoted by C+(f),D+(f),F+(f)aB+(f)~

Lemma 4 All the results stated in lemma 1 also

apply where C(f), D(f), F(f), B(f) are all re-
placed with CY(f), DY (f), FT(f), BT ([) resp.

Page 6

Proof: (sketch) All simulations used in the proof
to lemma 1 preserve monotonicity. a

We will need the following definitions to get an
analogue of theorem 1:

Definition 5 For a function [of degree d, and
0 <k < d, the k-ABP complezity of f, Bi(f)
1s the manimum, over all ABPs that compute f,
of the size of the k’th level of the ABP. The k-
monotone-ABP complexity of f, Bif(f) is the
minimum, over all monotone ABPs that compute

f, of the size of the k’th level of the ABP.

Definition 6 (Yannakakis [16]) For a real ma-
triv M, the positive rank of M, rank™ (M), is
the minimum integert such that there exist non-
negative matrices A of dimension n byt and B
of dimension t by m such that M = AB.

Lemma 5 For every homogeneous function f

of degree d and all 0 < k < d, B;'(f) =
rank® (M (f)). Also, BY(f) > S4_o BF ().

Proof:(Sketch) The only difference from the
proof of theorem 1 is the fact that we cannot
show that 1t 1s possible to obtain a single mono-
tone ABP that achieves width B} (f) at all of its
levels. What is obvious though is that for any
k 1t 1s possible to obtain a monotone ABP that
achieves width Bjf (f) at level k: Just compute
the functions that correspond to the rows on A
and to the columns of B in any manner (here AB
is the decomposition of My (f) giving B (f)). D

For a boolean function b(z,y) denote by C(b)
the communication complexity of & and by
rank(b) the rank of the real matrix associated
with it. Lovasz and Saks (see [7]) asked whether
C(b) = (log rank(b))°™) for every boolean func-
tion b. Tt is known ([16], see also [7]) that the
answer to this question is positive if and only
if log(rank™ (M)) = log(rank(M))°™) for every

real matrix M with 0-1 entries.

Define an algebraic function to be simple if all
of its coefficients are zero or one.

Theorem 5 The following are equivalent:

1. For every boolean function b, C(b) =
(log rank(b))°h),

2. For every simple algebraic function f and ev-

ery k, log Bif (f) = (log Be(f))°™)

Proof: (Sketch) As we mentioned (1) is known to
be equivalent to the fact that for every 0-1 matrix
M: logrankt(M) = (logrank(M))°™M). But in
our notation every real matrix M corresponds to
a function f such that rank™(M) = B} (f) and
rank(M) = By(f). Moreover M is 0-1 if and
only if f is simple. a

5 Commutative
computation

In this section we use the lower bounds we have
proved for non-commutative computation in or-
der to prove lower bounds for commutative com-
putation. As to avoid confusion between the two
models we adopt the convention that B(f), D(f),
C(f), B*(f), etc. all refer to non-commutative
complexity measures (as they have up to this
point), while “circuit size”, “circuit depth”, etc.
all refer to general commutative computation.

5.1 Monotone circuits

Recall the definition of weakly equivalent from
definition 3, and notice that in this definition f
or ¢ may be also be commutative functions.

Lemma 6 Let f be a function. If there exists a
monotone formula of size s for f in the commu-
tative case, then there exists a function f' which
is weakly equivalent to f, s.t. FY(f') <s.

Proof: (sketch) The same formula for f, inter-
preted as a non-commutative formula, will com-
pute a function which is weakly equivalent to f.
O

Theorem 6 ([13, 14]): The permanent function
requires 24" monotone formula size, and 2%V™)
monotone circuit size.

Proof: The bound for formula size follows from
theorem 2 and lemma 6. The bound for circuit
size then follows from [8]. O

Page 7

5.2 Depth three circuits

Definition 7 Let f(z1...2,) = >, ¢ Hz’eSt x;
be a commutative function. The strong non-
commutative analogue of f, f* s defined to be
a non-commutative function which has a mono-

mial for any permutation of a monomial of f.
Le.

[S¢]

ey o) = ZZQ Hxa(i)
t i=1

g

Where o ranges over all permutations on the el-
ements of Sy.

We will consider here commutative circuits of
the following form: A sum of products of linear
functions. These will be called XIIY circuits. A
circuit 18 homogeneous if all of the linear func-
tions used in it are homogeneous (i.e. have no
constant term), and all products are of the same
number of linear functions. The circuit 1s of de-
gree D if all products are of at most D linear
functions. It is clear that a homogeneous XIIX
circuit of degree D computes a function of degree
D. Note that a XIIX circuit can be converted to
a XLIIY formula with only a polynomial penalty
in size. It is known that non-homogeneous XII%
circuits of degree n and polynomial size can com-
pute any symmetric function of polynomial de-
gree.

Lemma 7 If there exists a XIIY formula of size
s and degree D for a homogeneous function f of

degree d, then F(f*) < O(sDV/(D — d)!).

Proof: We build a non-commutative formula for
f* in two stages. In the first stage we convert
the formula for f to a homogeneous one. This
is done by partitioning each node in the original
formula to its homogeneous components. For the
addition gates in the lowest level we just sepa-
rate and do not add the constants to the linear
term. For each multiplication gate we need only
recover the homogeneous component of degree d.
This is done by summing over all subsets of size
d of the inputs to the multiplication gate of the
product of the d chosen linear terms by the other
D — d constant terms. This blows up the size
by a factor of (Z). The top addition gate is then

simply replaced by merging all the addition gates
simulating the different multiplication gates.

Once we have a homogeneous formula for f we
get one for f* by having a multiplication gate
for each permutation of inputs to a multiplica-
tion gate in the formula for f and adding up all
these multiplication gates together. Note that for
each monomial of f we now get all its permuta-
tions, thus obtaining a non-commutative formula
for f*. Also note that this only works since we
have a single level of multiplication gates. This
second stage increases the size by another factor

of d!.]

Let oq(x1...2,) be the d’th elementary sym-
metric function. l.e.

calzy ... xp) = Z Hl‘z

|S|:di€5

Lemma 8

s 2 ()

Proof: (sketch) After removing duplicate rows
and columns from Mg/5(07) one is left with the
disjointness matrix of d/2 elements out of n.
Kantor’s lemma (see [1], chapter 6) states that
this matrix has full rank. i

We thus get:

Theorem 7 If a XIIX circuit of size s and de-
gree D computes oq then s > (n/(D*d)¥ D). If a
homogeneous XIIY circuit of size s computes o4
then s > (n/d?)%d),

Proof: (Sketch) Just put lemmas 7 and 8 to-
gether while noting that B(f*) < F/(f*) and that
circuit size and formula size agree to within a
polynomial for XIIY circuits. a

6 Open problems

The major open problem is to use these tech-
niques in order to prove lower bounds for general
commutative computation in stronger ways than
we have succeeded doing in section 5. There are
also some questions about the non-commutative
model:

Page 8

7

Is D(f) = O(log I'())?

Prove a lower bound for non-commutative
circuit size. (perhaps, as [4] attempted, for
the determinant function.)

Separate F'(f) from B(f), or even D(f)
from log B(f). Equivalently prove a super-
logarithmic lower bound for the depth re-
quired to multiply, non-commutatively, n
matrices each of dimensions n by n.

Separate, or prove the equality up to a
polynomial, of monotone and non-monotone
computation for some non-commutative
complexity measure.

Acknowledgements

I have had very helpful discussions with M. Ben-
Or, M. Karpinski, M. Krachmer, I. Newman, M.
Safra, M. Sipser, and A. Wigderson, during vari-
ous stages of this work.

References

(1]

[2]

L. Babai and P. Frankl, Linear algebra meth-
ods in combinatorics, 1988.

R.B. Boppana and M. Sipser, The complez-
ity of finite functions, to appear in Hand-
book of computer science.

J. von zur Gathen, Algebraic complezity the-
ory, Ann. Rev. Comp. Sci. 3:317-47, 1988.

L. Hyafil, The power of commutativity, 18th
FOCS, 171-74, 1977.

L. Hyafil, On the parallel evaluation of mul-
tivariate polynomaials, 10th STOC, 193-195,
1978.

M. Jerrum and M. Snir, Some ezact com-

plexity results for straight-line computations
over semirings, Univ. of Edinburgh CRS-58-
80, 1980.

L. Lovasz, Communication complexity: a
survey, 1989.

(8]

G.L. Miller, V. Ramachandran, and E.
Kaltofen, Efficient parallel evaluation of
straight line code and arithmetic circuits,

Siam J. Comp. 17, 1988.

L. Valiant, Negation can be exponentially

powerful, 1979.

L. Valiant, S. Skyum, S. Berkowitz, and C.
Rackoff, Fast parallel computation of polyno-
mials using few processors, Siam J. Comp.

12:641-44, 1983.

V. Strassen, Vermeidung von divisionen, J.

Reine Angew Math., 264:184-202, 1973.

C.P. Schnorr, A lower bound on the num-
ber of additions in monotone computations,

TCS 2:305-315, 1976.

E. Shamir and M. Snir, Lower bounds on the
number of multiplications and the number of
additions in monotone computations, IBM

RC-6757, 1977.

E. Shamir and M. Snir, On the depth com-
plexity of formulas, Math. Systems theory,
13:301-322, 1980.

S. Winograd, On the number of multiplica-
tions necessary to compute certain functions,
Comm. on Pure and Appl. Math., 23:165-
179, 1970.

M. Yannakakis, FEzpressing combinatorial
optimization problems by linear programs,

1988.

Page 9

