
Lower Bounds for Non-Commutative ComputationExtended AbstractNoam Nisan �AbstractWe consider algebraic computations which arenot allowed to rely on the commutativity of mul-tiplication. We obtain various lower bounds foralgebraic formula size in this model: (1) Com-puting the determinant is as hard as computingthe permanent and tight exponential upper andlower bounds are given. (2) Computation cannotbe parallelized, as opposed to in the commuta-tive case { this solves in the negative an openproblem of Miller et al [8]. (3) The question ofthe power of negation in this model is shown tobe closely related to a well known open problemrelating communication complexity and rank.We then take modest steps towards extend-ing our results to general, commutative alge-braic computation, and prove exponential lowerbounds for monotone algebraic circuit size, aswell as for the size of certain types of constantdepth algebraic circuits.1 Introduction1.1 OverviewAlgebraic complexity theory investigates the com-plexity of computing algebraic functions using al-gebraic operations, usually addition, subtraction,multiplication, and division. The algebraic com-putation is usually described by a straight line�Department of Computer Science, Hebrew University,Jerusalem. Supportedby BSF 89-00126. Part of this workwas done while visiting MIT, supported by NSF 8912586-CCR.

program or, equivalently as we will, by an alge-braic circuit. Much research has been done de-signing e�cient algebraic computations for vari-ous functions and that research has achieved re-markable success and has produced many cleveralgorithms. On the other hand, the equally largee�ort put into trying to prove lower bounds toalgebraic complexity has achieved very little. Todate, the best lower bound known for the size ofalgebraic circuits computing any (explicit, poly-nomial degree) function is 
(n logn). The onlylower bound known for algebraic circuit depth isthe trivial 
(logn). (See, e.g. [3] for a survey)This situation is very similar to the situation inboolean complexity theory where essentially nonontrivial lower bounds are known. In booleancomplexity theory the line of attack taken by thecommunity is to prove lower bounds for restrictedcircuits. Speci�cally, exponential lower boundsare known for constant depth circuits and formonotone circuits (see [2] for a survey). Sim-ilarly, restricted algebraic circuits may be con-sidered. Strassen [11] shows that restricting thecircuits not to use division gates does not change(by more than a polynomial factor) the complex-ity of computing any multivariate polynomial.Monotone algebraic circuits (i.e. circuits usingonly addition and multiplication and only pos-itive constants) have been investigated about adecade ago, and exponential lower bounds areknown for several functions [12, 13, 14, 6, 9]. Forconstant depth algebraic circuits no lower boundsare known.In this paper we consider another restric-tion, one of an algebraic avor: we requirethe circuits not to use the fact that multipli-cation is commutative. Formally, we work inPage 1



the non-commutative ringRfx1 : : : xng where theindeterminates xi do not commute with eachother instead of, as usual, in the commutativering R[x1 : : : xn]. We call such circuits non-commutative circuits. This restriction has al-ready been studied. For the case of bilinearforms, Winograd [15] shows that restricting thecircuits not to rely on commutativity at mostdoubles the complexity. Indeed, all of the work onmatrix multiplication (which is a bilinear form) isimplicitly done using only non-commutative cir-cuits. Hya�l [4] considers the computation of thedeterminant, and proves that non-commutativecircuits that compute the determinant requireexponential size. Unfortunately, Hya�l's proofis incorrect1. Although we conjecture that thelower bound is still correct, we can only provea weaker statement, namely that the determi-nant requires exponential formula size with non-commutative circuits.In this paper we study several complexity ques-tions regarding non-commutative circuits. Mostof our work we do using a complexity measurethat can be viewed as the algebraic analogue ofbranching program size. We �rst show that somestandard simulations in the commutative caseextend to the non-commutative case, and thuslower bounds for this complexity measure alsogive lower bounds for formula size. Conversely,we show, that the gap in the other direction isalso not too big. We then give a simple charac-terization for the complexity of a function in thismeasure in terms of the combinatorial structureof the monomials of the function. From this weobtain several results.1.2 Results regardingnon-commutative computationPermanent and DetermanentWe prove that the permanent and the determi-nant functions have exactly the same complexityin this measure. We then translate our boundsto the usual measures of circuit size and depth1The error is in the proof of theorem 2 in the analysisof case 2(a): because of the non-commutativity, the caseof deg(f 0) � d=3 is di�erent from the case deg(f) � d=3,and is not dealt with. The statement of theorem 2 itself isfalse, and the function exhibited here in section 4.2 servesas a counter example.

and formula size. The upper bound we obtain ismostly of interest for the permanent function.Theorem: The permanent function can be com-puted by non-commutative algebraic circuits ofsize O(n2n). The same is true for the determi-nant function.This matches the best algorithm known for thecomputation of the permanent even in the com-mutative case. The lower bound we obtain is ofinterest mostly for the determinant function.Theorem: The determinant function requires2
(n) non-commutative formula size. The samebound holds for the permanent function.This should be contrasted with the fact thatin the commutative case the determinant can becomputed by formulas of size nO(logn). One's�rst impression of this contrast is to assume thatthe e�cient commutative formula for determi-nant computes each of the monomials Qi xi;�(i)of the determinant in some di�erent multiplica-tive order. The situation is actually more compli-cated. The lower bound mentioned applies to anyorder of multiplication in each monomial. Thepoint is that the e�cient commutative formulasfor determinant must rely on cancellations be-tween un-needed monomials which di�er in theorder of multiplication. They must rely on iden-tities such as xy � yx = 0, as for example in acomputation of x2 � y2 by (x+ y) � (x� y).Parallelization of codeHya�l [5] proves that any polynomial size alge-braic circuit that computes a multivariate poly-nomial of polynomial degree can be transformedinto an equivalent algebraic circuit of depthO(log2 n). Valiant et al [10] prove that this trans-formation can be done while keeping the sizepolynomial as well. Miller et al [8] improve theconstruction and extend it to computation overany commutative semi-ring. They ask whetherthe same can be done in non-commutative semi-rings or rings. We answer this question in thenegative.Theorem: There exists (an explicitly given)function of degree n which can be computed by alinear size non-commutative circuit but any non-commutative circuit for it requires depth 
(n).Monotone vs. non-monotone computationPage 2



Valiant [9] exhibits a monotone function (i.e.that all of its monomials have positive coef-�cients) that can be computed by polynomialsize algebraic circuits but any monotone alge-braic circuit computing it requires exponentialsize. We ask whether the same di�erence betweenmonotone and non-monotone also exists for non-commutative computation. surprisingly, it turnsout that this question is very closely related to thefollowing question in communication complexity.Consider a boolean function b(x; y). Denoteby C(b) the communication complexity of b andby rank(b) the rank of the real matrix associatedwith it (i.e. having a row for each possible valueof x and a column for each value of y). It isknown that for any function b, C(b) � log2 r(b).Lovasz and Saks (see [7]) ask whether log r andC are polynomially related, i.e. whether C(b) =(log r(b))O(1).We show that this problem is intimately relatedto questions regarding the power of negation innon-commutative computation. In fact, we givea necessary and su�cient condition for the an-swer to be \Yes" in terms of certain measures ofcomplexity for monotone vs. non-monotone non-commutative computation.1.3 Commutative computationClearly the main motivation for studying non-commutative computation is to gain insight intothe nature of general, commutative computation.We have in fact been able to obtain some weakresults in this direction, using our lower boundsfor non-commutative computation in order to ob-tain lower bounds for commutative computationwhich is restricted in other ways:Monotone circuitsAs mentioned above, the lower bounds we getfor the complexity of the permanent hold for anyorder of multiplication in each monomial. Theonly way commutative circuits may compute thefunction more e�ciently is by using cancellationsof monomials of di�erent order of multiplication.In any monotone circuit there can not be anycancellations at all. It thus follows that monotonecircuits can not compute the permanent functionin small size, even allowing commutativity. This

allows us to duplicate some of the known lowerbounds for monotone circuits and obtain a newsimple proof for:Theorem: [13, 14] The monotone formula sizeof the permanent is 2
(n). The monotone circuitsize of the permanent is 2
(pn).Depth three circuitsAlthough for boolean circuits lower boundsfor constant depth circuits are known, no suchbounds are known for algebraic circuits. The sim-plest types of circuit for which it is not trivial toprove lower bounds is the following type of cir-cuit: it has an addition gate of unbounded faninat the top; the middle layer has multiplicationgates of unbounded fanin; and each of these gatesis fed some linear function of the inputs (i.e. an-other layer of addition gates). So far there is noknown lower bound for the size of such depththree circuits. Ben-Or (as well as, undoubtly,others) has shown that they are rather powerfuland can in particular compute in polynomial sizeany symmetric function. This is in direct con-trast to the boolean case where the lower boundsknown apply also to simple symmetric functionssuch as majority.Ben-Or's construction uses two \un-tidy" fea-tures: (1) The circuit is not homogeneous (2)Computing a function of degree d << n re-quires intermediate results of degrees as high asn. In the case of bounded fanin circuits it is al-ways possible to \correct" these problems: it onlytakes a polynomial penalty in size to convert non-homogeneous circuits to homogeneous ones, andto ones that never use intermediate results of de-gree more than d ([9, 11]). We prove exponentiallower bounds for the size of depth three circuitsthat are further constrained in one of these ways,showing that (1) Ben-Or's construction cannotbe improved in any of these senses and (2) Con-verting non-homogeneous depth three circuits tohomogeneous ones or to ones that do not use in-termediate results of high degree requires an ex-ponential blowup in size.Theorem: Any homogeneous depth three cir-cuit that computes the d'th elementary sym-metric function requires size (n=d3)
(d). Anydepth three circuit that computes the d'th el-ementary symmetric function while using inter-mediate results of degree at most D requires sizePage 3



(n=(D2d))
(d).2 Circuits, formulas, andalgebraic branching pro-gramsFormally we will be working in the ringRfx1 : : :xng, i.e. the ring extension of the realsby the non-commuting indeterminates x1 : : :xn.In this ring addition is commutative but multi-plication is not. Algebraic circuits and formulasare de�ned as usual, but the inputs to each mul-tiplication gate are labeled by \left" and \right",specifying the order of multiplication. The oper-ations allowed are addition, subtraction and mul-tiplication, and each has unit cost. Any real con-stants may be used. It will be easier for us touse a related computation model, which is theanalogue of branching programs.De�nition 1 An Algebraic branching program(ABP) is a directed acyclic graph with one sourceand one sink. The vertices of the graph are parti-tioned into \levels" numbered from 0 to d, whereedges may only go from level i to level i + 1. dis called the degree of the ABP. The source is theonly vertex at level 0 and the sink is the only ver-tex at level d. Each edge is labeled with a homoge-neous linear function of x1 : : :xn (i.e. a functionof the form Pi cixi). The size of an ABP is thenumber of vertices.An ABP computes a function in the obviousway: the sum over all paths form the source tothe sink, of the product of the linear functionsby which the edges of the path are labeled. It isclear that an ABP of degree d computes a homo-geneous (multivariate) polynomial of degree d.De�nition 2 The formula complexity of a func-tion f is denoted by F (f), the circuit complexityby C(f), the circuit depth complexity by D(f),the ABP complexity by B(f).The following lemma relates these complexitymeasures. The proofs are similar to the proofs ofsimilar facts in the commutative case, and show

that the known simulations do not rely on com-mutativity. They are stated only for homoge-neous functions as ABPs can only compute ho-mogeneous functions, but can be easily extendedto any function if, e.g. we allow each homoge-neous component to be computed by a separateABP.Lemma 1 1. For any homogeneous function fof degree d: B(f) � d(F (f) + 1).2. For any homogeneous function f : C(f) �O(nB(f)2).3. For any homogeneous function f of degree d:D(f) � O(logB(f) log d).4. For any function f : F (f) � 2D(f).Proof:Proof of 1: (Sketch) The simulation is done intwo stages. In the �rst stage we transform theformula to a non-homogeneous ABP, i.e. an ABPwhere the nodes are not required to be parti-tioned into levels, and where each edge may belabeled by a constant or variable. This is doneby recursively converting the formula f1+f2 to aparallel wiring of non-homogeneous ABPs for f1and for f2, and the formula f1 + f2 to a sequen-tial wiring. This stage builds a non-homogeneousABP of size at most F (f) + 1.In the second stage we convert this non-homogeneous ABP to a simple ABP. This is doneby partitioning the function computed at eachvertex to its homogeneous components. Thisstage may increase the size by at most a factor ofd.Proof of 2: (Sketch) Each vertex v of the ABPis converted to an addition gate of fanin at mostB(f). Each edge (u; v) feeding into v is convertedto a multiplication gate feeding to that additiongate. The multiplication gate multiplies the func-tion computed at u by the linear form that labelsthe edge (u; v). Computing the linear form takesO(n) gates, and each addition gate of unboundedfanin converts to B(f) addition gates of fanin 2.Proof of 3: (Sketch) To simulate the ABP weneed to multiply d matrices each of size at mostB(f) by B(f). Multiplying two matrices takesPage 4



depth O(logB(f)), and we multiply all d of themin a binary tree fashion.Proof of 4: Trivial. 23 A characterization ofABP complexityLet f be a homogeneous function of degree don n variables. For each 0 � k � d we de�nea real matrix Mk(f) of dimensions nk by nd�kas follows: there is a row for each sequence ofk variables (called k-term), and a row for eachd � k-term (sequence of d � k variables, out ofthe possible n, allowing repetitions). The en-try at < xi1 : : : xik >;< xj1 : : :xjd�k > is de-�ned to be the real coe�cient of the monomialxi1 : : :xikxj1 : : : xjd�k in f .Theorem 1 For any homogeneous function f ofdegree d, B(f) = dXk=0 rank(Mk(f))Proof: (sketch) Fix an ABP that computes f .For any 0 � k � d let v1 : : : vt be the vertices ofthe ABP in the k'th level. We de�ne two matricesLk and Rk as follows: Lk will have a row foreach k-term and a column for each 0 � i � tand Rk will have a row for each 0 � i � t and acolumn for each d� k-term. For a k-term � , andi, Lk[�; i] is de�ned to be the coe�cient of � infunction computed by the restricted ABP wherevi is the sink. For a d� k-term �, and i, Rk[i; �]is de�ned to be the coe�cient of � in the functioncomputed by the restricted ABP where vi is thesource. Using this notation, it is easy to verifythat Mk(f) = LkRk.The lower bound follows since rank(Mk(f)) �rank(LK) � t, and thus for each k, the num-ber of vertices on the k'th level must be at leastrank(Mk(f)).In order to prove the upper bound we will showthat if for some level k the number of vertices ofthe ABP is more than rank(Mk(f)) then we can

build a smaller ABP that computes f . Again,let t be the number of vertices on level k. Ifrank(Lk) < t then there exists a column i inLk that is a linear combination of the others.This implies that the function computed by therestricted ABP where vi is the sink is a linearcombination of the functions computed by therestricted ABPs with the other vertices in thislevel as sinks. It is not di�cult to see that at thispoint vertex vi can be eliminated from the ABP,and each edge connecting it to a vertex u in thek + 1'st level should be replaced by edges con-necting u to the appropriate linear combinationof other vertices in the k'th level. Similarly, ifrank(Rk) < t then we can reduce the size of theABP. Finally, it is a matter of simple linear alge-bra to show that if Lk and Rk have a full rank oft then also Mk(f) = LkRk has rank t. 24 Corollaries4.1 Permanent and determinantIn the non-commutative case we must de�ne theorder of multiplication in each monomial of thepermanent and determinant.De�nition 3perm(x1;1 : : :xn;n) = X�2SnYi xi;�(i)det(x1;1 : : : xn;n) = X�2Sn sign(�)Yi xi;�(i)Two functions f; g are weakly equivalent if foreach monomial of f with non-zero coe�cientthere exists a monomial of g composed of thesame variables (but perhaps in di�erent mul-tiplicative order) with non-zero coe�cient, andvice-versa.Lemma 2 For 0 � k � n,rank(Mk(perm)) = rank(Mk(det)) = �nk�Proof: (sketch) After eliminating duplicate rowsand columns in Mk(perm) we are left with a ma-trix having a row for each subset of size k ofPage 5



f1 : : :ng and a column for each subset of sizen � k. The value of an entry in the matrix is 1if the sets describing this entry are disjoint, and0 otherwise. Thus the matrix is diagonal andhas full rank. For the determinant, the non-zeroentries can have values +1 and �1, inspectionreveals that we get each row and each columntwice, one of them negated. 2Lemma 3 For any function f which is weaklyequivalent to the permanent (or equivalently tothe determinant), and for every 0 � k � n,rank(Mk(f)) � �nk�Proof: (Sketch) Each row of Mk(f) de�nes twosets S1; S2 � f1 : : :ng of size k, S1 being theset of rows (of the input matrix) that is used inthe k-term de�ning the row, and S2 the set ofcolumns. Similarly each column de�nes two setsT1 and T2 of size n� k. It is clear that an entryof the matrix can be non-zero only if S1 is thecomplement of T1 and S2 the complement of T2.Thus if we look at the matrix as composed ofblocks (de�ned according to S1; S2; T1; T2) we geta matrix that is diagonal \in blocks". The rankof the matrix is thus at least the number of non-all-zero blocks. Let us compute the maximumnumber of monomials of f that can be obtainedfrom one block. All monomials deriving from ablock given by S1; S2; T1; T2 must be composedof variables de�ning a permutation mapping S1to S2, and T1 to T2. Any such permutation ispossible, giving an upper bound of k!(n � k)!.We conclude the proof by observing that the totalnumber of monomial that f must have is at leastn!. 2We can now prove the following theorems:Theorem 2 For any function f which is weaklyequivalent to permanent or determinant, F (f) �2
(n).Proof: Using Theorem 1 sum the lower boundsgiven by lemma 3 for all values of 0 � k � n.Finally, apply lemma 1.1. 2Theorem 3 C(perm) � O(n2n)C(det) � O(n2n)

Proof: (sketch) Direct usage of lemma 1.2 withtheorem 1 and lemma 2 gives a slightly weakerbound of O(n4n). A more delicate study of theABP suggested by lemma 2, shows that (1) inthis case the fanin of each vertex on level k isexactly k, and (2) each edge is labeled by singlevariable. This su�ces for �ne-tuning the proof oflemma 1.2 to get the improved bound. 24.2 Depth vs. sizeLet w 2 f0; 1g�. Denote by wR the reverse of w.Denote by xw the monomialQjwji=1 xw[i].Theorem 4 Let fd(x0; x1) =Pw2f0;1gd xwxwR .Then1. C(fd) = �(d)2. B(fd) = 2�(d)3. F (fd) = 2�(d)4. D(fd) = �(d)Proof: (Sketch) The upper bound in all cases isobtained from the following linear size circuit forfd: fd = x0 � fd�1 � x0 + x1 � fd�1 � x1The lower bound in all cases is obtained byconsidering Md(fd). This is easily seen to be adiagonal matrix of size 2d. Using theorem 1 to-gether with lemma 1 concludes the proof. 24.3 Monotone vs. non-monotoneDe�nition 4 A circuit is called monotone if itdoes not use subtractions, and all real constantsused are positive. An ABP is called monotoneif all constants used as coe�cients in the linearforms are positive. The monotone complexities off are denoted by C+(f); D+(f); F+(f); B+(f).Lemma 4 All the results stated in lemma 1 alsoapply where C(f); D(f); F (f); B(f) are all re-placed with C+(f); D+(f); F+(f); B+(f) resp.Page 6



Proof: (sketch) All simulations used in the proofto lemma 1 preserve monotonicity. 2We will need the following de�nitions to get ananalogue of theorem 1:De�nition 5 For a function f of degree d, and0 � k � d, the k-ABP complexity of f , Bk(f)is the minimum, over all ABPs that compute f ,of the size of the k'th level of the ABP. The k-monotone-ABP complexity of f , B+k (f) is theminimum, over all monotone ABPs that computef , of the size of the k'th level of the ABP.De�nition 6 (Yannakakis [16]) For a real ma-trix M , the positive rank of M , rank+(M ), isthe minimum integer t such that there exist non-negative matrices A of dimension n by t and Bof dimension t by m such that M = AB.Lemma 5 For every homogeneous function fof degree d and all 0 � k � d, B+k (f) =rank+(Mk(f)). Also, B+(f) �Pdk=0B+k (f).Proof:(Sketch) The only di�erence from theproof of theorem 1 is the fact that we cannotshow that it is possible to obtain a single mono-tone ABP that achieves width B+k (f) at all of itslevels. What is obvious though is that for anyk it is possible to obtain a monotone ABP thatachieves width B+k (f) at level k: Just computethe functions that correspond to the rows on Aand to the columns of B in any manner (here ABis the decomposition of Mk(f) giving B+k (f)). 2For a boolean function b(x; y) denote by C(b)the communication complexity of b and byrank(b) the rank of the real matrix associatedwith it. Lovasz and Saks (see [7]) asked whetherC(b) = (log rank(b))O(1) for every boolean func-tion b. It is known ([16], see also [7]) that theanswer to this question is positive if and onlyif log(rank+(M )) = log(rank(M ))O(1) for everyreal matrix M with 0-1 entries.De�ne an algebraic function to be simple if allof its coe�cients are zero or one.Theorem 5 The following are equivalent:1. For every boolean function b, C(b) =(log rank(b))O(1).

2. For every simple algebraic function f and ev-ery k, logB+k (f) = (logBk(f))O(1)Proof: (Sketch) As we mentioned (1) is known tobe equivalent to the fact that for every 0-1 matrixM : log rank+(M ) = (log rank(M ))O(1). But inour notation every real matrixM corresponds toa function f such that rank+(M ) = B+k (f) andrank(M ) = Bk(f). Moreover M is 0-1 if andonly if f is simple. 25 CommutativecomputationIn this section we use the lower bounds we haveproved for non-commutative computation in or-der to prove lower bounds for commutative com-putation. As to avoid confusion between the twomodels we adopt the convention that B(f), D(f),C(f), B+(f), etc. all refer to non-commutativecomplexity measures (as they have up to thispoint), while \circuit size", \circuit depth", etc.all refer to general commutative computation.5.1 Monotone circuitsRecall the de�nition of weakly equivalent fromde�nition 3, and notice that in this de�nition for g may be also be commutative functions.Lemma 6 Let f be a function. If there exists amonotone formula of size s for f in the commu-tative case, then there exists a function f 0 whichis weakly equivalent to f , s.t. F+(f 0) � s.Proof: (sketch) The same formula for f , inter-preted as a non-commutative formula, will com-pute a function which is weakly equivalent to f .2Theorem 6 ([13, 14]): The permanent functionrequires 2
(n) monotone formula size, and 2
(pn)monotone circuit size.Proof: The bound for formula size follows fromtheorem 2 and lemma 6. The bound for circuitsize then follows from [8]. 2Page 7



5.2 Depth three circuitsDe�nition 7 Let f(x1 : : :xn) = Pt ctQi2St xibe a commutative function. The strong non-commutative analogue of f , f� is de�ned to bea non-commutative function which has a mono-mial for any permutation of a monomial of f .I.e. f�(x1 : : :xn) =Xt X� ct jStjYi=1x�(i)Where � ranges over all permutations on the el-ements of St.We will consider here commutative circuits ofthe following form: A sum of products of linearfunctions. These will be called ��� circuits. Acircuit is homogeneous if all of the linear func-tions used in it are homogeneous (i.e. have noconstant term), and all products are of the samenumber of linear functions. The circuit is of de-gree D if all products are of at most D linearfunctions. It is clear that a homogeneous ���circuit of degree D computes a function of degreeD. Note that a ��� circuit can be converted toa ��� formula with only a polynomial penaltyin size. It is known that non-homogeneous ���circuits of degree n and polynomial size can com-pute any symmetric function of polynomial de-gree.Lemma 7 If there exists a ��� formula of sizes and degree D for a homogeneous function f ofdegree d, then F (f�) � O(sD!=(D � d)!).Proof: We build a non-commutative formula forf� in two stages. In the �rst stage we convertthe formula for f to a homogeneous one. Thisis done by partitioning each node in the originalformula to its homogeneous components. For theaddition gates in the lowest level we just sepa-rate and do not add the constants to the linearterm. For each multiplication gate we need onlyrecover the homogeneous component of degree d.This is done by summing over all subsets of sized of the inputs to the multiplication gate of theproduct of the d chosen linear terms by the otherD � d constant terms. This blows up the sizeby a factor of �Dd �. The top addition gate is then

simply replaced by merging all the addition gatessimulating the di�erent multiplication gates.Once we have a homogeneous formula for f weget one for f� by having a multiplication gatefor each permutation of inputs to a multiplica-tion gate in the formula for f and adding up allthese multiplication gates together. Note that foreach monomial of f we now get all its permuta-tions, thus obtaining a non-commutative formulafor f�. Also note that this only works since wehave a single level of multiplication gates. Thissecond stage increases the size by another factorof d!. 2Let �d(x1 : : :xn) be the d'th elementary sym-metric function. I.e.�d(x1 : : :xn) = XjSj=dYi2S xiLemma 8 B(��d) � � nd=2�Proof: (sketch) After removing duplicate rowsand columns from Md=2(��d) one is left with thedisjointness matrix of d=2 elements out of n.Kantor's lemma (see [1], chapter 6) states thatthis matrix has full rank. 2We thus get:Theorem 7 If a ��� circuit of size s and de-gree D computes �d then s � (n=(D2d))
(d). If ahomogeneous ��� circuit of size s computes �dthen s � (n=d3)
(d).Proof: (Sketch) Just put lemmas 7 and 8 to-gether while noting that B(f�) � F (f�) and thatcircuit size and formula size agree to within apolynomial for ��� circuits. 26 Open problemsThe major open problem is to use these tech-niques in order to prove lower bounds for generalcommutative computation in stronger ways thanwe have succeeded doing in section 5. There arealso some questions about the non-commutativemodel: Page 8



� Is D(f) = O(logF (f))?� Prove a lower bound for non-commutativecircuit size. (perhaps, as [4] attempted, forthe determinant function.)� Separate F (f) from B(f), or even D(f)from logB(f). Equivalently prove a super-logarithmic lower bound for the depth re-quired to multiply, non-commutatively, nmatrices each of dimensions n by n.� Separate, or prove the equality up to apolynomial, of monotone and non-monotonecomputation for some non-commutativecomplexity measure.7 AcknowledgementsI have had very helpful discussions with M. Ben-Or, M. Karpinski, M. Krachmer, I. Newman, M.Safra, M. Sipser, and A. Wigderson, during vari-ous stages of this work.References[1] L. Babai and P. Frankl, Linear algebra meth-ods in combinatorics, 1988.[2] R.B. Boppana and M. Sipser, The complex-ity of �nite functions, to appear in Hand-book of computer science.[3] J. von zur Gathen, Algebraic complexity the-ory, Ann. Rev. Comp. Sci. 3:317-47, 1988.[4] L. Hya�l, The power of commutativity, 18thFOCS, 171-74, 1977.[5] L. Hya�l, On the parallel evaluation of mul-tivariate polynomials, 10th STOC, 193-195,1978.[6] M. Jerrum and M. Snir, Some exact com-plexity results for straight-line computationsover semirings, Univ. of Edinburgh CRS-58-80, 1980.[7] L. Lovasz, Communication complexity: asurvey, 1989.

[8] G.L. Miller, V. Ramachandran, and E.Kaltofen, E�cient parallel evaluation ofstraight line code and arithmetic circuits,Siam J. Comp. 17, 1988.[9] L. Valiant, Negation can be exponentiallypowerful, 1979.[10] L. Valiant, S. Skyum, S. Berkowitz, and C.Racko�, Fast parallel computation of polyno-mials using few processors, Siam J. Comp.12:641-44, 1983.[11] V. Strassen, Vermeidung von divisionen, J.Reine Angew Math., 264:184-202, 1973.[12] C.P. Schnorr, A lower bound on the num-ber of additions in monotone computations,TCS 2:305-315, 1976.[13] E. Shamir and M. Snir, Lower bounds on thenumber of multiplications and the number ofadditions in monotone computations, IBMRC-6757, 1977.[14] E. Shamir and M. Snir, On the depth com-plexity of formulas, Math. Systems theory,13:301-322, 1980.[15] S. Winograd, On the number of multiplica-tions necessary to compute certain functions,Comm. on Pure and Appl. Math., 23:165-179, 1970.[16] M. Yannakakis, Expressing combinatorialoptimization problems by linear programs,1988.
Page 9


