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1 Introduction

Most of us have encountered circuits before. Visually, Figure 1 shows a typical circuit, a network of nodes engi-
neered to perform a specific computation. There are designated input nodes, that take binary values, and we can
work our way from these gates to a special gate called the output nodes, by performing all the intermediate com-
putations that we encounter. These computational gates can perform one of the three basic boolean operations,
namely and, or, and not.
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Figure 1: A prototypical Boolean Circuit

In this lecture, we will study boolean circuits as a candidate model of computation. These lecture notes are based
on the chapter on Boolean Circuits in [1].

Definition 1 (Boolean circuits).

• For every n ∈ N, an n-input, single-output Boolean circuit C is a directed acyclic graph with n sources (vertices
with no incoming edges) and one sink (vertex with no outgoing edges).
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• All non-source vertices are called gates and are labeled with one of∨,∧ or¬ (i.e.,the logical operations OR,AND,and
NOT). The vertices labeled with ∨ and ∧ have fan-in (i.e.,number of incoming edges) equal to two, and the
vertices labeled with ¬ have fan-in one.

• The size of C,denoted by |C|, is the number of vertices in it.

• If C is a Boolean circuit, and x ∈ {0, 1}n is some input, then the output of C on x, denoted by C(x), is defined in
the natural way. More formally, for every vertex v of C, we give it a value val(v) as follows:

val(x) =


x if x is an input node,

val(x1) + val(x2) ifx is a ∨ gate, and has children x1 and x2,

val(x1)× val(x2) ifx is a ∧ gate, and has children x1 and x2,

1− val(y) ifx is a ¬gate, and y is its child node.

Exercise 1. Can you construct a circuit that computes Parity? That is, this circuit outputs 1 if, and only if, an odd
number of inputs are 1. (Hint: Construct a circuit for two inputs first. Can you build it up from here?)

Evidently, every circuit with n input nodes computes some boolean function from f : {0, 1}n → {0, 1}. We would
now like to propose the notion of a language associated with a circuit. It’s quite natural to suggest that a circuit
accepts those inputs on which evaluates to one. However, this limits the scope of our language only to strings of
length n, which would be unfortunate. But this is easily fixed, by extending our definition to permit a different
circuit for every length of input.

Remark 1. We are experiencing our first significant departure from the spirit of the Turing Machine model — circuits
are inherently non-uniform, that is, we are permitted to engineer different internal mechanisms of computation for
differently-sized inputs!

Let us also consider (asymptotic) measures of the complexity of a circuit. The most obvious measure appears to
be the size of a circuit, and this will be our focus for the most part. One might also consider the depth of a circuit,
which is the length of a longest path from an input node to the output node. The depth of a circuit appears to
reflect the degree to which a circuit can be parallelized.

Also, we will begin by assuming that the circuits we are dealing with have fan-in at most two. Note that restricting
the fan-in gives us a “logarithmic disadvantage” in terms of depth — indeed, any node with fan-in t can be replaced
by an equivalent “sub-circuit” of fan-in two (how?), but will cause the depth to increase by log t (why?). However,
when size is the only consideration, then this assumption is reasonable (up to poly-logarthmic factors).

We are now ready to formally define the notion of the class of languages that can be recognized by a family of
circuits, measured by size.

Definition 2 (Circuit families and language recognition). Let T : N → N be a function. A T(n)-size circuit family is
a sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and a single output, and its size |Cn| ⩽ T(n) for every
n.

We say that a language L is in SIZE(T(n)) if there exists a T(n)-size circuit family {Cn}n∈N such that for every x ∈
{0, 1}n,

x ∈ L ⇔ Cn(x) = 1.

How do circuits compare to Turing machines in expressiveness - does the non-uniformity indeed wield additional
powers? The following simple illustration sets the two models fundamentally apart. We know that there are
(many) languages that cannot be recognized by any Turing machine with finite resources. In sharp contrast, given
enough resources, any boolean function admits a circuit family that decides it. To see this, consider a boolean
function f, and let Lf := {x1, . . . , xt} be the set of strings of length n on which f evaluates to True. Let Si be the
circuit that outputs 1 precisely on input xi = b1b2 · · ·bn. Note that Si is easy to engineer with the use of an AND
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gate on the inputs i for which bi is one, and the negation of the inputs i for which bi = 0. A circuit for accepting
strings in Lf can now be designed as follows: we redirect the inputs to each Si, and then merge the outputs of the
Si’s by an OR gate. Note that this circuit has size proportional to |Lf|, and therefore potentially exponential in
the input.

Since circuits can evidently decide anything given enough resources, our natural next step is to limit these re-
sources to identify interesting classes of languages. The first consideration along these lines is to look at circuits
of polynomial size:

Definition 3 (The class P/poly). P/poly is the class of languages that are decidable by polynomial-sized circuit families.
That is,

P/poly = ∪cSIZE(nc).

Example 1. The language of “all ones”, that is, {1n | n ∈ Z} can be decided by a linear-sized circuit family. The circuit
is simply a tree of AND gates that computes the AND of all input bits.

We will soon show that the class P is contained in P/poly. However, this is also a good time to note that despite
the restriction of resources, circuits continue to be quite powerful: indeed, even linear-sized circuit families can
recognize undecidable languages! To see this:

• Note that any unary language L can be decided by a linear-sized circuit family. For all lengths n for which
the string 1n belongs to L, use the circuit from Example 1. Otherwise, use a trivial circuit that outputs zero.

• Consider the language of Turing Machines that halt on the empty tape. It is easy to see that this is as hard as
the halting problem (why?), and therefore undecidable. On the other hand, recall that every Turing machine
may be encoded as a distinct integer, and therefore we have the following undecidable unary language:

UHALT := {1n | The Turing machine corresponding to n halts on the empty string.}

Therefore, even P/poly continues to be a somewhat awkward class, admitting even undecidable languages. How-
ever, notice that some of the awkwardness is possible because the definition of the class only demands the existence
of a polynomial circuit family, and does not insist on these circuits being efficiently computable. It turns out that
the subclass of P/poly that is constructible tallies with the class P. But before we state this formally, let us show
the containment of P in P/poly first.

Theorem 1. P ⊆ P/poly.

Proof. (Sketch) Let L be a language in P and let M be a deterministic polynomial time TM that decides L in at
most t(n) steps. Define a tableau for M on w to be a t(n)× t(n) table whose rows are configurations of M. The
top row of the tableau contains the start configuration of M on w. The ith row contains the configuration at the
ith step of the computation.

For every cell of the computation tableau, we introduce several gates. For example, for all 1 ⩽ i, j ⩽ t(n), we
introduce the following gates:

• hi,j[q, a], for every state q of M, and for every symbol a in the tape alphabet

• gi,j[q, a], for every state q of M, and for every symbol a in the tape alphabet

The semantics of the gates are as follows: we would like the value of the gate hi,j[q, a] to be one if, and only if,
state of the computation in the ith step is q, the jth tape symbol is a, and the head is at location j. Similarly, we
would like the value of the gate gi,j[q, a] to be one if, and only if, state of the computation in the ith step is q, the
jth tape symbol is a, and the head is not at location j.
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Note that we introduce polynomially many gates for each cell of the tableau. Further, wiring these gates to respect
the semantics is also easily done; because the value of hi,j[q, a], for instance, only depends on the values of

hi−1,j−1[], hi−1,j[] and hi−1,j+1[]

and
gi−1,j−1[], gi−1,j[] and gi−1,j+1[].

We refer the reader to [2] (Theorem 9.30) for a more detailed exposition of this construction.

Let us now return to the theme of small-sized circuits that can be efficiently constructed. We have the following
class:

Definition 4 (P-uniform circuit families). A circuit family {Cn} is P-uniform if there is a polynomial-time TM that
on input 1n outputs the description of the circuit Cn.

We also see that this restriction brings us to the class P.

Theorem 2. A language L is computable by a P-uniform circuit family if, and only if, L ∈ P.

Proof. (Sketch) In the forward direction, we can construct the circuit for L and simulate it in polynomial time.
The reverse direction is obtained by observing that a careful analysis of the proof of Theorem 1 gives us not only
a polynomial-sized circuit, but also a polynomial-time procedure for constructing one.

2 Turing Machines and Circuits

With the examples we have seen so far, clearly Turing machines appear to be less equipped than their circuit
counterparts. Is there a natural way of “empowering” the standard Turing machine model so as to bring them
“at par”? Notice that the additional computational advantage in circuits seems to come from the freedom of
non-uniformity — the ability to have a different internal mechanism for every length of input. Let us, therefore,
equip Turing machines with additional abilities that are proportional to the length of the input.

Imagine, for example, if a Turing machine was provided with one magical bit of information to help its decision-
making on strings of length n. This “advice” is enough, for instance, to assist a Turing machine in deciding any
unary language — the bit would act as an indicator for whether 1n is in the language or not. Already, we have that
there exists advice that can help Turing machines recognize undecidable languages!

On the other extreme, suppose we were allowed to use advice strings of exponential length — that is, suppose
we were allowed to equip our Turing machines with “hints” of length 2n for inputs of length n. Again, this is
powerful enough for us to recognize any binary language: the ith bit of the advice string could act as an indicator
for whether the string that is the binary representation of i is in the language or not. Intuitively, this is analogous
to circuits of exponential size.

This leads us to the following definition of Turing machines with advice.

Definition 5. Let T, a : N → N be functions. The class of languages decidable by time-T(n) TMs with a(n) bits
of advice, denoted DTIME(T(n))/a(n), contains every L such that there exists a sequence {αn}n∈N of strings with
αn ∈ 0, 1a(n) and a TM M satisfying,

M(x, αn) = 1 ⇔ x ∈ L

for every x ∈ {0, 1}n, where on input (x, αn) the machine M runs for at most O(T(n)) steps steps.
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We now formally establish the connection between circuits and Turing machines that take advice. In particular,
we claim that the latter class corresponds to P/poly when the advice is restricted to be polynomially long in the
input.

Theorem 3 (Polynomial-time TM’s with advice decide P/poly). P/poly= ∪c,dDTIME(nc)/nd.

Proof. (Sketch) For a language in P/poly, one could use an encoding of the polynomial-sized circuit as advice. The
TM can then work by simulating the circuit in the advice string on its input to decide the outcome. In the other
direction, we can mimic the proof of Theorem 1 to construct a circuit Dn such that on every input x ∈ {0, 1}n and
α ∈ {0, 1}a(n), Dn(x, α) = M(x, α). We now let the circuit Cn be the one obtained from Dn by fixing the inputs α
to correspond to the actual advice string. It is easily checked that this “hard wiring” can be done by adding only
polynomially many additional gates.

3 The Karp-Lipton-Sipser Theorem

The next question that arises is whether NP is contained in P/poly. Both possible answers to this question lead
to interesting consequences. Since P ⊆ P/poly, demonstrating that there is a language in NP outside of P/polywill
separate P and NP. On the other hand, if NP is contained in P/poly, then we will show in this section that the
polynomial hierarchy collapses to the second level.

As a warm-up observation, note that if NP is contained in the class of P-uniform circuit families, then P = NP.
Indeed, we can take a language in NP and construct the corresponding circuit and simulate it, all in polynomial
time. Mimicking this approach for P/poly at large, however, is tricky because the construction of the circuit is
elusive. However, we can achieve a collapse of PH to the second level by using the existential quantifier to
“guess” the circuit. This brings us to the Karp-Lipton-Sipser theorem.

Theorem 4. If NP ⊆ P/poly, then Π2 ⊆ Σ2.

Proof. (Sketch) Note that it is enough to show that ΣP
2 contains the Πp

2 -complete language Π2-SAT which consists
of all true formulas of the form:

∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1.

Observe that the second part of the formula is a NP-predicate:

∀u ∈ {0, 1}n∃v ∈ {0, 1}nϕ(u, v) = 1.

Since we assume that NP is contained in P/poly, we know that there exists a polynomial sized circuit family {Cn}n∈N
such that for every Boolean formula ϕ and u ∈ {0, 1}n, the circuit Cn(ϕ,u) evaluates to one if, and only if, there
exists a certificate v ∈ {0, 1}n such that ϕ(u, v) = 1.

It can be shown that we can do more: we can in fact obtain a circuit family {Dn}n∈N such that for every Boolean
formula ϕ and u ∈ {0, 1}n, the circuitDn(ϕ,u) outputs v if there exists a certificate v ∈ {0, 1}n such thatϕ(u, v) = 1,
and outputs 0 otherwise.1

So instead of using the NP-predicate above, we can guess the circuit Dn (recall that we are only assured of its
existence), and feed the output of the circuit as the certificate in the NP-predicate (instead of v). We know that
the circuit family Dn is polynomially bounded; and if the size of the circuit Dn is q(n) for some polynomial q
then it has a representation that uses at most 10q(n)2 bits. This gives us the following equivalent formula:

1We leave this as an exercise; also the reader is welcome to refer to these lecture notes for an illustration.
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∃w ∈ {0, 1}cq(n)2∀u ∈ {0, 1}n : w describes a circuit D and ϕ(u,D(ϕ,u)) = 1.

The truth of this predicate can be verified in Σ
p
2 , since we can simulate the circuit D in deterministic polynomial

time.

4 Circuit Lower Bounds

Are there functions that cannot be computed by small circuits? Let’s get some simple insights by counting:

• The total number of boolean functions on n inputs is 22n .

• Since any boolean circuit of size t can be described by a (t×t) adjacency matrix, the total number of boolean
circuits of size t is 2ct log t, where c is an appropriate constant.

Since every circuit computes a fixed boolean function, when:

2ct log t < 22
n

we “fall short” of circuits of size t — there then exists a boolean function that cannot be computed by a circuit of
size t. The above is true for, say, t = 2n/n(c + 1). This brings us to the following simple lower bound, by using
an upper bound for the constant c.

Theorem 5. For every n > 1, there exists a function f : 0, 1n → 0, 1 that cannot be computed by a circuit C of size
2n/(10n).

5 The Classes NC and AC

The depth of a circuit is the length of the longest directed path from an input node to the output node. A circuit
of size s and depth d for some problem can be easily turned into a parallel algorithm for the problem using s

processors and running in “wall clock” time d. Thus, it is interesting to understand when low-depth circuits for
problems exist. From a different point of view, we might expect that lower bounds would be easier to prove for
low-depth circuits. These considerations motivate the following definitions.

Definition 6 (The class NC, Nick’s Class). For every d, a language L is in NCd if L can be decided by a family of
circuits {Cn} where Cn has poly(n) size and depth O(logd n). The class NC is ∪i⩾iNCi.

By requiring the circuits to be logspace-uniform, we may analogously define the class uniformNC. A related class
is the following.

Definition 7 (The class AC, Alternating Circuits). The class ACi is defined similarly to NCi except the gates are
allowed to have unbounded fan-in, that is, the OR and AND gates can be applied to more than two bits. The class AC
is ∪i⩾iAC

i.

Since unbounded (but polynomial) fan-in can be simulated by a binary tree of depth O(logn), we have the fol-
lowing:

NCi ⊆ ACi ⊆ NCi+1
.
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5.1 P-Completeness

The inclusion is known to be strict for i = 0. It is not hard to see that Parity is in NC1, but it can also be shown
that Parity is not in AC0.

Note thatNC0 is extremely limited since the output depends only on a constant number of input bits, whileAC0

does not suffer from this limitation.

5.1 P-Completeness

The question of whether P =NC is a central open problem. This is essentially the question of whether every poly-
nomial time algorithm admits an efficient parallel implementation. This motivates the theory of P-completeness,
which can be used to study which problems are likely to admit efficient parallel algorithms. A natural definition
of a complete language involves suggesting that every language in the class reduces to it. The detail lies in deter-
mining how we constrain these reductions. Clearly, polynomial time reductions are not very meaningful in the
context of P-completeness. A moment’s reflection reveals that log-space reductions capture the properties that
we anticipate as desirable from a P-complete language.

Definition 8. A language is P-complete if it is in P and every language in P is log-space reducible to it.

Indeed, with the definition above, one can establish the following, which is left as an exercise.

Theorem 6. Let L be a P-complete language. Then,

• L ∈ NC if and only if P = NC.

• L ∈ L if and only if P = L, where L is the set of languages decidable in logarithmic space.
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