EO 224: Computational complexity theory - Assignment 2

Due date: October 24, 2014

General instructions:

- Write your solutions by furnishing all relevant details (you may assume the results already covered in the class).
- You are strongly urged to solve the problems by yourself.
- If you discuss with someone else or refer to any material (other than the class notes) then please put a reference in your answer script stating clearly whom or what you have consulted with and how it has benifited you. We would appreciate your honesty.
- If you need any clarification, please contact the instructor.

Total: 50 points

In the following problems, n stands for length of input string (unless mentioned otherwise in the problem). By NC, we mean *logspace uniform* NC.

- 1. (5 points) [Excercise-6.1 from Arora-Barak's book] In this exercise, you'll prove Shanon's result that every function $f : \{0,1\}^v \to \{0,1\}$ can be computed by a circuit of size $O(2^n/n)$.
 - (a) (2 points) Prove that every such function f can be computed by a circuit of size $O(2^n)$.
 - (b) (3 points) Improve this bound to show that any such function f can be computed by a circuit of size $O(2^n/n)$.
- 2. (5 points) [Excercise-6.3 from Arora-Barak's book] Describe a *decidable* language in P_{/poly} that is not in P.
- 3. (9 points) [Excercise-6.8 & 6.9 from Arora-Barak's book] A language $L \subseteq \{0, 1\}^*$ is sparse if there is a polynomial p such that $|L \cap \{0, 1\}^n| \le p(n)$ for every $n \in \mathbb{N}$. Show that every sparse language is in $\mathsf{P}_{\mathsf{/poly}}$. Show that if a sparse language is NP-complete then $\mathsf{P} = \mathsf{NP}$.
- 4. (11 points) [Exercise-6.12 from Arora-Barak's book] In this exercise, you'll prove that $NL \subseteq NC$.
 - (a) (3 points) Describe an NC circuit for the problem of computing the product of two given $n \times n$ matrices A, B over a finite field \mathbb{F} of size at most polynomial in n.

- (b) (4 points) Describe an NC circuit for computing, given an $n \times n$ matrix, the matrix A^n over a finite field \mathbb{F} of size at most polynomial in n.
- (c) (4 points) Conclude that the PATH problem (and hence every NL language) is in NC.
- 5. (6 points) [Excercise-6.14 from Arora-Barak's book] Show that $NC^1 \subseteq L$. Conclude that $PSPACE \neq NC^1$.
- 6. (7 points) [Excercise-5.6 from Arora-Barak's book] Adapt the proof of 'Time/space tradeoff for SAT' to show that SAT $\in \mathsf{TISP}(n^c, n^d)$ for every constants c and d such that c(c+d) < 2.
- 7. (7 points) [Excercise-5.13 from Arora-Barak's book] If $S = \{S_1, S_2, \ldots, S_m\}$ is a collection of subsets of a finite set U, the VC dimension of S, denoted by VC(S), is the size of the largest set $X \subseteq U$ such that for every $X' \subseteq X$, there is an i for which $S_i \cap X = X'$. (We say that X is shattered by S)

A Boolean circuit C succinctly represents collections S if S_i consists of exactly those elements $x \in U$ for which C(i, x) = 1. Finally,

VC-DIMENSION = { $\langle C, k \rangle$: C represents a collection S such that $VC(S) \ge k$ }

Show that VC-DIMENSION $\in \Sigma_3^p$.