
E0 224: Computational Complexity Theory
CSA, IISc Bangalore

Instructor: Chandan Saha Scribe: Prerak Dhoot

Lecture 11: September 10, 2014

1 Log Space reduction

Consider two languages L1,L2.
If we use the traditional polynomial time reduction to reduce L1 to L2 and given that
L2 ∈ L(log-space) we cannot infer that L1 ∈ L. For if a machine M is using poly-
time to reduce an instance of L1 into an instance of L2, it might mean that M is using
poly-space(to store the intermediate results).Hence, it is necessary that M be a log-space
machine to ensure that the conversion process is carried out in log-space.

Note: It may be possible that x is reduced to f(x) where x ∈ L1 and f(x) ∈ L2 but |f(x)|
uses poly-space. In such a case, it would not be possible to write the complete f(x) on
the output tape of the log-space machine. To overcome this problem we use a technique
called ”Implicit Log-space Reduction”

1.1 Definition: Implicitly Log-space Computable

A function f : {0, 1}∗ → {0, 1}∗ is implicitly log-space computable if for every x ∈ {0, 1}∗,
|f(x)| = O(|x|c) for a constant ’c’ and the following two languages are in L.

1)Bf = { 〈x, i〉 : f(x)i = 1 }
2)Bf ′ = { 〈x, i〉 : i≤ |f(x)| }

As mentioned above |f(x)| may be using poly-space, but we do not construct it all at once.
We only generate the needful bit using a log-space machine and perform computation on
it. We thereby ensure that the complete process is carried out in log-space.

We finally define log-space reduction in the following manner.

1.2 Definition: Log-space Reduction

A language B reduces in log-space to a language C (denoted by B≤l C) if there is an
implicitly log-space computable function f such that x ∈ B iff f(x) ∈ C.

1

Lemma 1.1 If B≤l C and C ≤l D then B≤l D

Proof: Let f and g be the two implicitly log-space computable functions such that x ∈ B
iff f(x) ∈ C and y ∈ C iff g(y) ∈ D.

We infer that x ∈ B ↔ f(x) ∈ C ↔ g(f(x)) ∈ D

Goal: To show that g(f(x)) is implicitly log-space computable.

Let Mf be a log-space machine that reduces 〈x, i 〉 to f(x)i

log-space
〈x, i〉 − − −−−−−−−−− > f(x)i (i≤ |f(x)|)

(Mf)

Let Mg be a log-space machine that reduces 〈 y, j 〉 to g(y)j

log-space
〈y, j〉 − − −−−−−−−−− > g(y)j (j≤ |g(y)|)

(Mg)

Consider a function h = g ◦ f i.e h(x) = g(f(x))
To show that B≤l D , we would like to design a log-space machine Mh to perform the
reduction from an instance of B into an instance of D using implicit log space reduction.

log-space
〈x, k〉 − − −−−−−−−−− > h(x)k / g(f(x))k (k≤ |g(f(x))|)

(Mh)

Here is how the log-space machine Mh works. Given an input 〈x, k〉 to Mh, Mh starts
simulating Mg on f(x). For this, Mg needs access to f(x). However we do not have access
to f(x)(since we are never computing f(x) all at once) and therefore we pretend that
f(x) is there on a fictitious tape

- - - - - - - - - - - y = f(x)i - - - - - - - - - - - i
⇑
Mg

Fig: Working of Mh

The moment Mh needs to access a bit (say the i’th bit of f(x)), it postpones Mg , saves
the contents of Mg on it’s own tape and starts Mf with input 〈x, i〉 to generate output
y = f(x)i. Mh then feeds the output of Mf as an input to Mg to give g(f(x))k , which
gives us the required reduction from B to D in log-space. Note that Mh always saves the
position ’i’ on it’s tape since f(x) is on a fictitious tape. Storing the position ’i’ takes
log|f(x)| space.♠

2

Corollary 1.1 Suppose B≤l C and C ∈ L then B ∈ L

Let Mc be the log-space machine which decides C.

To show B ∈ L we would like to have a function f to be an implicitly log-space com-
putable function such that x ∈ B iff f(x) ∈ C.

Consider Mf to be a log-space machine which reduces 〈x, i 〉 to f(x)i

log-space
〈x, i〉 − − −−−−−−−−− > f(x)i (i≤ |f(x)|)

(Mf)

Whenever Mc needs some f(x)i bit , we run Mf over 〈x, i〉. We then compute f(x)i on
Mc using log-space. Thus, we can decide if x ∈ B in log-space, first by using the implicit
log-space reduction to reduce 〈x, i 〉 into f(x)i and then by computing f(x)i on log-space
machine Mc. Thus B ∈ L.♠

2 Class NL-complete:

Class NL-complete is defined analogous to class NP-complete.

Definition: A language C ∈ NL is NL-complete if every language B ∈ NL reduces in
log-space to C.

2.1 PATH is in NL (Non-deterministic log-space)

PATH = {〈G, s, t〉 : G is a directed graph and vertex ’t’ is reachable from vertex ’s’ in
G }.

Proof : Consider a non-deterministic machine N which stores a vertex-index(i.e a sequen-
tial number assigned to a vertex). Let the vertex-index be initialized to the index of vertex
’s’. Let V be the set of vertices in G. N selects a vertex non-deterministically, and checks
if it is adjacent to vertex ’s’ from the adjacency matrix. If the guessed vertex is not adja-
cent, we terminate such paths otherwise N updates the vertex-index to the index of the
guessed vertex. We recursively follow the same procedure. Also, everytime we find a new
vertex in a path ,we decrement a counter initially set to |V | . Once the counter reaches
zero, we halt the machine, since a path can have a maximum length of |V |. Finally if the
vertex-index of ’t’ has been encountered, it implies vertex ’t’ is reachable from vertex ’s’
in G. Note that every path will be using a space equivalent to storing a vertex-index i.e
|log(V)|. Also the counter used to count the number of vertices encountered in the path
takes |log(V)| space. Hence, by using the above NL-machine we can decide if an instance
〈G, s, t〉 ∈ PATH. Thus PATH is in NL. ♠

3

Theorem 2.1 PATH is NL-complete

PATH = {〈G, s, t〉 : G is a directed graph and vertex ’t’ is reachable from vertex ’s’ in
G }

Proof: We have already proved above that PATH is in NL. We now prove that if
B ∈ NL then B≤l PATH. Thus, we would like to devise a function f that is an implicitly
log-space computable function such that x ∈ B ↔ f(x) ∈ PATH given that B ∈ NL.

Let Mb be the NL machine that decides B. Every configuration of Mb takes c.log(x) space
and hence there can be at most 2c.log(x) configurations which is O(poly|x|)

Since f(x) will be an instance of PATH , let f(x) =
〈
G(Mb,x), cstart, caccept

〉
. We now

show how to obtain such a graph G(Mb,x) using implicit log-space reduction where caccept
is reachable from cstart in G(Mb,x) iff x ∈ B. Note that the start configuration cstart and
accepting configuration caccept are special in a way that they can be distinguished from all
other configurations.

Let the configurations of Mb be the nodes of the graph in PATH. Since the total number
of configurations are O(poly|x|), the adjacency matrix of a graph with O(poly|x|) nodes
will also be polynomial in size(O(poly|x|)).
Therefore, |G(Mb,x)| = |x|c

- - - - - - - - - - - |G(Mb,x)| - - - - - - - - - - - cstart caccept
⇑
kth

Fig: f(x) on a fictitious tape.

Every kth bit in G(Mb,x) corresponds to some 〈ci, cj〉th entry in the adjacency matrix of
G(Mb,x).

• c1 c2 cm
c1 0 1
c2 0 0 1 ... 1
... 0
... 1
cm 0

Fig: Adjacency matrix of a G(Mb,x) with m nodes.

The adjacency matrix contains an entry 1 at position 〈ci, cj〉 iff there’s an edge from ci to
cj in G(Mb,x).
Everytime we need to find out some entry 〈ci, cj〉, we run Mb on configuration ci. We can
get only two configurations from a given configuration using the transition function of Mb.
In all we need O(log x) space to store these two new configurations. We then verify if cj is
one of those. If cj can be reached then entry 〈ci, cj〉 = 1 else 0. Thus the adjacency matrix
is constructed in such a way that the entry 〈ci, cj〉 = 1 iff cj can be reached from ci using
the transition function of Mb. A path in G(Mb,x) would hence imply a set of consecutive
configurations generated using the transition function of Mb. Every configuration of Mb

4

used to accept ’x’, respectively represents a vertex in the path of cstart to caccept. Thus,
there is a path from cstart to caccept in the graph iff Mb accepts x.♠

Remark: It is unknown whether PATH ∈ L and is still an open question. If it is proved
that PATH ∈ L, it would immediately imply NL = L since PATH is known to be NL-
complete. Also PATH /∈ L would imply NL 6= L.

3 Certificate of NL

Let a language B ∈ NL. Also Let Mb be the NL machine for B.
Given the above two statements, we infer the following points.

1) The verifier uses the certificate u as one of the Mb’s non-deterministic choices on input x.

2) Mb uses log-space to verify u.(given the non-deterministic choices of u)

Thus, a certificate(u) can take polynomial space but it may not be possible to store such
a certificate on a log-space machine. So the alternative is to store ’u’ on a separate tape
which is read once. The verifier then needs to read u from left to right only once, never
moving the head to the left.

3.1 Alternate Definition of Class NL using a certificate

Definition: A language B ∈ NL iff there exists a log-space machine M such that
x ∈ B ↔ ∃u ∈ {0, 1}q(|x|) such that M(x, u) = 1, where u is a read once certificate and
q is a polynomial function.

Remark: The above discussion shows that if B ∈ NL then indeed there is a log-space
machine M and a polynomial function q such that x ∈ B ↔ ∃u ∈ {0, 1}q(|x|) such that
M(x, u) = 1 where u is present on a separate ’read once’ input tape of M .

3.2 Proving the Converse...

Suppose there is a log-space machine M and a polynomial function q such that
x ∈ B ↔ ∃u ∈ {0, 1}q(|x|) such that M(x, u) = 1 where u is given on a separate ’read
once’ input tape of M then show that B ∈ NL.

Proof: The machine M ′ deciding B will essentially try to simulate the verifier except
that it does not have an access to the certificate. For each bit the verifier reads, M ′

non-deterministically guesses a bit. Note that the bit read by the verifier is one of the bit
guessed by M ′. As the verifier reads the certificate from left to right once, M ′ keeps on
guessing bits non-deterministically. Similarly, as the verifier keeps on computing bits the
instance it reads (since the certificate is ’read once’), M ′ will also keep on computing bits
as soon as they are guessed. We know that the size of certificate u is |q(x)| so we halt
the machine after counting |q(x)| steps. Such a counter takes c.log(x) bits. When the
machine halts, we can decide if x ∈ B. Thus, for every x, we can decide if x ∈ B using
the NL machine described above. Therefore B ∈NL. ♠

5

4 References

S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach,” Cam-
bridge University Press, 2009

6

