
Introduction to Computational Complexity

Theory

Sumant Hegde

August 18, 2014

Contents

1 Multiplication of two n-bit numbers 1
1.1 Using repeated addition . 2
1.2 High school algorithm . 2
1.3 Karatsuba algorithm . 3
1.4 Schonhage-Strassen algorithm . 3
1.5 Conclusion . 4

2 GCD of two n-bit numbers 4
2.1 by factorization . 4
2.2 Euclid’s algorithm . 4
2.3 conclusion . 5

3 Solving a system of n linear equations of n variables 5
3.1 Gaussian elimination . 5
3.2 Strassen’s matrix multiplication 6
3.3 Even better algorithms . 7
3.4 Conclusion . 7

4 On proving lower bounds and impossibilities 7

5 The course: Computational Complexity Theory 8
5.1 Syllabus . 8

Abstract

This article aims to provide motivation for the subject of Compua-
tional Complexity Thoery(CCT), using some interesting algorithmic prob-
lems. At the end of the article we define the scope of the subject. The
article is also a scribing of lecture 1 on the subject of CCT.

1 Multiplication of two n-bit numbers

Let us discuss various methods of multiplying two numbers and analyze their
efficiency. Instead of two n-bit (binary) numbers we may sometimes use two
n-digit (decimal) numbers if that conveys an idea more easily.

1

1.1 Using repeated addition

The most basic algorithm of multiplication implements the very definition of
multiplication, i.e. repeated addition. So, given two numbers a and b, the
algorithm obtains a ∗ b by adding a to 0 b times (cumulatively). If a and b
are of n-digits (or bits) each, then each step of addition contains Θ(n) digit-
wise (or bitwise) operations. So the total number of basic operations becomes
a ∗ n = 2n ∗ n ∈ O(2n)

1.2 High school algorithm

Obviously, repeated addition is very inefficient. A better algorithm, taught in
schools, takes advantage of the place-value notation of numbers as well as the
distributive property of multiplication, as follows
If a and b are the two numbers such that
a = an−1X

n−1 + an−2X
n−2 + ... + a1X + a0 and

b = bn−1X
n−1 + bn−2X

n−2 + ... + b1X + b0,
then
a× b = abn−1X

n−1 + abn−2X
n−2 + ... + ab1X + ab0 where X is the base.

For example, let a = 12 = 1 · 101 + 2 · 100 and b = 34 = 3 · 101 + 4 · 100. Then

12×34
48
36

408
(1)

Here, ab0 is 48 and ab1X is 360. The algorithm just calculates ab1 (here 36),
and shifts it to the left hand side by one digit-place, to achieve multiplication
by X (here 10). In general, abk is shifted to the left hand side by k places,
achieving multiplication by Xk to make abkX

k.
If the numbers being multiplied have different number of digits(bits), the

smaller number can be padded with necessary number of 0’s and the above
algorithm can be run.

There are several variants of the algorithm. For example, instead of writing
down partial products(rows) with appropriate shifts and summing them up at
the end, one can compute individual digit of the final answer on each iteration,
preferably starting from the rightmost digit for easy handling of carry. (Cham-
pions of ”fast multiplication tricks” recommend the latter approach, pointing
out that you do not have to memorize partical products as much.) Nevertheless
the total number of multiplications and additions will remain the same.

Complexity. Computing each row, that is, partial product, requires n mul-
tiplication operations. There are n such rows. Hence there are n2 multiplication
operations. Further, at the end we have roughly n2 digits to be added. Therefore
it requires O(n2) multiplications + O(n2) additions.

Multiplication of two digits is a constant time operation - and hence is no
more expensive than addition of two digits - provided we have the multiplication
table. Thus overall complexity is in O(n2), significantly better than repeated-
addition algorithm.

For a long time it was believed that Θ(n2) was the lower bound, until Karat-
suba invented a better algorithm described below

2

1.3 Karatsuba algorithm

Karatsuba algorithm uses divide-and-conquer technique along with a trick that
saves one multiplication operation out of four, at the cost of a few extra addi-
tion(/subtraction) operations. Since addition is far less expensive than multi-
plication (especially for large numbers), all in all, we gain.

Given two n-bit numbers a and b, split them in the middle to get a1 and a2,
and b1 and b2 respectively, each of size roughly n/2 bits:

a
a1 a2

b
b1 b2

In other words,
a = a12n/2 + a2 and
b = b12n/2 + b2.

With this setup, the naive divide-and-conquer approach would work on the
4 small chunks, namely, a1, a2, a3 and a4, while requiring 4 multiplication steps,
as

a× b = (a1 · 2n/2 + a2) · (b1 · 2n/2 + b2)

= a1b1 · 2n + (a1b2 + a2b1) · 2n/2 + a2b2
(2)

We can show that this still runs in quadratic time, by solving the recurrence
for (2), which is

T (n) = 4T (n/2) + cn (3)

where c is a constant such that cn accounts for all the additions and shifting
(for multiplying by 2n) of components in (2).
From the Master theorem, the complexity of (3) is in O(nlog2 4) or O(n2).
Karatsuba algorithm improves the situation by rewriting (2) as follows

a× b = a1b1 · 2n + (a1b2 + a2b2) · 2n/2 + a2b2

= a1b1 · 2n + ((a1 + b1)× (a2 + b1)− a1b1 − a2b2) · 2n/2 + a2b2
(4)

Crucially, the middle term now needs only one new multiplication operation:
(a1 + b1) × (a2 + b1), reducing the total number of multiplication operations
to 3. (Products a1b1 and a2b2 were anyway going to be calculated, and we
are reusing them here.) Of course, there are extra addition (of n-bit numbers)
and subtraction (of 2n-bit numbers) operations now, which increase the size of
constant (to C, say) in the recurrence:

T (n) = 3T (n/2) + Cn (5)

Nevertheless, from the Master theorem, the runtime of (5) is in O(nlog2 3) or
O(n1.585), an asymptotic improvement certainly.

There are generalized versions of this algorithm. For example, Toom-Cook
algorithm splits n-bit multiplicands into 3 (or more) components of size n/3 (or
less) each, and applies divide-and-conquer.

1.4 Schonhage-Strassen algorithm

This algorithm is based on Fast Fourier Transforms(FFT) and runs in time
O(n log n log log n). Another recent algorithm, called Furer’s algorithm, also is
based on FFT and runs in time n log n2O(log∗ n).

3

1.5 Conclusion

Contrary to the initial — and reasonable — feeling that the lower bound is
quadratic, there are subquadratic algorithms available. However, while bet-
ter algorithms are getting discovered time and again, the question what is the
theoretical lower bound for multiplication remains unanswered.

2 GCD of two n-bit numbers

2.1 by factorization

Calculation of GCD by factorization is the most basic method, as it just follows
from the definition of GCD. Given two n-bit numbers a and b, this method
writes a and b as products of prime factors:
FACTOR(a) = pa1pa2...paj — pai is a prime number and
FACTOR(b) = pb1pb2...pbk — pbi is a prime number
It then picks common elements from collections FACTOR(a) and FACTOR(b).
The product of common elements(factors) is the GCD.
Complexity. Factorizing a number, say a, requires at least checking for di-
visibility by numbers from 2 to

√
a. Thus, factorizing an n-bit number takes

O(2n/2) time. So without doing rigorous analysis of complexity for checking
whether a factor is prime or not, or the complexity analysis of selecting com-
mon factors from the two colloections, we can declare that the algorithm runs
in exponential time.

2.2 Euclid’s algorithm

Euclid’s algorithm makes use of a property of a GCD: if a, b are integers and
a < b then g = GCD(a, b) = GCD(a, b mod a).

To see why this is true, let b mod a = c. Then b = ak + c where k is an
integer. Now, g divides b by the definition of GCD. g also divides a and hence
ak. Therefore g has to divide c too according to the rules of divisibility.

Algorithm 1 Euclid’s algorithm

1: procedure Euclid(a, b)
2: r ← b mod a
3: while r 6= 0 do
4: b← a
5: a← r
6: r ← b mod a
7: end while
8: return a . The gcd is a
9: end procedure

complexity. The worst case occurs when the algorithm converges very
slowly. For this to happen, at every step, a and b should be such that

b mod a = b− a (6)

4

In other words, if ai and bi represent the numbers at hand on the ith iteration,
the worst case occurs when (ai+1, bi+1) = (bi, ai + bi). This is nothing but the
case of 2 consecutive numbers of Fibonacci series (with possibly different base
values). Hence the number of steps required for the algorithm to converge is
roughly equal to the rank of the fibonacci number nearest to b, which is given by

n(F) = blogφ(
√

5 + 1/2)c (7)

Hence,
T (a, b) ≤ logφ(

√
5b) (8)

2.3 conclusion

Even for a notion like GCD, whose definition is based on factors, which are
hard to compute, there is an algorithm significantly efficient than the factoriza-
tion algorithms: It improves the runtime from exponential time to poly-time.
However, again, it is not clear whether there can exist an asymptotically better
algorithm for the problem.

3 Solving a system of n linear equations of n
variables

Let us represent the system of n linear equations of n variables as follows
a11X1 + a12X2 + ... + a1nXn = b1
a21X1 + a22X2 + ... + a2nXn = b2
...
an1X1 + an2X2 + ... + annXn = bn

Equivalently there is a matrix representation, as follows
AX = B, where

A =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

, X =

X1

X2

...
Xn

, B =

b1
b2
...
bn

3.1 Gaussian elimination

In Gaussian elimination, we convert A into an upper triangular matrix by apply-
ing elementary operations on equations(rows), like replacing an equation with a
nonzero multiple of it, or with a sum of or difference between this and another
equation etc. These operations are guaranteed to not alter the solutions. Also,
each such operation can be done in linear time with respect to n. Since the
operations should be applied on the RHS of the equation as well, matrix B may
also change. The resultant system (with altered A and B) will look like the
following
A′X = B′, where

5

A′ =

a′1,1 a′1,2 · · · a′1,n

0 a′2,2 · · · a′2,n
...

...
. . .

...
0 0 · · · an,n

, X =

X1

X2

...
Xn

, B′ =

b′1
b′2
...
b′n

Now, the value of Xn is readily available: it’s b′n. By substituting b′n on (n−1)th
equation we can find Xn−1. By continuing the process of backward substitution
we can solve for all Xi’s.
complexity. The elimination step will apply at most n/2 operations on A, to
make all the n(n−1)/2 elements of the lower triangle of A zero. Each of these op-
erations manipulates one equation (or two), which means Θ(n) elements. Hence
the run time of forward elimination step is in O(n3).
The step of backward substitution will work on the resultant upper triangular
matrix. Its runtime is in O(n2), as it applies one constant-time operation (either
substitution and/or addition) on each of the n(n + 1)/2 elements in the upper
triangular matrix (plus n more elements of matrix B′, strictly speaking). So,
the overall runtime is dominated by the elimination step, which takes O(n3)
time.

3.2 Strassen’s matrix multiplication

Alternatively, the system of equations could be solved by finding inverse of the
matrix A, since if AX = B then X = A−1B. It is said that inversion of a matrix
is computationally equivalent to multiplying two matrices. Hence it is sufficient
to examine matrix multiplication algorithms.
The brute force algorithm that multiplies 2 m×m matrices A and B, performs
n3 multiplications and n3 − n2 additions:

M(n) = 2n3 − n2. (9)

In particular, for 2× 2 matrices, 8 multiplications and 4 additions are required.
Strassen’s algorithm reduces this to 7 multiplications while increasing the num-
ber of additions to 18, using the formulas mentioned below:[
c00 c01
c10 c11

]
=

[
a00 a01
a10 a11

]
·
[
b00 b01
b10 b11

]
=

[
m1 + m4 −m5 + m7 m3 + m5

m2 + m4 m1 + m3 −m2 + m6

]
(10)

where
m1 = (a00 + a11) · (b00 + b11)
m2 = (a10 + b11) · b00
m3 = a00 · (b01 − b11)
m4 = a11 · (b10 − b00)
m5 = (a00 + a01) · b11
m6 = (a10 − a00) · (b00 + b01)
m7 = (a00 − a11) · (b10 + b11)

With a 2× 2 matrix it may seem that the total number of scalar operations
has increased (7+18 = 25 as opposed to 8+4 = 12 of the brute-force algorithm),
but the importance of Strassen’s algorithm becomes clearer once we realize that
the algorithm uses divide-and-conquer, as follows.
Let A and B be two n× n matrices. Then A, B and C where C = AB, each is
divided into 4 n/2× n/2-sized submatrices:

6

[
C00 C01

C10 C11

]
=

[
A00 A01

A10 A11

]
·
[

B00 B01

B10 B11

]
(11)

Notice the similarity between (10) and (11). Indeed, Strassen’s algorithm
recursively computes first the subproducts A00, A01, A10, A11, B00, B01, B10 and
B11. Then it applies 7 multiplications and 18 additions/subtractions on them
to compute AB, along the lines of (10).
complexity. 7 multiplications of matrices of size n/2 × n/2 (recursive part),
and 18 additions of matrices of size n/2 × n/2 (nonrecursive part) leads us to
the following recurrence:

T (n) = 7T (n/2) + 18(n2/4) (12)

From the Master theorem, its runtime is in O(log2 7).

3.3 Even better algorithms

Copporsmith-Winograd is an improvement over Strassen’s algorithm, and has
asymptotic complexity of O(n2.375477). The most recent algorithm is William’s
algorithm, whose complexity is in O(n2.3728).

3.4 Conclusion

The lower bound for matrix multiplication algorithms is conjectured to be Ω(n2),
where n × n is the matrix size. (One of the reasons to believe so: the product
itself contains n2 elements.) But yet, the gap between this bound and the best
algorithm so far remains unresolved.

4 On proving lower bounds and impossibilities

If someone proves today that William’s algorithm is the best matrix multi-
plication algorithm ever possible, then, whether good news or bad news, all
computer scientists can stop spending time improving the algorithm. Rather,
one can build on that result and come up with some other proofs. Generalizing
the above observation, the subject of complexity theory recognizes the impor-
tance of proving lower bounds and impossibilities of various algorithms. We
have already discussed lower bounds in length in the previous sections. Below
we present some examples of proven impossibilities

1. The proof that Euclid’s 5 th postulate (a.k.a the parallel postulate) can-
not be derived from the first 4 postulates. The proof not only settled a
centuries-old debate, but also opened up a new branch in geometry, now
known as non-Euclidian geometry.

2. The proof that there is no formula for solutions of equations of degree ≥ 5.

3. The proof that there is no algorithm to solve a system of polynomial
equations with integer coefficients, over integers.

7

At the same time, we equally emphasize on the attempts to improve algo-
rithms whose theoretical lower bound is not yet proven. For it was Karatsuba
algorithm that disproved the long-believed conjecture that O(n2) was the the-
oretical minimum for the multiplication of n-bit numbers. Another motivation
for improvement is, of course, large gap between a proven lower bound and a
so-far-the-best algorithm.

5 The course: Computational Complexity The-
ory

Complexity theory is a subject that classifies problems based on the amount of
resources used in solving these problems. The resources may be time, space,
randomness, communication etc.

5.1 Syllabus

1. The computational model (Turing machine)

2. NP and NP-Completeness

3. Diagonalization and relativization

4. Space complexity

5. Polynomial time hierarchy

6. Boolean ciruits

7. Randomized computation

8. Interactive proofs

9. Introduction to PCP theorem and hardness of approximation

10. Complexity of counting

8

