
E0224 Computational Complexity Theory Indian Institute of Science, Bangalore
Fall 2014 Department of CSA

Lecture 13: September 17, 2014
Lecturer: Chandan Saha Scribe: Sumant Hegde

13.1 Introduction

Previously we were introduced to the Polynomial Hierarchy(PH). In this lecture we study properties of the
PH in detail.

13.1.1 Recap: Classes Σp
i , Πp

i and PH

Definition: A language L is in Σp
i if there is a polynomial q and a deterministic polynomial time machine

M such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)...Qiui ∈ {0, 1}q(|x|) M(u1, u2, ..., ui) = 1

where Qi is ∃ if i is odd and ∀ if i is even. (This interpretation of Qi is implicit in the rest of the notes.
Also, for brevity we may write just Qiui instead of Qiui ∈ {0, 1}q(|x|).)
Definition: Πp

i = {L : L ∈ Σp
i } ∀i ∈ N

Definition: PH = ∪i≥1Σp
i ∀i ∈ N

Observations:

• Πp
i = coΣp

i ∀i ∈ N

• PH = ∪i≥1Πp
i

• Σp
i ⊆ Σp

i+1 ∀i ∈ N

• Πp
i ⊆ Σp

i+1 ∀i ∈ N

• Σp
i ⊆ Πp

i+1 ∀i ∈ N

• PH ⊆ PSPACE

13.2 Properties of the Polynomial Hierarchy

13.2.1 PH collapse

We say that the PH collapses to level i if PH = Σp
i . In other words, if PH collapses to some level then a

finite number of quantifiers (followed by a poly-time computable predicate) are sufficient to define all the
languages in PH. It is conjectured that the PH does not collapse to any finite level i as shown in the figures
below. More the number of (alternating) quantifiers, more the expressive power.

13-1

13-2 Lecture 13: September 17, 2014

Next we prove the equivalence “PH collapses to level i” ⇐⇒ Σp
i = Σp

i+1 ⇐⇒ Σp
i = Πp

i . Lemma 1.a
proves that Σp

i = Σp
i+1 =⇒ Σp

i = Πp
i while lemma 1.b proves that if Σp

i = Πp
i then PH collpses to level i,

which by definition implies Σp
i = Σp

i+1. Lemma 1.c proves a corollary: if P = NP then PH collapses to P.

Lemma 1.a: Σp
i = Σp

i+1 implies that Σp
i = Πp

i

Proof: Since Σp
i = Σp

i+1, the observation Πp
i ⊆ Σp

i+1 (see (13.1.1)) can be rewritten as

Πp
i ⊆ Σp

i (13.1)

Since there is a one-to-one correspondence between languages in a class and languages in its co-class, (13.1)
implies

coΠp
i ⊆coΣp

i

Σp
i ⊆Πp

i (13.2)

From (13.1) and (13.2) we have Σp
i = Πp

i . �

Lemma 1.b: If Σp
i = Πp

i then PH = Σp
i

Proof: We prove that Σp
j = Σp

i ∀j ≥ i, by doing induction on j.
Hypothesis: Σp

j = Σp
i

Base case: j = i: obviously Σp
i = Σp

i

Goal: We would like to show that Σp
j+1 = Σp

i .
Let L be a language in Σp

j+1. Then there exists a polynomial-time function q and a polynomial-time machine
M such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qj+1uj+1 ∈ {0, 1}q(|x|) M(x, u1, u2, · · · , uj+1) = 1 (13.3)

Define a new language L′ as follows.

〈x, u1〉 ∈ L′ ⇐⇒ ∀u2 ∈ {0, 1}q(|x|)∃u3 ∈ {0, 1}q(|x|) · · ·Qj+1uj+1 ∈ {0, 1}q(|x|) M(x, u1, u2, · · · , uj+1) = 1

(Here we are treating 〈x, u1〉 as one string belonging to L′.)
Clearly, L′ is defined by a boolean formula of j alternating quantifiers, starting with ∀. Therefore L′ ∈ Πp

j .

Lecture 13: September 17, 2014 13-3

Now,

L′ ∈ Πp
j

=⇒ L′ ∈ coΣp
j

=⇒ L′ ∈ coΣp
i (from induction hypothesis)

=⇒ L′ ∈ Πp
i

=⇒ L′ ∈ Σp
i (given Πp

i = Σp
i)

which means there exists a polynomial-time machine M ′ such that

〈x, u1〉 ∈ L′ ⇐⇒ ∃v1 ∈ {0, 1}q(|x|)∀v2 ∈ {0, 1}q(|x|) · · ·Qivi+1 ∈ {0, 1}q(|x|) M ′(x, u1, v1, v2, · · · , vi) = 1

Plugging the above expression in (13.3),

x ∈ L ⇐⇒ ∃u1∃v1∀v2∃v3 · · ·QiviM
′(x, u1, v1, v2, · · · , vi) = 1

⇐⇒ ∃u1v1∀v2∃v3 · · ·QiviM
′(x, u1v1, v2, · · · , vi) = 1

From the last step L ∈ Σp
i . Thus Σp

j+1 = Σp
i . �

Lemma 1.c: If P = NP then PH = P
Proof: We prove that Σp

i = P ∀i ∈ N, by doing induction on i.
Hypothesis: Σp

i = P
Base case: Σp

1 = NP = P (given)
Goal: We would like to show that Σp

i+1 = P.
Let L be a language in Σp

i+1. Then there exists a polynomial-time function q and a polynomial-time machine
M such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qi+1ui+1 ∈ {0, 1}q(|x|) M(x, u1, u2, · · · , ui+1) = 1 (13.4)

Define a new language L′ as follows.

〈x, u1〉 ∈ L′ ⇐⇒ ∀u2 ∈ {0, 1}q(|x|)∃u3 ∈ {0, 1}q(|x|) · · ·Qi+1ui+1 ∈ {0, 1}q(|x|) M(x, u1, u2, · · · , ui+1) = 1

Clearly, L′ ∈ Πp
i . Now,

L′ ∈ Πp
i

=⇒ L′ ∈ coΣp
i

=⇒ L′ ∈ coP (from induction hypothesis)

=⇒ L′ ∈ P

Thus, there exists a polynomial-time machine M ′ that decides L′. Substitute M ′ in (13.4):

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)M ′(x, u1) = 1

But this implies L ∈ NP, from the very definition of NP. Further, as P = NP (given), we have L ∈ P. Thus,
Σp

i+1 = P. �

13-4 Lecture 13: September 17, 2014

13.2.2 Σp
i completeness

As always, the definitions of completeness and reduction are guided by the complex-theoretical question
we are interested in. When defining PSPACE-completeness, we asked “Is PSPACE = P?”. Knowing that
Σp

i ∈ PSPACE for all i, the natural question we now ask is: “Is Σp
i = P?”. Accordingly, we are interested in

polynomial-time reduction.

Definition. A language L is Σp
i -hard if for every L′ ∈ Σp

i , L′ ≤p L. Further, L is Σp
i -complete if L ∈ Σp

i .

Now we need to give an example for a Σp
i -complete problem in general (i.e., for any i). For this let us

examine some special cases that we are already familiar with.
We have often said, “CNFSAT = { An unquantified formula ϕ such that ∃x ∈ {0, 1}∗ϕ(x) = 1} is NP-
complete”. We could convey the same fact by saying “CNFSAT = {A true quantified boolean formula of the
form ∃x ∈ {0, 1}∗ϕ(x), where ϕ is an unquantified boolean formula} is Σp

1-complete”. Similarly, the statement
“TAUTOLOGY = { An unquantified formula ϕ such that ∀x ∈ {0, 1}∗ϕ(x) = 1} is coNP-complete” can by all
means be rephrased as “TAUTOLOGY = {A true quantified boolean formula of the form ∀x ∈ {0, 1}∗ϕ(x),
where ϕ is an unquantified boolean formula} is Πp

1-complete”. Notice that, in the rephrased version of the
statement of a complete problem (of some class in the polynomial hierarchy), we are always defining a set
of “all possible true quantified boolean formulas,” of some form. The form is determined essentially by the
definition of the class. We capture the idea formally, by first defining ΣiQBF and ΣiSAT as follows.

ΣiQBF ={∃x1∀x2∃x3 · · ·Qixiϕ(x1, · · · , xi) where ϕ(x1, · · · , xi) is an unquantified boolean formula}
ΣiSAT ={true ΣiQBF}

ΣiSAT is in Σp
i . To elaborate, let y = ∃x1∀x2 · · ·Qixiϕ(x1, · · ·xi) be a QBF. Also, think of a DTM M

such that M(y, x1, · · · , xi) = 1 if and only if ϕ(x1, · · · , xi) = 1. (That is, M first parses y and extracts
the boolean formula ϕ. M is also supplied the assignments x1, · · · , xi, using which it evaluates ϕ, in poly-
time, and simply outputs the answer.) Now y ∈ ΣiSAT ⇐⇒ ∃x1∀x2 · · ·Qixiϕ(x1, · · · , xi) = 1 ⇐⇒
∃x1∀x2 · · ·QixiM(y, x1, · · · , xi) = 1. From the last step, ΣiSAT is in Σp

i .

Claim: ΣiSAT is Σp
i -complete.

Proof: The language is in Σp
i as we have just seen. Hence it suffices to show that for any language L ∈ Σp

i ,
L ≤p ΣiSAT is true. We know the following about L: There exist a poly-time TM M and a polynomial q
such that

∀x ∈ {0, 1}∗ x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|) M(x, u1, u2, · · · , ui) = 1
(13.5)

Our goal is to define poly-time reduction function f such that x ∈ L ⇐⇒ f(x) ∈ ΣiSAT. Noticing the
alternating sequence of quantifiers in variables u1, · · · , ui in (13.5), we realize that if we can somehow convert
the execution M(x, u1, · · · , ui) into a boolean formula ϕx in variables (u1, · · · , ui), then we are done, as we
can then argue as follows.

x ∈ L ⇐⇒ ∃u1∀u2 · · ·Qiuiϕx(u1, · · · , ui) = 1

⇐⇒ ∃u1∀u2 · · ·Qiuiϕx(u1, · · · , ui) is a true ΣiQBF

⇐⇒ f(x) = ∃u1∀u2 · · ·Qiuiϕx(u1, · · · , ui), f(x) is poly-size, f is poly-time w.r.t x.

The size of ϕx(u1, · · · , ui) is indeed polynomial in x, and the conversion from M to ϕx is poly-time in x:
this directly follows from the Cook-Levin theorem (Lecture 4).

Lecture 13: September 17, 2014 13-5

13.2.3 PH-completeness

While classes Σp
i and Πp

i (for all i) have complete problems, PH does not have one, under the assumption
that PH does not collapse.
Claim: If there exists a PH-complete problem, then there exists an i such that PH = Σp

i (i.e., PH collapses
to level i).
Proof: Suppose there exists a PH-complete language L. Then there exists some i such that L ∈ Σp

i ,
as PH = ∪i≥1Σp

i ∀i ∈ N. This implies that L ≤p ΣiSAT since ΣiSAT is Σp
i -complete. But then,

since all the languages in PH can be reduced to L, from the transitivity property of reduction we have
L′ ≤p ΣiSAT ∀L′ ∈ PH. In other words, L′ ∈ Σp

i ∀L′ ∈ PH. (This is because any language that reduces in
poly-time to a language in Σp

i is in turn in Σp
i .) This, together with the fact that Σp

i ⊆ PH, shows PH = Σp
i . �

13.3 Defining polynomial hierarchy using oracle machines

A NTM with access to oracle-ΣiSAT is able to decide exactly all languages in Σp
i+1.

Claim: Σp
i = NPΣi−1SAT

Let us prove a particular case of the above claim, with i = 2.
Corollary: Σp

2 = NPSAT

Proof: The proof has two parts. Part 1 shows Σp
2 ⊆ NPSAT and part 2 shows NPSAT ⊆ Σp

2. Before starting
part 1, let L be a language in Σp

2. Then there is a DTM M and a polynomial q such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1

In part 1, we need to show that there is a NTM M ′ with access to oracle-SAT that can decide L. That is,
we need to show that:

∃u1∀u2M(x, u1, u2) = 1 ⇐⇒ M ′SAT(x) = 1 (13.6)

Being a NTM, M ′ can guess u1 (which takes care of “∃u1” in (13.6)). Once u1 is fixed this way, M ′

needs to find whether ∀u2M(x, u1, u2) = 1. This question itself makes a language L: 〈x, u1〉 ∈ L ⇐⇒
∀u2M(x, u1, u2) = 1. Further L ∈ coNP from the alternative definition of coNP and hence 〈x, u1〉 can
be Karp-reduced to a TAUTOLOGY instance ϕx,u1

. Indeed, M ′ reduces 〈x, u1〉 to ϕx,u1
in poly-time and

checks if ϕx,u1
∈ TAUTOLOGY. The checking step is poly-time as M ′ has access to oracle-SAT and ¬ϕ(·) 6∈

SAT ⇐⇒ ϕ(·) ∈ TAUTOLOGY. Thus

∃u1∀u2M(x, u1, u2) = 1 ⇐⇒ ∃u1ϕx,u1 ∈ TAUTOLOGY ⇐⇒ M ′SAT(x) = 1

That completes part 1 of the proof.
For part 2, our first attempt would be to mimick part 1: map the nondeterministic choice u1 to ∃u1, and
map the rest of the activity of M ′ (including querying oracle) to some formula of the form ∀ ·M(· · ·) = 1.
That is,

M ′SAT(x) = 1 =⇒ ∃u1∀u2(oracle-SAT’s answer for question on ϕx,u1 comes here)

The issue with the above mapping is, it assumes that M ′ makes only one query to the oracle, whereas in
principle M ′ can make polynomially many queries to the oracle and every next move of M ′ can depend on
answers given by the oracle in the past queries.
The main idea is to nondeterministically guess all the future queries as well as the SAT oracle’s answers and
then make a single coNP query whose answer verifies that all this guessing was correct[1].

13-6 Lecture 13: September 17, 2014

Specifically, there exists a sequence of nondeterministic choices with which M ′ makes m queries to oracle and
accepts x, as follows. Let c be the sequence of choices. Let a1, · · · , am be the answers by the oracle for queries
ϕ1, · · · , ϕm respectively. Interpret ai as follows. If ai = 0 then ϕi is not satisfiable (i.e., ∀vi ϕi(vi) = 0), and
if ai = 1 then ϕi is satisfiable (i.e., ∃ui ϕi(ui) = 1). Thus we have the following description:

x ∈ L ⇐⇒ ∃c, u1 · · · , um∀v1, · · · , vm such that M ′ accepts x using choice sequence c, answers a1, · · · , am and

∀i ∈ [m]ai = 1 =⇒ ϕi(ui) = 1 and

∀i ∈ [m]ai = 0 =⇒ ϕi(vi) = 0

The expression shows that L ∈ Σp
2.�

13.4 References

[1] Sanjeev Arora and Boaz Barak, Computational Complexity: A Modern Approach, Cam-
bridge University Press, 2009 .

