
E0 224 Computational Complexity Theory Indian Institute of Science
Fall 2014 Department of Computer Science and Automation

Lecture 18: Oct 15, 2014
Lecturer: Chandan Saha <chandan@csa.iisc.ernet.in> Scribe: Bibaswan Kumar Chatterjee

In this lecture we look at the class BPP and co-BPP, usefulness of randomness in computation and one-sided error
randomized algorithms which are captured by classes RP and co-RP which are subsets of BPP.

18.1 Class BPP

Definition 18.1. For T : N → N and L ⊆ {0, 1}∗ we say that a PTM M decides L in time T (n) if for every
x ∈ {0, 1}∗, M halts in T (|x|) regardless of its random choices and Pr[M(x) = L(x)] ≥ 2

3 .
We define BPTIME(T (n)) as the class of languages decided by PTMs inO(T (n)) time and define BPP =

⋃
c

BPTIME(nc).

Definition 18.2. (Alternative Definiton of BPP) : A language L ⊆ {0, 1}∗ is in BPP if there is a deterministic poly-
time TM M and a polynomial function q(.) Prr∈R{0,1}q(|x|) [M(x, r) = L(x)] ≥ 2

3

It is easy to see the above two definitions are equivalent. Suppose a language L is in BPP by the first definition, it is
easy to construct a TM M that given a random string r of length ≤ q(|x|), M will simply simulate M(x) using the
random bits in r and output M(x). Since L is in BPP then with probability ≥ 2

3 we can get r such that simulation of
M(x) using r outputs L(x). Similarly, if L is in BPP by the second definition, then ∃ polynomial size random string
r s.t. M(x, r) = L(x) with probability ≥ 2

3 . We can think of a PTM M which randomly generates string r and then
runs M(x, r). Clearly, Pr[M(x) = L(x)] = Pr[M(x, r) = L(x)] ≥ 2

3 .

Conjecture 18.3. BPP = P

Claim 18.4. BPP ⊆ EXP
This is clear from the alternate definition of BPP because if we are allowed 2poly(n) time, we can simply enumerate
all possible random choices of a poly-time PTM.

Researchers currently know that BPP is sandwiched between P and EXP but are unable to show that BPP is a proper
subset of NEXP.

Question: How does NP relate to BPP?
The relation between BPP and NP is unknown. It is not known if BPP ⊆ NP or NP ⊆ BPP or neither. It is however
known that BPP ⊆ P/poly[Adl78], which implies (by Karp-Lipton Theorem), if NP ⊆ BPP, then PH collapses.
Another important result discovered is BPP ⊆ Σp

2 ∩Πp
2[Sip83][Laut83].

Definition 18.5. co-BPP: A language L ⊆ {0, 1}∗ is in co-BPP iff L ∈ BPP.

18-1

Lecture 18: Oct 15, 2014 18-2

Lemma 18.6. BPP = co-BPP.

Proof. Let L ⊆ {0, 1}∗ be a language such that L ∈ co−BPP . Then by the definition of co-BPP,

L ∈ co−BPP ⇔ L ∈ BPP

⇔ ∃poly − time PTM M s.t. Pr[M(x) = L(x)] ≥ 2

3

⇔ ∃poly − time PTM M s.t. M(x) = ¬M(x) & Pr[M(x) = L(x)] ≥ 2

3

⇔ ∃poly − time PTM M s.t. Pr[M(x) = L(x)] ≥ 2

3
⇔ L ∈ BPP

Thus we see the class BPP is closed under complement.

18.2 Usefulness of Randomness in computation

In this section we will explore how randomization can lead to simple algorithms for problems with very efficient
run-time complexity.

Definition 18.7. Expected running time: Let M be a P.T.M. that decides a language L ⊆ {0, 1}∗. For a string
x ∈ {0, 1}∗ let Tx be the time taken by M to decide if x ∈ L where Tx is a random variable. We say the expected
running-time of M is T (n) iff E[Tx] ≤ T (|x|) for every x ∈ {0, 1}∗.

18.2.1 Finding the kth smallest element in an unsorted array

It is known that selecting the kth smallest element in an unsorted array can be done in O(n) time using the linear
time selection algorithm[CLRS01]. But its analysis is quite complicated and it is also quite difficult to implement in
practice. Here we give a simple linear time randomized algorithm for selecting the kth smallest element in an unsorted
array which is much simple to implement as well as analyze.

Find(A,k)
Input: A = {a1, . . . , an} ∈ Zn, k ∈ Z+ and k < n
Output: the kth smallest element in A

1: Pick i uniformly at random from [n]
2: DIVIDE A into three parts: A1 = {aj ∈ A/{ai} AND aj ≤ ai}, A2 = {aj ∈ A/{ai} AND aj > ai}

and element ai. Let m = |A1|.
3: If m is k − 1 then output ai
3: Else If m ≥ k then
4: Call Find(A1, k)
5: Else
6: Call Find(A2, k −m)

Lecture 18: Oct 15, 2014 18-3

Theorem 18.8. The expected running-time of Find(A, k) is O(n) where n = |A|.

Proof. Let T (n) be the running time of Find(A, k).
Let us define an indicator variable,

Ij = 1 if j = m (m defined in our algorithm)

= 0 otherwise

So, ∀j ∈ [n]

E [Ij] = Pr(m = j)

=
1

n

Then,

T (n) ≤ cn+
∑
j≥k

[Ij × T (j)] +
∑

j<k−1

[Ij × T (n− j)]

where c is a constant.

E[T (n)] ≤ cn+
∑
j≥k

[E [Ij]× E [T (j)]] +
∑

j<k−1

[E [Ij]× E [T (n− j)]]

E[T (n)] ≤ cn+
∑
j≥k

[
1

n
E[T (j)]] +

∑
j<k−1

[
1

n
E[T (n− j)]]

Now here we make an inductive assumption that our E[T (n)] = αcn where α is some constant > 1. We can assume
this is to be trivially true for E[T (1)]. We show that if our assumption is true for T (j) where j < n, then its true for
T (n). Going back to our proof,

E[T (n)] ≤ cn+
1

n
[
∑
j≥k

E[T (j)] +
∑

j<k−1

E[T (n− j)]]

E[T (n)] ≤ cn+
αc

n
[
∑
j≥k

j +
∑

j<k−1

(n− j)]

E[T (n)] ≤ cn+
αc

n
[
n(n+ 1)

2
− k(k − 1)

2
+ (k − 1)n− n(k − 1)

2
]

E[T (n)] ≤ cn+
αc

n
[
n2 + (2k − 1)n− 2k2 − 2k

2
]

E[T (n)] ≤ cn+
αc

n
[
n2(α− 1)

α
] for some large n > n0

E[T (n)] ≤ cn+ (α− 1)cn

E[T (n)] ≤ αcn
E[T (n)] = O(n)

Remark: Whether or not random bits are absolutely indispensable depends on the context. For cases like

Lecture 18: Oct 15, 2014 18-4

• Interactive Protocols

• Probabilistically checkable Proofs

random bits are absolutely essential. Next we will explore an example from coding theory where randomization is
very useful.

18.2.2 Hadamard Codes

Hadamard Codes is an error-correcting code that is used for error detection and correction when transmitting messages
over noisy or unreliable channels.

HadamardCode(x)
Input: x ∈ {0, 1}k

Output: y ∈ {0, 1}2k

for i = 0, 1, . . . , 2k − 1
yi =

⊕
bicj=1

xj

end

Now let us look at the problem of recovering each bit xi of x given a possibly corrupted version of y = HadamardCode(x)
since we are looking at the context of transmission in noisy channel. Let us consider that ρ fraction of the bits in y are
corrupted. Our task is to recover each bit xi making as few reads of the bits of y as possible.

Decode(y,i)
Input: y ∈ {0, 1}2k where y is HadamardCode(x) with atmost ρ fraction of bits corrupted and i ∈ [k]
Output: xi such that Pr[xi = xi] with high probability
1: Pick a random subset s of [n]
2: Read ys from y
3: Read ys4{i} from y
4: Output xi = ys ⊕ ys4{i}

Analysis:
If ys and ys4{i} are not corrupted then,

ys =
⊕
j∈s

xj

ys4{i} =
⊕

j∈s4{i}

xj

ys ⊕ ys4{i} = xi

Lecture 18: Oct 15, 2014 18-5

This is the ideal case. We have assumed that possibly ρ fraction of the bits in y are corrupted.

Pr[ys is corrupted] ≤ ρ
Pr[ys4{i} is corrupted] ≤ ρ

Pr[ys or ys4{i} is corrupted] ≤ 2ρ (by union bound)

Thus, Pr[xi = xi] ≥ (1− 2ρ) which is high provided ρ is small.

18.3 Class RP and co-RP

The class BPP captures probabilistic algorithms with two sided error. A PTM M that computes a language L ∈ BPP
can output 1 when the input string does not belong to L and output 0 when the input string does belong to L with some
small probability. However, there are probabilistic algorithms which have one-sided error.

Definition 18.9. For T : N → N and L ⊆ {0, 1}∗ we say that L ∈ RTIME(T (n)) if ∃ a PTM M such that for every
x ∈ {0, 1}∗, M halts in T (|x|) time and

x ∈ L⇒ Pr[M(x) = 1] ≥ 2

3
x /∈ L⇒ Pr[M(x) = 0] = 1

Definition 18.10. Class RP: RP =
⋃
c
RTIME(nc)

Definition 18.11. Class co-RP: A language L ∈ co−RP iff L ∈ RP

It is clear form the definition that both RP and co-RP are subsets of BPP.

Recall the Polynomial Identity Testing problem in the last lecture.
PIT: L = {C : the polynomial computed by circuit C is identically 0}.
The algorithm which was discussed was such that for x ∈ {0, 1}∗

x ∈ L⇒ Pr[M(x) = 1] = 1

x /∈ L⇒ Pr[M(x) = 0] ≥ 2

3

This shows PIT ∈ co−RP .

References

[adl78] ADLEMAN, LEONARD, ’Two theorems on random polynomial time.’ 2013 IEEE 54th Annual Sympo-
sium on Foundations of Computer Science. IEEE,, 1978

[Sip83] SIPSER, MICHAEL, ’A complexity theoretic approach to randomness’ Proceedings of the 15th ACM
Symposium on Theory of Computing (ACM Press): 330335., 1983

Lecture 18: Oct 15, 2014 18-6

[Laut83] LAUTEMANN, CLEMENS ’BPP and the polynomial hierarchy’ Inf. Proc. Lett. 17 (4): 215217., 1983

[CLRS01] THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST and CLIFFORD STEIN, ’In-
troduction to Algorithms, Second Edition.’ MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7.
Chapter 9: Medians and Order Statistics, pp.183196. 2001

