
E0 224 Computational Complexity Theory

Lecture 19 (20 Oct 2014)

Lecturer: Chandan Saha Scribe: Sarath A Y

1 Introduction

In the last couple of lectures, we have been studying randomized computation. We defined

the classes BPP and discussed examples of randomized algorithms. In this lecture, we define

the classes RP, coRP and ZPP. We introduce techniques for error reduction for randomized

algorithms. Also, we show three important results: ZPP = RP ∩ coRP, BPP ⊆ P/poly and

BPP ⊆ ΣP
2 ∩ ΠP

2 .

2 One sided error: Class RP, coRP

Recall that we defined the class BPP to capture probabilistic algorithms (for a language L on

an input x) that are allowed to make mistakes (with probability less than 1/3) when x ∈ L as

well as x /∈ L. Such algorithms are said to have two-sided error. In this section, we define the

classes RP and coRP to capture algorithms with one-sided error property.

Definition: (Class RP) A language L ⊆ {0, 1}∗ is in RP if there is a probabilistic polynomial

time Turing machine M such that

x ∈ L⇔P(M(x) = 1) ≥ 2

3

x /∈ L⇔P(M(x) = 0) = 1

Definition: (Class coRP) A language L ⊆ {0, 1}∗ is in coRP if L̄ ∈ RP. Equivalently, there is

a probabilistic polynomial time machine M such that

x ∈ L⇔P(M(x) = 1) = 1

x /∈ L⇔P(M(x) = 0) ≥ 2

3

Remark: 1. In the above definitions, the probability P(.) is over the random choices of the

transition functions of the probabilistic machine M .

2. The classes RP and coRP remain the same even if we replace the constant 2/3 by any

constant strictly greater than 0.

1

Example: It is easy to see that PIT ∈ coRP. Suppose that the given circuit C is actually

identically zero. Then our randomized algorithm for PIT can never make a mistake since the

circuit evaluates to 0 for all (random) choices of the input. On the other hand, if C is not

identically zero, then the algorithm makes an error with small probability.

Observation: RP, coRP ⊆ BPP. This can be immediately seen from the definitions of the

classes BPP,RP and coRP.

Observation: Since an NP machine N needs only one nondeterministic choice of transition

function that takes N to qaccept for accepting a language, it follows that RP ⊆ NP. However, it

is not known whether BPP ⊆ NP (if the conjecture BPP = P is true then indeed BPP ⊆ NP).

Next, we define the class ZPP to capture randomized algorithms that always outputs the correct

answer.

Definition: (Class ZPP) A language L ⊆ {0, 1}∗ is in ZPP if there is a probabilistic Turing

machine M such that M always outputs the correct answer on input string x ∈ {0, 1, }∗ for any

x, however the expected running time of M on input x is bounded by some polynomial function

of |x|.

Theorem 2.1. ZPP = RP ∩ coRP

Proof. (ZPP ⊆ RP): Suppose L ⊆ {0, 1}∗ is a language in ZPP. We need to show that L ∈
RP∩coRP. Since L ∈ ZPP, there is a probabilistic TMM with expected running time bounded by

(a polynomial function) q(|x|) that correctly decides the membership of every string x ∈ {0, 1}∗.
We describe an RP algorithm (M ′) as follows:

1. On input x run the machine M for 2q(|x|) many steps.

2. If M stops by this time, output whatever M outputs.

3. Otherwise output 0.

It is easy to see that this algorithm never makes a mistake when x /∈ L. We wish to analyze the

case when x ∈ L. Let T (x) denote the running time of M on input x. Since L ∈ ZPP, we have

E(T (x)) ≤ q(|x|)

where the expectation is taken over the random choices of the machine M . By Markov’s in-

equality, we have

P(T (x) ≥ 2q(x)) ≤ E(T (x))

2q(x)

≤ q(x)

2q(x)
=

1

2

2

Since the probability that M has running time more than 2q(x) is less than 1/2, it follows that

x ∈ L⇒ P(M ′(x) = 0) <
1

2

Thus, M ′ is an RP machine for the language L, and L ∈ RP. Now, to show that L ∈ coRP, we

simply replace step 3 in the RP algorithm by otherwise output 1. Then, it is easy to see that the

algorithm never makes a mistake when x ∈ L. On the other hand, if x /∈ L, the probability that

M ′ makes a mistake is strictly less than 1/2 (using the same argument), and hence L ∈ coRP.

Therefore, ZPP ⊆ RP ∩ coRP.

We leave it as an exercise to show that RP ∩ coRP ⊆ ZPP

3 Error reduction for BPP and RP

In this section, we discuss how to reduce the error bound in RP, coRP and BPP algorithms.

3.1 Error reduction for one-sided error

Suppose L ∈ RP. Then by definition, there is a probabilistic Turing machine M such that

x ∈ L⇔P(M(x) = 1) ≥ 2

3

x /∈ L⇔P(M(x) = 1) = 0

and running time of M is bounded by (a polynomial function) q(n). We would like to construct

an RP algorithm whose error probability is exponentially small. Let p(.) be a polynomial function

and consider the following algorithm (M ′) on an input x (let n = |x|).

1. Execute M independently for p(n) times

2. Output the ‘OR’ of outputs of the p(n) executions of M

Clearly, when x /∈ L, M ′(x) cannot make a mistake (since M will not make a mistake). Suppose

x ∈ L. Then M ′(x) makes an error when all the p(n) executions of M output M(x) = 0. And,

since all the p(n) executions of M are independent, the probability of this happening is bounded

by
(
1
3

)p(n)
. Thus, we have a probabilistic polynomial time machine M ′ such that

x ∈ L⇔P(M ′(x) = 0) ≤
(

1

3

)p(n)
x /∈ L⇔P(M ′(x) = 0) = 1

Thus, we have an RP algorithm with exponentially small one-sided error probability. We can

construct a similar procedure for error reduction for coRP as well.

3

Remark: This argument works even if the constant 2/3 (in the definition of class RP) is replaced

by any positive constant bounded away from 0. This is because, if x ∈ L, then there is a positive

probability for M(x) = 1, and by running M for sufficiently (and polynomially) many times,

M ′ would correctly decide the membership of x in L with high probability.

3.2 Error reduction for BPP

Let L ∈ BPP. Then, by definition, there is a probabilistic TM M and a polynomial function

q(.) such that

P(M(x) = L(x)) ≥ 2

3

and running time of M is bounded by q(|x|). Let BPP 1
2
+ 1

|x|c
denote the class of languages for

which there is a polynomial time probabilistic TM M such that P(M(x) = L(x)) ≥ 1/2+1/(|x|c)
for all inputs x ∈ {0, 1}∗. Let L ∈ BPP 1

2
+ 1

|x|c
for some constant c > 0. We show that for any

constant d > 0 there is a probabilistic polynomial time TM M ′ such that for all x ∈ {0, 1}∗,
P(M ′(x) = L(x)) ≥ 1 − 1

2|x|d
. By definition, there is a probabilistic TM M and a polynomial

function q such that

P(M(x) = L(x)) ≥ 1

2
+

1

|x|c
(1)

and the running time of M is bounded by q(|x|). We describe a probabilistic polynomial time

TM M ′ that does the following:

1. Execute M independently on input x (let n = |x|) for k times (k depends on c and d, we will

find suitable k later). Let z1, . . . , zk denote the outputs of these independent executions

of M .

2. Output the majority of z1, . . . , zk

We use Chernoff bound to show that L ∈ BPP1− 1

2n
d

.

Let y1, . . . , yk be independent Boolean random variables. Let P(yi = 1) = ρ ∀i. Define

Y :=

k∑
i=1

yi (2)

Then, for 0 < δ < 1, Chernoff bound says

P(Y ≤ (1− δ)E(Y)) ≤ e−
kρδ2

3 (3)

Let

yi =

{
1, if zi is the correct output

0, otherwise

Since we execute M independently for k times, yi’s are independent random variables. Since

L ∈ BPP, we have

ρ := P(yi = 1) ≥ 1

2
+

1

nc
∀i

4

Also, let µ = E(Y). Then we have

µ = kE(y1)

= kρ

≥ k
(

1

2
+

1

nc

)
(4)

The machine M ′ makes a mistake on input x when majority of the answers of M are wrong,

i.e., when Y < 1
2k. Therefore, consider P(Y < k

2). Since the machine M outputs the correct

answer with probability strictly greater than 1/2, we can find a δ, 0 < δ < 1, such that the event

Y < k/2 implies the event Y ≤ (1− δ)ρ (which in turn implies P(Y < k/2) ≤ P(Y ≤ (1− δ)ρ)).

Let us fix a δ such that this happens, i.e.,

Y <
1

2
k ⇒ Y ≤ (1− δ)E(Y)

i.e.,
1

2
k ≤ (1− δ)ρk

⇒ δ ≤ 1− 1

2ρ

Thus, we fix

δ = 1− 1

2ρ
(5)

and we have

P(Y <
1

2
k) ≤ P(Y ≤ (1− δ)E(Y))

≤ e−
kρδ2

3

= e
− kρ

3
(1− 1

ρ
+ 1

4ρ2
)

= e
− k

3
(ρ−1+ 1

4ρ
)

≤ e
− k

3
(1
2
+ 1
nc
−1+ 1

2+ 4
nc

)

≤ e−
k

3nc (6)

where the second inequality follows from Chernoff bound, and the first equality from the choice

of δ. Now, let us choose k = 3nc+d. Then we get

P(Y <
1

2
k) ≤ e−nd (7)

This shows that the probability that the machine M ′ makes an error is exponentially smaller.

Also, note that by the choice of k, M ′ runs in polynomial time. Thus, we have proved the

following theorem.

Theorem 3.1. For any constants c, d > 0, BPP 1
2
+ 1
nc

= BPP1− 1

2n
d

5

4 BPP and other classes

In this section, we study relationships between BPP and other complexity classes. We already

observed that RP, coRP ⊆ BPP. We now show two important results: BPP ⊆ P/poly and

BPP ⊆ ΣP
2 ∩ ΠP

2 .

Theorem 4.1. BPP ⊆ P/poly

Proof. Suppose L ∈ BPP. Then by using the alternative definition of BPP and the error reduc-

tion procedure, there is a deterministic polynomial time machine M such that, on any input

x ∈ {0, 1}∗

P(M(x, r) 6= L(x)) ≤ 1

2|x|2
(8)

where the probability is taken over the random choices of the string r (let m = |r|, then m is

a polynomial function of |x|). Now, it suffices to show the existence of a single string r such

that M(x, r) = L(x) for all inputs x ∈ {0, 1}n, since such a string r can be hardwired into a

circuit Cn of polynomial size such that Cn(x) = L(x) for all x ∈ {0, 1}n. By finding an r for each

n, we get a polynomial sized circuit family {Cn}n≥1 that decides L and this would imply that

L ∈ P/poly and hence BPP ⊆ P/poly.

We show the existence of such a string r using a counting argument. Let |x| = n. We say that

a string r is bad for x if M(x, r) 6= L(x), otherwise we say r is good for x. By statement 8, it

follows that the fraction of bad strings for input x is at most 1

2n2
. Since r is m bit long, the

total number of bad strings for an x is at most 2m

2n2
. Therefore, the number of strings that are

bad for some x is at most 2m

2n2
2n. But,

2m

2n2 2n = 2m+n−n2
< 2m (9)

and since the number of strings of length m is 2m, it follows that there exists at least one m bit

string r that is good for all x ∈ {0, 1}n. This completes the proof.

Theorem 4.2. (Sipser-Gács) BPP ⊆ ΣP
2 ∩ ΠP

2

Proof. Since BPP = coBPP, it suffices to show that BPP ⊆ ΣP
2 . Let L be a language in BPP.

By definition (and the error reduction procedure for BPP), there is a deterministic polynomial

time TM M such that

P(M(x, r) 6= L(x)) ≤ 1

2|x|2

where the probability is taken over random choices of string r. More precisely, we have

x ∈ L⇒ P(M(x, r) = 1) ≥ 1− 1

2|x|2
(10)

x /∈ L⇒ P(M(x, r) = 1) ≤ 1

2|x|2
(11)

Let S denote the set of strings r for which M(x, r) = 1, and let |x| = n. Then from the

statements 10-11 we see that |S| ≥ (1− 1

2n2
)2m or |S| < 2m

2n2
depending on whether x ∈ L or x /∈ L

6

respectively. We show that, in the first case, all possible strings r ∈ {0, 1}m can be obtained by

translating (see the definition of translation below) the set S using polynomially many strings

(Claim 4.4), whereas in the second case we cannot cover all possible r’s by translating the set S

(Claim 4.3). The essential idea to show L ∈ ΣP
2 is to express the membership of x in L by extra

quantifiers by making use of Claims 4.3-4.4.

Definition: For a string u ∈ {0, 1}m, define the translation of the set S using u as S ⊕ u :=

{s⊕ u : s ∈ S} where s⊕ u denotes the ‘XOR’ operation.

Let k = m
n + 1. We claim the following:

Claim 4.3. If |S| < 1

2n2
2m then for every u1, u2, . . . , uk where ui ∈ {0, 1}m , there exists an r

that does not belong to ∪ki=1(S ⊕ ui).

Proof. We have ∣∣∣∣∣
k⋃
i=1

(S ⊕ ui)

∣∣∣∣∣ ≤ k|S|
<
(m
n

+ 1
)(1

2n2 2m
)

(as m = poly(n))

< 2m (12)

where the first inequality follows from union bound, and the second inequality from the choice

of k and the assumption on |S|. Thus, ∪ki=1(S⊕ui) cannot cover all the strings of length m and

hence there exists an m length string r such that r /∈ ∪ki=1(S ⊕ ui)

Claim 4.4. If |S| ≥ (1− 1

2n2
)2m then there exists u1, u2, . . . , uk such that for every r ∈ {0, 1}m,

r ∈ ∪ki=1(S ⊕ ui).

Proof. We show the following. Suppose that u1, u2, . . . , uk are chosen independently and uni-

formly at random from {0, 1}m, then

P
(
∃r, r /∈ ∪ki=1(S ⊕ ui)

)
< 1 (13)

where the probability is over the random choices of strings u1, . . . , uk. First, we observe that

for a fixed r ∈ {0, 1}m, r ⊕ ui is uniformly distributed over the space of {0, 1}m strings for all

i = 1, 2, . . . , k, because u1, u2, . . . , uk are picked uniformly and independently at random from

{0, 1}m . Let us compute the probability that r /∈ ∪ki=1(S ⊕ ui). Observe that

r /∈ ∪ki=1(S ⊕ ui)⇔ r /∈ S ⊕ u1 and r /∈ S ⊕ u2 and . . . r /∈ S ⊕ uk

But,

r /∈ S ⊕ ui ⇔ r ⊕ ui /∈ S ∀i = 1, 2, . . . , k

7

Therefore,

P
u1

(r /∈ S ⊕ u1) = P
u1

(r ⊕ u1 /∈ S)

≤ 1

2n2

Similarly,

P
u2

(r /∈ S ⊕ u2) = P
u2

(r ⊕ u2 /∈ S)

≤ 1

2n2

and so on. Also, note that the events r⊕ ui /∈ S and r⊕ uj /∈ S are independent for i 6= j, since

all the ui’s are picked independently. Thus,

P
u1,...,uk

(r /∈ ∪ki=1(S ⊕ ui)) =
k∏
i=1

P
ui

(r /∈ S ⊕ ui)

≤
(

1

2n2

)k
≤ 1

2mn

where the last inequality follows from the choice of k. Now, using the union bound,

P
u1,...,uk

(
∃r, r /∈ ∪ki=1(S ⊕ ui)

)
≤

∑
r:r∈{0,1}m

P
u1,...,uk

(r /∈ ∪ki=1(S ⊕ ui))

≤ 1

2mn
2m

=
1

2(n−1)m
(14)

which is strictly less than 1 for nontrivial values of m and n. Therefore, we conclude that there

exists a choice of u1, . . . , uk such that for any string r ∈ {0, 1}m, r ∈ ∪ki=1(S ⊕ ui).

Using the above two claims, we see that

x ∈ L⇔ ∃u1, u2, . . . , uk s.t. ∀r ∈ {0, 1}m
[
r ∈

k⋃
i=1

(S ⊕ ui)

]

That is,

x ∈ L⇔ ∃u1, u2, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m [r ⊕ ui ∈ S for at least one i ∈ [k]]

⇔ ∃u1, u2, . . . , uk ∈ {0, 1}m ∀r ∈ {0, 1}m
[
k∨
i=1

(M(x, r ⊕ ui) = 1)

]
(15)

Note that the expression in squared brackets in the above expression can be evaluated in poly-

nomial time, by the choice of k. Thus, 15 is a ΣP
2 expression and we conclude that L ∈ ΣP

2 .

Hence, BPP ⊆ ΣP
2 ∩ ΠP

2 .

8

Remark: 1. We have shown P ⊆ BPP ⊆ P/poly, and also BPP ⊆ ΣP
2 ∩ ΠP

2 . Thus, if P = NP,

it follows that BPP = P. However, even though we believe that P 6= NP, we conjecture

that P = BPP.

2. Since BPP ⊆ P/poly, the Karp-Lipton theorem tells us that if we can solve SAT in proba-

bilistic polynomial time, then the polynomial hierarchy collapses to level 2.

3. Recently, it has been show that BPP is contained in a class that is weaker than ΣP
2 ∩ ΠP

2 .

References

[1] Sanjeev Arora, and Boaz Barak. Computational Complexity: A Modern Approach, Cam-

bridge University Press, 2009.

9

	Introduction
	One sided error: Class RP,coRP
	Error reduction for BPP and RP
	Error reduction for one-sided error
	Error reduction for BPP

	BPP and other classes

