
E0 224 Computational Complexity Theory Indian Institute of Science, Bangalore
Fall 2014 Department of Computer Science and Automation

Lecture 12: Sep 15, 2014
Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Sachin Kumar Srivastava

12.1 Certificate Definition of the class NL

We define NL using certificates as we did it for NP instead of Non deterministic Turing Machines. But the certificate
provided can be too long that the space required is much larger than log-space. We resolve this issue by considering
the certificate to be read-once i.e. we can see any bit of the certificate only once rather than again and again. Now, we
define NL using certificate.

A language L ⊆ {0, 1}∗ is in class NL iff there is a polynomial function q(.) and a log-space Turing Machine M such
that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|) and M(x, u) = 1,

where u is given in special ”read once tape” to M, where by M (x, u) we denote the output of M where x is placed on
its input tape and u is placed on its special read-once tape, and M uses at most O(log |x|) space on its read/write tapes
for every input x.

Figure 12.1: Certificate view of NL. The certificate for input x is placed on a special read-once tape on which the
machines head can never move to the left (figure is taken from [1]).

Note : If we allow it to move left and right, it becomes NP.

Example of an NL-Complete problem is

12-1

Lecture 12: Sep 15, 2014 12-2

PATH = {< G, s, t > | G is a directed graph and there is a path from s to t in G}

co-NL = {L|L ∈ NL}

Remark : PATH = {< G, s, t > | G is a directed graph and there is no path from s to t in G}

PATH is co-NL complete under implicitly log-space reduction.

Theorem 12.1. (Immerman-Szelepcsényi, ’88-’89)

NL = co-NL

Proof Sketch : As PATH is co-NL complete, hence using the certificate definition of NL, we know if we give a
O(log-space) algorithm A such that for every n-vertex graph G and vertices s and t, there exists a polynomial size
read-once certificate u such that A(G, s, t, u) = 1 if and only if t is not reachable from s in G, then we know this
language(PATH) belongs to NL. Here, A has only read-once access to u.

Thus, it is sufficient to show that PATH ∈ NL

Goal : We need to design a poly-size certificate, u, for an input x =< G, s, t >, that will convince the log-space
verifier that indeed there is no path from s to t in G. It will follow from the construction that the polynomial certificate
can be assumed to be read-once.

Attempt to construct such a certificate :

Suppose G has n vertices and

ci = Set of all vertices reachable from s by a path of length i or less.

e.g. c0 = {s}

c1 = vertices adjacent to s ∪ {s} and so on.

Observation : c0 ⊆ c1 ⊆ c2 ⊆ ⊆ cn.

Task : Design a certificate that will convince the verifier that t /∈ cn.

Question 1 : Suppose the verifier alreadyknows |cn|. Can we design a certificate for ”t /∈ cn”?

Question 1a : Given a vertex v and an index i ∈ [n],can we design a certificate for ”v ∈ ci”?

Answer 1a : The certificate is a path from s to v of length i or less.

B0,i,v : s s1 s2 v

This certificate represents that vertex v is reachable from s in atmost i steps. The certificate consists of the path from
s to v and every two consecutive vertices are the adjacent vertices in the graph G. This is for every v ∈ ci for all
I ∈ {0, 1, 2,, n}.

Question 1b : Is this certificate ”read-once”?

Answer 1b : We order the vertices according to some relative ordering on them in G. Hence, this certificate is the
”read-once” as we have to check in B0,i,v for (a.) first vertex is s , (b.) every two consecutive vertices in the certificate
are adjacent in graph G , (c.) the no. of such pairs is atmost i , and (d.) the last vertex is v. We can check (a.) by the
order of s in the relative ordering in G , (b.) by looking into the adjacency matrix of the graph G, (c.) by maintaining
a count which should be less than or equal to i, (d.) same as (a.).

Answer 1 : The certificate would be all vertices in cn(6= t) and their certificates(paths of length n or less).

Lecture 12: Sep 15, 2014 12-3

B1,n,t : v1 B0,i,v1 v2 B0,i,v2 vm B0,i,vm ,

v1 ∈ cn v2 ∈ cn vm ∈ cn

where |cn| = m , enforce the certificate to be such that v1 < v2 < < vm.

This certificate represents the certificate for every v ∈ cn. It contains the certificate for every vertex that is reachable
from s in atmost n steps. Hence, we can count all such vertices (and their validity that the certificate is valid) and if
the count is equal to |cn| = m and none of the vertices is t, it means that t /∈ cn.

Question 2 : How to convince the verifier that indeed |cn| = m?

→ Suppose yes, and the certificate is B2,n , then overall certificate(read-once) is :-

B2,n B1,n,t

First part of the certificate convinces the verifier that |cn| = m, while the second part convinces that ”t /∈ cn”

Question 2a : Suppose the verifier knows that |cn−1|. Can we design a certificate to convince that |cn| = m?

Condition : We know |cn−1|

Observation : For every vertex v ∈ G, convince the verifier :

(a) v ∈ cn : for such vertices we will give the certificate (i.e. B0,n,v) as paths from s to v that will contain
atmost n + 1 vertices so that the maximum path length is n. Now we know all the vertices that are reachable from s
in atmost i steps. We will check if this equals m because |cn| = m.

or (b) v /∈ cn (see below).

Question 3 : How can we design a certificate that convinces that ”v /∈ cn” knowing |cn−1| = m′?

u1 B0,n−1,u1 um′ B0,n−1,um′

i.e. for each ui, we will check for its validity whether it belongs to cn−1. Hence, we know cn−1. Now, we check that
v is not in the uith row of the adjacency matrix. This ensures that v is not the neighbour of any vertex that belongs
to cn−1.Hence, we ensure that v /∈ cn. Recursively verify for |cn−1| , |cn−2| , , |c0| (bottom-up iteratively). ⇒
Polynomial-length read-once certificate(it is polynomial as we have total maximum n vertices and for every such
vertex, we give the path from s to t (if exists) and we have total of n such certificates⇒ O(n3) i.e. polynomial in input
size). And this is read-once also.

12.2 Polynomial Hierarchy

EXACT INDSET = {< G, k > | the largest independent set of G has size k}

< G, k >∈ EXACT INDSET if ∃ an independent set in G of size k and every subset of vertices of size k + 1 is not
independent.

< G, k >∈ EXACTINDSET if ∃u ∈ {0, 1}p(.) ∀v ∈ {0, 1}p(.) M(x, u, v) = 1.

We do not see any short certificate easily for : < G, k >∈ EXACT INDSET iff there exists an independent set of size
k in G and every other independent set has size atmost k.

MIN-EQ-DNF = {< φ, k > | there is a DNF ψ of size k that is equivalent to φ}.

Here also, we do not see any short certificate of membership for MIN-EQ-DNF. Hence, for such languages such as
EXACT INDSET and MIN-EQ-DNF we should not restrict our definition only to ”exists” or only ”for all” but extend

Lecture 12: Sep 15, 2014 12-4

Figure 12.2:

the definition to a mixture of these quantifiers.

Class
∑P

2 :

A language L ∈
∑P

2 if there is a polynomial function q(.) and a poly-time TM, M such that x ∈ L ⇐⇒ ∃u ∈
{0, 1}q(|x|)∀v ∈ {0, 1}q(|x|),M(x, u, v) = 1.∑P

1 = NP ⊆
∑P

2

EXACT INDSET, MIN-EQ-DNF ∈
∑P

2

(for MIN-EQ-DNF, u is the DNF and v is the set of all possible assignments).

Class
∑P

i (for i≥1) :

A language L ∈
∑P

i if there is a polynomial function q(.) and a poly-time TM, M , such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|),∀u2 ∈ {0, 1}q(|x|),∃u3 ∈ {0, 1}q(|x|),, Qiui ∈ {0, 1}q(|x|) and

M(x, u1, u2, ..., ui) = 1.

Observation : ∀i,
∑P

i ⊆
∑P

i+1.

In figure 12.3, we use ∆P
i which is defined as ∆P

i = P
∑P

i−1 .

Definition : The Polynomial Hierarchy is the set :

PH = ∪i≥1
∑P

i .

Definition : ΠP
i = {L|L ∈

∑P
i }

= co-
∑P

i .

Equivalent Definition of PH : PH = ∪i≥1ΠP
i .

Claim :
∑P

i ⊆ ΠP
i+1.

Proof Sketch : Suppose L ∈
∑P

i , then L is defined as

Lecture 12: Sep 15, 2014 12-5

Figure 12.3: Pictorial representation of the polynomial time hierarchy. The arrows denote inclusion (figure is taken
from [2]).

x ∈ L ⇐⇒ ∃u1,∀u2,, Qiui,M(x, u1, u2,, ui) = 1.

So, for such a language, we can design a Turing MachineM ′ such that with the input we will append a v ∈ {0, 1}q(|x|)
such that it will not read this v and this v is polynomial in size of x (i.e. q(.) is a polynomial function). Now it can be
seen as

x ∈ L ⇐⇒ ∀v,∃u1,∀u2,, Qiui,M
′(x, v, u1, u2,, ui) = 1. We can see that this is the definition of

ΠP
i+1 ⇒ L ∈ ΠP

i+1.

Here is how L looks like :

x /∈ L ⇐⇒ ∀u1,∃u2,,¬Qiui,M(x, u1, u2, t...., ui) = 0

⇒ x ∈ L ⇐⇒ ∃u1,∀u2,, Qiui,M(x, u1, u2,, ui) = 1

⇒ ΠP
i = co

∑P
i = {L : L ∈

∑P
i }

Equivalent Definition of ΠP
i : Same as

∑P
i but starts with ∀ quantification.

Observation : PH ⊆ PSPACE

Proof Sketch : Pick any language in PH, take PSPACE TM to verify. Any language in PH can be seen as the Quantified
Boolean Formula over ∃ and ∀. So, given a string x and i certificates for some

∑P
i , we can check using the verifier as

we can reuse the space used for checking using one certificate.In this way, we have to enumerate for every certificate
if quantifier is ”for all” and for atleast one certificate for ”exists” where it satisfies.Hence, we can see that we have
to enumerate over all certificates but at one point we just have to use the space for one certificate.So, total space

Lecture 12: Sep 15, 2014 12-6

required is polynomial in the size of input(i.e. number of quantifiers multiplied by the size of each certificate(i.e.
again polynomial in the size of input)⇒ polynomial) Hence, PH ⊆ PSPACE.

12.3 References

[1] S. ARORA and B. BARAK “Computational Complexity: A Mordern Approach,” Cambridge University
Press, 2009

[2] http://en.wikipedia.org/wiki/Polynomial hierarchy

