
E0 224 Computational Complexity Theory

Lecture 10 (8 Sep 2014)

Lecturer: Chandan Saha Scribe: Sarath A Y

1 Introduction

In the last lecture, we introduced the notion of space-bounded computation and defined the

classes PSPACE, NPSPACE, L and NL. We also studied the configuration graph of a Turing

machine and proved Savitch’s Theorem. In this lecture, we define PSPACE completeness, and

show that the language TQBF is PSPACE-complete. We also introduce the notion of log-space

reduction and NL completeness.

2 PSPACE Completeness

To define completeness for a complexity class, we first need to define a suitable reduction. This

should be guided by the complexity theoretic question that we have in our mind. (Recall that

for defining NP completeness, we used polynomial time reduction, since we were interested in

the question P =?NP). We already know that P ⊆ PSPACE. Thus, an interesting question

that we would like to ask is whether P = PSPACE. This suggests that for defining PSPACE

completeness, we should use polynomial time reduction.

Definition: A language L ⊆ {0, 1}∗ is PSPACE-hard if for every language L′ ∈ PSPACE,

L′ ≤p L. If in addition, L ∈ PSPACE then we say L is PSPACE-complete.

An immediate question that comes to our mind is whether there are any PSPACE-complete

languages. To answer this, we define the following language.

L := {(M,x, 1s) : Machine M accepts x using at most s cells in M ’s work tape}

Theorem 2.1. L is PSPACE-complete

Proof. First, we show that L ∈ PSPACE. Given an input {< M,x, 1s >}, consider a machine

M ′ that does the following: M ′ simulates M on input x and if M uses at most s cells of its

work tape then M ′ accepts {< M,x, 1s >}, otherwise it rejects. Note that the machine M ′ can

simulate M with constant space overhead. Thus, M ′ is a deterministic TM that decides L using

polynomial space. (Note that the parameter s is part of the input). Hence, we conclude that

L ∈ PSPACE.

Next we show that L is PSPACE-hard. Let L′ ∈ PSPACE, and M be a deterministic Turing

machine that decides L′ using polynomial space. Thus, there exists a polynomial function p(.)

1

such that M accepts a string x ∈ L′ using at most p(|x|) cells of the work tape. Now, given x,

we compute f(x) as:

x 7−→ f(x) =< M,x, 1p(|x|) > (1)

Note that f(.) can be computed in polynomial time since p(.) is a polynomial function. Also,

observe that x ∈ L′ ⇔ f(x) ∈ L. Hence, it follows that L is PSPACE-hard. Since L ∈
PSPACE and L is PSPACE-hard, L is PSPACE-complete.

Next, we describe some natural problems that are PSPACE-complete.

2.1 Examples of PSPACE-complete problems

The following are some examples of PSPAC-complete problems.

1. Given a regular expression, check if it defines the set of all strings over the alphabet.

2. Hex (board game).

3. Set of all quantified Boolean formula (Theorem 3.1).

4. Finite horizon Markovian decision processes with partially observable states (a proof can

be found in [3]).

Apart from all the above problems, an extensive list of PSPACE-complete problems can be

found in Appendix A8 of [2] and in [4].

3 Quantified Boolean Formula (QBF)

Definition: A QBF is a Boolean formula of the form Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn) where

every Qi is either ∃ or ∀ quantifier, xi is a Boolean variable, and φ(x1, x2, . . . , xn) is an unquan-

tified Boolean formula.

Example: ∃x1∃x2 . . . ∃xn ((x1 ∨ x2) ∧ (¬x3 ∨ x4 ∨ x1) . . .)

Remark: Without loss of generality, we can always assume that the unquantified Boolean

formula φ is a 3CNF. This is because any Boolean formula can be reduced to a CNF and then

to a 3CNF (i.e, Cook-Levin reduction).

Unlike unquantified Boolean formulas, because of the quantifiers, a QBF is either true or false.

Also, if all the Qi’s in a QBF are ∃ quantifier, then the QBF is true if and only if the unquantified

Boolean formula φ is satisfiable. However, we make the following remark.

2

Remark: The following two languages are technically different.

3− SAT : = {φ : φ is a 3-CNF and φ is satisfiable}

3− SAT′ : = {∃x1∃x2 . . . ∃xnφ(x1, x2, . . . , xn) : φ is a 3-CNF}

3.1 QBF Game

Recall that for NP-complete problems, there exists a quickly verifiable and short certificate. It

turns out that the analogous notion for PSPACEP completeness is the existence of a winning

strategy for a two player game with perfect information (i.e., each player can see the move made

by the other player)[1].

We can quantify the existence of a winning strategy for player 1 using a QBF. Given a Boolean

formula φ(x1, x2, . . . , x2n), consider the QBF

∃x1∀x2∃x3 . . . ∀x2nφ(x1, x2,x2n) (2)

Note that we have alternating ∃ and ∀ quantifiers in the above formula and this can be interpreted

as a two player QBF game. Given a Boolean formula φ over the variables x1, x2, . . . , .x2n, the

QBF game proceeds as follows: the first player picks a value for x1, then the second player picks

a value for x2, again first player picks a value for x3 and so on. At the end, we say that the first

player wins if φ(a1, a2, . . . , a2n) = 1 where ai’s are the values picked by the players. Observe that

the first player has a winning strategy iff the QBF (2) is true. Thus, checking the existence of a

winning strategy for player 1 in a QBF game is PSPACE-complete (follows from Theorem 3.1).

Remark: Intuitively we are forced to believe that as the number of quantifications increases,

the problem becomes harder (this is not really true, the complexity of the problem is actually

captured by the number of alternations of quantifiers). For example, consider the problem of

optimizing Boolean circuits. That is, given a Boolean circuit φ, we would like to find another

circuit ψ that is equivalent to φ and whose size is strictly less that the size of φ. If we take a

closer look at this problem, we can see that there are two quantifiers, that is a ∃ quantifier and

a ∀ quantifier (∃ a circuit such that ∀ inputs ψ(.) = 1 iff φ(.) = 1). Therefore, this problem is

harder than the SAT problem.

Now, we define the following language:

TQBF := {all true QBFs} (3)

Theorem 3.1. TQBF is PSPACE-complete.

Proof. First, we show that TQBF ∈ PSPACE. To show this, we use a recursive algorithm [1].

Define

ψ := Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn) (4)

3

Denote the size of φ by m. If n = 0, then φ contains only constants, and the correctness of φ can

be evaluated using O(m) space (since as discussed in lecture 9, CIRCEVAL can be decided using

logspace). Now, for n > 0 and given any bit b ∈ {0, 1}, we define a modified QBF ψ|x1=b from ψ

by dropping the quantifier Q1 and replacing all occurrences x1 in φ by b. Our recursive algorithm

A does the following. If Q1 = ∃, then A outputs 1 iff one of A(ψ|x1=0) or A(ψ|x1=1) outputs 1.

If Q1 = ∀, then A outputs 1 iff both A(ψ|x1=0) and A(ψ|x1=1) outputs 1. By defining A in this

way, A always outputs the correct value of the QBF ψ. The important observation is that A
can use same space for computing A(ψ|x1=0) and A(ψ|x1=1) since the algorithm only needs to

remember the result (i.e., either 0 or 1) of A(ψ|x1=0) and A(ψ|x1=1). Using the same argument,

for computing A(ψ|x1=0) and A(ψ|x1=1) form its smaller sized QBFs, A can recursively use the

same space. Thus, if sm,n denotes the space required for computing ψ and since A uses only

O(m) space for computing the base-case (i.e., for computing φ when n = 0), we can write

sm,n = sm,n−1 +O(m)

From the above recursion, we get sm,n = O(mn). Thus, we conclude that TQBF ∈ PSPACE.

Next, we show that TQBF is PSPACE-hard. Let L ∈ PSPACE and M be a deterministic

TM that decides L using space p(.) (where p(.) is a polynomial function). Our goal is to find a

polynomial time computable function f(.) such that

x ∈ L⇔ f(x) ∈ PSPACE (5)

Let GM,x be the configuration graph of the machine M on input x. Suppose that we can define

a (unquantified) Boolean formula φi(C1, C2) such that φi(C1, C2) = 1 iff the configuration C2 is

reachable from C1 in GM,x via a path of length at most 2i (we can indeed define such a formula,

we will show this later). Let m be the size of GM,x. Since M is a poly-space machine, we

have m = O(p(|x|)). We are trying to capture the formula φm(Cstart, Caccept) using polynomial

space where Cstart and Caccept are the starting and accepting configurations of the machine M

respectively. Observe that, given M and x, we can easily find Cstart and Caccept since they are

fixed configurations.

Now, we write φi(C1, C2) as a QBF using the following idea. The configuration C2 is reachable

form C1 via a path of length at most 2i iff there is a configuration C3 such that C3 is reachable

form C1 via a path of length at most 2i−1 and C2 is reachable from C3 via a path of length at

most 2i−1. That is

φi(C1, C2) = ∃C3 (φi−1(C1, C3) ∧ φi−1(C3, C2)) (6)

Recall that our goal is to express φm(Cstart, Caccept) using polynomial space. But from the above

expression, we can see that the size of φi(., .) is at least twice that of φi−1(., .) and hence, if we

inductively expand φm(., .) in the above fashion, we would end up in O(2m) space for φm(., .).

Instead of expanding φi(C1, C2) using (6), we can introduce additional quantified variables and

write φi(C1, C2) as

φi(C1, C2) = ∃C3∀D1∀D2 (7)

4

C1 C2 φ0(C1, C2)

· · · − − − ∗ − −− · · · · · · ∗ − − −−−− · · · 0

· · · − − − ∗ − −− · · · · · · − − ∗ − −−− · · · 1
...

...
...

· · · − ∗ − −−−− · · · · · · ∗ − − −−−− · · · 1

· · · − ∗ − −−−− · · · · · · − − ∗ − −−− · · · 1

· · · − ∗ − −−−− · · · · · · − − −−−− ∗ · · · 0
...

...
...

...
...

...

Table 1: Table of φ0(., .).“−” represents a cell of the work tape and “∗” represents the head

position.

and

(D1 = C1 ∧D2 = C2) ∨ (D1 = C3 ∧D2 = C2)⇒ φi−1(D1, D2) (8)

(Note that symbols “=” and “⇒” in the above expression can be replaced by standard Boolean

operations. For instance ∀x∃y(x = y) is same as ∀x∃y(x∧y)∨ (¬x∧¬y), and (x = y)⇒ ¬x∨y)

Observe that for expressing conditions like D1 = C1 in (8), we need only O(m) space. Also,

since the number of conditions (such as D1 = C1) in the expression (8) are bounded, the size of

representation of (8) is O(m) + size(φi−1). This together with (7) tells us that

size(φi(., .)) = size(φi−1(., .)) +O(m) (9)

Inductively expanding size(φm(., .)) using the above expression, we have

size(φm(., .)) = size(φm−1(., .)) +O(m) (10)

= size(φm−2(., .)) +O(m) +O(m) (11)

... (12)

= size(φ0(., .)) +O(m2) (13)

Thus, to show φm(., .) is a polynomial size formula, it suffices to show that φ0(., .) has poly-

nomial size. To show this, we use the crucial property that computation is local. Recall that

φ0(C1, C2) = 1 iff the machine M can go from C1 to C2 by applying its transition function (i.e.,

C2 can be reached from C1 in just 1 step). Now, consider Table (1). The first two columns

are the set of all possible configurations of M and the third column captures φ0(C1, C2). Our

goal is to express φ0(C1, C2) using a poly size Boolean formula. Observe that the size of the

above table is 2O(m) since total number of possible configurations for M is 2O(m). Thus, we

cannot express φ0(C1, C2) directly using the above table since it takes exponential space. To

represent φ0(C1, C2) using polynomial space, we do the following. We group all configurations

in the first column of the table such that M has the same head position in all the configura-

tions in one group. Note that we have polynomially many groups since head position can be

5

encoded using O(m) bits. Now, observe that a configuration C2 cannot be obtained from C1

(i.e., φ0(C1, C2) 6= 1) if the head positions of C1 and C2 differ by more than 1 cell. Also, if the

head positions of C1 and C2 does not differ by more than 1 cell and the contents of work tape

in C1 and C2 is different for at least 2 cells, then we have φ0(C1, C2) = 0 (aside, we observe

that for any configuration C1, |{C2 : φ0(C1, C2) = 1}| is bounded). Thus, for evaluating the

formula φ0(C1, C2), we just need to compare the head positions of C1 and C2; and if the head

positions do not differ by more than 1 cell (if they do, then φ0(C1, C2) = 0), then we need to

compare the contents of 3 cells (the cell corresponding to the head position in C1 and the two

cells adjacent to it) of C1 and C2 (if more than 2 cells have different contents, then we have

φ0(C1, C2) = 0). Clearly (since each configuration can be encoded by using O(m) bits and we

need to only compare contents of 3 cells), these requirements can be represented by a Boolean

formula by using O(m) space. Thus, size(φ0(C1, C2)) = O(m) and from (13), it follows that

size(φm(C1, C2)) = O(m2). Therefore, we get a polynomial size QBF φm(C1, C2) in prenex

form (see the next remark), and by plugging in the values of Cstart and Caccept into the formula

φ(., .) we can get φm(Cstart, Caccept). Finally, note that x ∈ L iff GM,x has a path from Cstart

to Caccept, and we expressed the reachability of Caccept from Cstart by using a polynomial size

QBF φm(., .) such that x ∈ L iff φm(Cstart, Caccept) is true. Hence, we have L ≤p TQBF. This

completes the proof.

Remark: Every QBF can be written in prenex form (i.e., all the quantifiers appear in the

beginning of the QBF) without much blow up in the size of the representation. This can be

done by using the Boolean identities like ¬(∀xφ(x)) = ∃x(¬φ(x)). For instance, we have

∀y(y ∨ ¬∀xφ(x)⇔ ∀y(y ∨ ∃x¬φ(x))

⇔ ∀y(∃x(y ∨ ¬φ(x))

4 NL completeness

As discussed Section 2, for defining NL completeness, we need a suitable reduction. The com-

plexity theoretic question that we have is whether L = NL. This naturally suggests that the

reduction should be log-space reduction, i.e., given an input string x, we have a function f(x)

such that f(x) is computable by a deterministic TM by using at most O(log(|x|) cells in the

work tape.

Remark: It can be shown that L ⊆ NL ⊆ P (Claim 4.1) . Therefore, it does not make sense to

use polynomial time reduction for defining NL completeness, since poly time reduction is more

powerful than the class L.

Claim 4.1. L ⊆ NL ⊆ P

Proof. Clearly, we have L ⊆ NL. To show NL ⊆ P, suppose that L1 ∈ NL and let M1 be an

NDTM that decides L1 using logarithmic space. Since the work tape of M1 has size O(log n),

6

number of vertices in the configuration graph of M1 for any input string x will 2O(logn) and

hence M1 can run for at most 2O(logn) = poly(n) steps. Thus, it follows that L1 ∈ P and hence

NL ⊆ P.

From our intuition, suppose that we agree upon using simple logspace reduction to define NL

completeness. Then we have a tricky issue. Recall that, ultimately our goal is to say that if

L1 ≤logspace L2 and if L2 ∈ L, then L1 ∈ L. Suppose that ML2 is a machine that decides L2.

Then given an input x, for deciding whether x ∈ L1, we first compute the function f(x) and run

the machine ML2 . But, it is not necessary that the output of function f(.) uses only logspace.

That is, if the output of function f(.) has size more than logspace, then the machine that decides

L1 may end up using more space than just logspace and therefore we may not be able to say

that L1 ∈ L.

To solve this issue, can modify the definition of logspace reduction as follows. Suppose that

given the input x and an index i, we can compute the i th bit of the function f(x) by using

logarithmic space (such a function f is said to be implicitly computable in logspace), and we

modify the definition of logspace reduction by using functions that are implicitly computable in

logspace. In that case, whenever ML2 needs a bit of f(x) (say ith bit), then we postpone the

computation of ML2 and compute the i th bit of f(x) by using logarithmic space. Therefore, a

machine that decides L1 will only use logarithmic space even if the size of the function f(.) is

more than logspace, and hence if L1 ≤logspace L2 and L2 ∈ L then we can say that L1 ∈ L. Also,

observe that for f(x) to be implicitly computable in logspace, size of f(x) should be polynomial

in the input size (because the machine that compute f(x) using logarithmic space can run for

at most 2O(log|x|) steps and hence can output at most 2O(log|x|) = poly(|x|) bits of f(x)). We will

give a formal definition of logspace reduction and NL completeness in the next lecture.

References

[1] Sanjeev Arora, and Boaz Barak. Computational Complexity: A Modern Approach, Cam-

bridge University Press, 2009.

[2] Michael R. Garey, and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness, Macmillan Higher Education, 1979.

[3] Christos H. Papadimitriou, and John N. Tsitsiklis. Complexity of Markov Decision Processes,

Mathematics of operations research, Vol. 12, No. 3, August 1987.

[4] http://en.wikipedia.org/wiki/List_of_PSPACE-complete_problems

7

http://en.wikipedia.org/wiki/List_of_PSPACE-complete_problems

	Introduction
	PSPACE Completeness
	Examples of PSPACE-complete problems

	Quantified Boolean Formula (QBF)
	QBF Game

	NL completeness

