
E0 224 Computational Complexity Theory

Lecture 16

Lecturer: Chandan Saha Scribe: Sandip Sinha

October 8, 2014

Some remarks on boolean circuits:

1. Boolean circuits provide a finer level view of computation performed by Turing Machines.

2. Strong lower bounds for circuits imply lower bounds for TMs.

(a) NP * P/poly ⇒ P 6= NP

This is clear since we know that P ⊂ P/poly.

Remark: If we assume P 6= NP, it is not clear if NP * P/poly follows. An intuitive

explanation for this is based on the non-uniformity of boolean circuits. For a lan-

guage L to be in P, there must exist a single poly-time TM which correctly decides

membership of strings of all sizes in L. On the other hand, a language is in P/poly if

there exists a family of circuits {Cn} such that Cn decides membership of strings of

length n in L. For instance, for the SAT problem, it might be the case that there is

no single polynomial-time algorithm that decides SAT formulae of all sizes. However,

for each natural number n, there may exist a poly-size (in n) circuit Cn which decides

SAT formulae of size n. Then SAT is in P/poly - a possibility we do not know how

to rule out.

(b) It seems unlikely that NP ⊆ P/poly because of the Karp-Lipton Theorem:

If NP ⊆ P/poly then PH = Σp2 (equivalently, PH collapses to level 2).

Since circuits provide a finer view of computation performed by TMs, the hope is that one

might be able to prove strong lower bounds for circuits.

3. Simple counting argument shows that there are “plenty” of boolean functions that are not

in P/poly.

Question: Is there such a function in NP? Finding such a function would imply NP *
P/poly, from which it would follow that P 6= NP. However, such efforts have failed till

date. The best known circuit lower bound for a language in NP is only (5− o(1))n.

(Iwana, Lachish, Morizumi and Raz (2005)).

4. Naturally, people started looking at special (but interesting) classes of circuits.

5. Classes NC and AC:

1

Definition (NC): For every i, a language L is in NCi if L can be decided by a family of

circuits {Cn} where Cn has poly(n) size and depth O(logi n). The class NC is
⋃
i≥0 NCi.

Definition (AC): The definition of class ACi is quite similar to the above definition of

NCi, except that gates are allowed to have unbounded fan-in. The class AC is
⋃
i≥0 ACi.

Remark: NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆...

It is obvious that NCi ⊆ ACi for all i. To show that ACi ⊆ NCi+1, we observe that a

gate with unbounded (but poly(n)) fan-in can be replaced by an equivalent tree of gates

with fan-in k (using a complete k-ary tree structure) thus incurring only a logarithmic

increase in the depth of gates (since log (poly(n)) = O(log n)).

It is known that NC0 (AC0 (NC1. The first inclusion is obvious since NC0 cannot

even capture the AND operation of n boolean variables, where n is a parameter. The sec-

ond inclusion is a non-trivial result which was proved by showing that PARITY is not in

(non-uniform) AC0. PARITY is clearly in NC1, since we can design a circuit in the form

of a binary tree, which recursively computes the parity at a node by computing the parity

of its left and right sub-trees and then computes the parity of these two bits. The circuit

has O(log n) depth, and can also be shown to be logspace uniform (we define logspace

uniform circuit families later).

References: (PARITY is not in non-uniform AC0)

Furst, Saxe, Sipser (1981)

Ajtai (1983)

H̊astad (1986) (H̊astad’s Switching Lemma)

Note: The result was proved by Furst, Saxe, Sipser (1981) (see also Ajtai (1983), Yao

(1985)). However, H̊astad’s Switching Lemma can be used to give optimal parameters for

the result.

H̊astad (2014) - “On the Correlation of Parity and Small-Depth Circuits” - This paper

shows that PARITY is not only hard to solve, but also hard to approximate with circuits

with constant depth and unbounded fan-in, since the output of such a circuit differs from

the PARITY function on a significant proportion of inputs. The precise result shown is

the following:

“The correlation of a depth-d unbounded fanin circuit of size S with parity of n variables

is at most 2−Ω(n/ logS)d−1

.”

6. Without any uniformity constraint, even AC0 would include undecidable languages. Any

unary language would be in AC0. To see this, let L be a unary language. Then for each

n ∈ N, if 1n ∈ L, take Cn to be the ∧ gate with all the n bits as input, and if 1n /∈ L, take

Cn to be a trivial circuit which outputs 0. Then the family of circuits {Cn} decides L. In

particular, the following undecidable language UHALT (described in Arora and Barak’s

Book - “Computational Complexity: A Modern Approach”), which is the unary encoding

of the halting problem, would be in AC0:

UHALT = {1n : n’s binary expansion encodes a pair < M,x > such that M halts on input

x.}

2

Therefore, it is clear that some uniformity restriction must be imposed on these classes to

make them comparable to the classes we are familiar with, such as P and L.

7. What kind of uniformity restrictions should be imposed?

One option is to impose poly-time uniformity restriction, i.e. it should be possible to

compute the circuit in poly-time. Another option is log-space uniformity (defined below).

It turns out from the analysis of the Cook-Levin Theorem that a language is in P if and

only if it has log-space uniform circuits of polynomial size.

Definition (logspace-uniform circuit families): A circuit family {Cn} is logspace uniform

if there is an implicitly logspace computable function mapping 1n to the description of the

circuit Cn.

We impose the restriction that circuit families for languages in NC and AC are log-space

uniform. Subsequently, by NC (or AC), we will always refer to log-space uniform NC (or

AC).

8. This naturally leads us to the notion of P-completeness.

Definition: A language L ⊆ {0, 1}∗ in P is said to be P-complete if for every other

language L′ ∈ P, L′ is log-space reducible to L (denoted L′ 6` L).

9. Why do we use log-space reductions to define P-completeness? This is because the com-

plexity questions we have in mind while defining P-completeness are:

- L = P?

- NC = P?

It seems intuitively clear that the first complexity question is captured by implicit log-space

reduction. However, it is not immediately obvious why log-space reduction should capture

the second question as well. This is discussed below.

10. Suppose L ⊆ {0, 1}∗ is P-complete. Then

(a) P = L iff L ∈ L

Proof. We know L ⊆ P. Assume L ∈ L, and let L′ be a language in P. Since L is

P-complete, there is an implicit log-space reduction f from L′ to L. To decide L′, we

can use the reduction f to L and then run the log-space TM for L. Clearly, this can

be done in log-space, and so L′ ∈ L. Thus P ⊆ L, which implies P = L.

For the converse, assume P = L. Since L is P-complete, it is in P, and hence in L.

(b) P = NC iff L ∈ NC

Proof idea: Assume L ∈ NC, and let L′ be a language in P. Our objective is to show

that L′ ∈ NC, i.e. to show that there is a family of circuits {Dn} of poly(n) size and

polylog(n) depth which decides L′, and an implicitly log-space computable function

which maps 1n to the description of Dn.

Let the circuits {Cn} deciding L be of depth O(logi n), where n is input length. Since

L is P-complete, there is an implicit log-space reduction f from L′ to L, such that

3

x ∈ L′ iff f(x) ∈ L. Since the size of f(x) is polynomial in |x|, and f(x) is the input

string for C|f(x)|, the depth of this circuit is O(logi|f(x)|) = O(logi|x|). It remains to

be shown that the implicit log-space computation of f(x) from x can be captured by

a family of circuits satisfying the criteria of class NC.

11. It turns out that L ⊆ NL ⊆ NC.

To prove the second inclusion, it suffices to show that PATH ∈ NC (we will solve this as

an assignment problem). Let G be a directed graph with adjacent matrix A.

Observation: Let s, t be vertices in G. The entry (s, t) in An gives the number of edge

sequences from s to t having atmost n edges.

We can compute An from A in O(log n) steps by repeated squaring (compute A2, A4, A8

and so on). The proof has to be completed by showing that this can actually be done in

implicit log-space.

12. Class ACC0 (or ACC):

ACC0 stands for ’Alternating Circuit with Counters of Constant Depth’.

Definition (Modk gate):

On input x1, x2, ..., xn, this gate outputs 0 if Σni=1xi = 0 mod k. Otherwise, it outputs 1.

Definition (Class ACC(m1,m2, ...,ml) for some fixed m1,m2, ...,ml in N):

We say a language L ⊆ {0, 1}∗ is in ACC(m1,m2, ..,ml) if it can be decided by a family

of circuits {Cn}, where Cn has:

• poly(n) size

• constant depth

• Modm1
, Modm2

, ..., Modml gates along with ∨, ∧ and ¬ gates

• unbounded fan-in

Definition (Class ACC0):

We say a language L ⊆ {0, 1}∗ is in ACC0 if L ∈ ACC(m1,m2, ...,ml) for somem1,m2, ...,ml ∈
N.

Result (Razborov and Smolensky (1985)):

For every two distinct primes p and q, Modp /∈ ACC(q).

Since PARITY ∈ ACC(2), the above result implies, in particular, that PARITY cannot

be decided by an ACC circuit having Mod3 gates.

Theorem. NEXP does not have non-uniform ACC circuits of quasi-polynomial size.

Reference: Ryan Williams (2010-11) - “Non-Uniform ACC Circuit Lower Bounds”

13. Monotone Circuits:

Monotone circuits are circuits composed of only ∧ and ∨ gates but no ¬ gates.

Definition (Monotone function): A function f : {0, 1}n → {0, 1} is called monotone if

x � y ⇒ f(x) 6 f(y)∀x, y ∈ {0, 1}n

where the notation x � y means xi = 1 ⇒ yi = 1, i.e. if the ith bit of x is 1, then the ith

bit of y is 1 (for instance, if x = 001 and y = 101, then x � y).

4

Fact: Every monotone function can be computed by a monotone circuit (possibly of

exponential size). Every monotone circuit computes a monotone function.

Proof. Clearly, if f is a function that can be computed by a monotone circuit, it has to be

monotone since we cannot invert any of the inputs. So, if f(x) = 1 for some x ∈ {0, 1}n,

then for any y ∈ {0, 1}n such that x � y, since yi = 1 for all i for which xi = 1, f(y) = 1.

For the converse, let f : {0, 1}n → {0, 1} be a monotone function. If f is constant, it

has a trivial monotone circuit - one that outputs 0 or 1 on all inputs. So assume f is

not constant. Then f(0n) = 0 and f(1n) = 1. For each path on the boolean hypercube

from 0n to 1n on the boolean n-dimensional cube which respects the partial order � (i.e.

we only move from x to y if x � y), consider the first string x such that f(x) = 1. The

circuit consists of (for each path) an ∧ gate with all the positions of x which are 1 as input,

combined with ∨ gates over all valid paths.

Let CLIQUEk,n : {0, 1}(
n
2) → {0, 1} be the function that takes as input the adjacency

matrix of an n-vertex graph G and outputs 1 iff G has a clique of size k. Then CLIQUEk,n

is a monotone function since adding more edges to a graph which has a k-vertex clique

cannot destroy the clique that is already present.

Theorem. (Razborov 1985):

There exists a constant ε > 0 such that ∀k 6 n
1
4 , the smallest monotone circuit computing

CLIQUEk,n must have size 2ε
√
k.

14. Natural proofs: A hurdle to proving circuit lower bounds?

A natural strategy to prove lower bounds for a function f is to show that there’s a predi-

cate P such that

P (f) = 1 and

P (g) = 0 for all functions g computed by a nc-size circuit for some constant c.

If a predicate P satisfies the above property then we say P is nc-useful.

Theorem. (Razborov-Rudich)

Suppose there exist sub-exponentially hard one-way functions. Then there is a constant c

for which there is NO natural nc-useful predicate.

We give definitions of natural nc-useful predicates and one-way functions below.

Definition (Natural nc-useful predicate P):

A natural nc-useful predicate P satisfies the following criteria:

(a) P is nc-useful.

(b) Constructiveness: There is a 2O(n)-time algorithm that, given f : {0, 1}n → {0, 1} as

input (in truth-table format), outputs P (f). It should be noted that the algorithm is

allowed to run for time which is polynomial in the size of the truth table.

(c) Largeness: At least 1
n fraction of all functions f : {0, 1}n → {0, 1} satisfy the predi-

cate. This property captures the notion that there is a non-trivial fraction of functions

which satisfy the predicate.

5

Remark: There are proofs of circuit lower bounds which avoid the Constructiveness prop-

erty of the predicate.

Definition (One-way function):

A poly-time computable function f : {0, 1}∗ → {0, 1}∗ is one-way if for every (probabilistic)

poly-time algorithm A, there is a negligible function ε(n) such that

Prx∈R{0,1}n [A (f(x)) = x′s.t.f(x′) = f(x)] 6 ε(n)

The probability in the above definition is over both the random choice of A and that of x.

A function ε : N→ R is called negligible if ε(n) = n−ω(1).

A one-way function f is said to be sub-exponentially hard if there exists ε > 0 such that

any algorithm which computes the inverse of f has a running time of atleast 2n
ε

, where n

is input size.

Example: Multiplication of integers is a possible candidate for a sub-exponentially hard

one-way function since it is easy to multiply integers but extremely hard to factor an

integer (into its prime factors). The best known factoring algorithm is the Number Field

Sieve Algorithm (a heuristic algorithm) which has a running time of 2
O
(

(logn)
1
3 (log logn)

2
3

)
on input n. It should be kept in mind that the input size is O(log n).

If there exists ε, 0 < ε < 1, such that factoring does not have a 2O(logε n)-time algorithm,

then multiplication is a sub-exponentially hard one-way function.

References

[1] S. Arora and B. Barak, “Computational Complexity: A Mordern Approach”, Cambridge

University Press, 2009

[2] J. H̊astad, “On the Correlation of Parity and Small-Depth Circuits”, SIAM Journal on

Computing, 2014

[3] V. Arvind, Lecture Notes on “Monotone Circuit Lower Bounds” in the

course Complexity Theory 2 (Aug-Dec 2006) scribed by Ramprasad Saptarishi

(http://www.cmi.ac.in/~ramprasad/lecturenotes/raz clique.pdf)

6

