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1. Randomized Reduction

We have already defined randomized algorithm. Now, we are going to define the notion of randomized reduction

between two languages.

Definition 1.
A language A ⊆ {0, 1}∗ reduces to language B ⊆ {0, 1}∗ under a randomized polynomial time reduction, denoted
by A ≤r B, if there exist a probabilistic TM M such that for every x ∈ {0, 1}∗, Pr[B(M(x)) = A(x)] ≥ 2/3.

It says that, if B ∈ BPP and A ≤r B then A ∈ BPP.

Definition 2.
Class BP.NP:
BP.NP = { L : L ≤r 3SAT }
e.g. Unique-SAT ∈ BP.NP .

Assignment3 1.
If 3SAT∈ BP.NP then PH =

∑P
3 .

2. Randomized Space-Bounded Computation:

We have seen the definition of space-bounded computation. Here we are extending it to the probabilistic setting.

Definition 3.
A PTM M has space complexity s(n) if for every input of size n and every path of computation on input x of
length n, M halts using no more than s(n) cells in the work tapes.

Definition 4.
Class BPL A language L ⊆ {0, 1}∗ is in BPL if there is a probabilistic TM M with space complexity O(logn)
such that,
Pr[M(x) = L(x)] ≥ 2/3.

Definition 5.
Class RL A language L ⊆ {0, 1}∗ is in RL if there is a probabilistic TM M with space complexity O(logn) such
that,
x ∈ L then Pr[M(x) = 1] ≥ 2/3, and
x /∈ L then Pr[M(x) = 1] = 0.

1



Lecture 21

Assignment3 2.
Prove that BPL ⊆ P .

UPATH := {< G, s, t >: G is a undirected graph and there is a path from s to t }.

i.e. given a n vertex directed graph G and two vertices s and t, determine whether s is connected to t in G.

Theorem 1.
UPATH ∈ RL [1]

Proof idea : Initialize the variable v to the start vertex s and in each step choose a random neighbor u of v,

and set v ← u (i.e. take a random walk starting from s). If the walk reaches to t within 100n4 steps then accept,

otherwise reject. This procedure takes log-space (a counter to store the number of steps and to store the current

node pointer).

Theorem 2.
Any language in BPL can be decided by a deterministic O(log3/2 n) space TM. [1]

3. Interactive Proof(IP) Systems

If the verifier wants to check that a statement (given by prover) is true or not, one way is, the prover provides

a certificate(proof) and the verifier checks the validity of the certificate, and another way is, the verifier and

the prover interact with each other. The prover is all powerful and have unlimited computational resources but

cannot be trusted, while the verifier has limited computational power and is honest. The verifier asks series of

explanation to the prover, before he is “convinced” (either the prover is trusted or not).

Does Interaction between prover and verifier give additional power?

3.1. Some Remarks:

IP provides a general framework to convince the verifier when the prover cannot be trusted.

1. Color blind problem: Suppose there are two persons in the system named as P1 and P2. Suppose P1

is color blind and he has two balls, P2 is claiming to P1 that these balls have different colors, one red the

other yellow. But, P1 does not trust P2. How can P1 convince himself that the balls indeed have different

colors ?

IP can help P1 in this scenario. P1 asks P2 the color of balls, and holds red ball (as said by P2) in right

hand, and yellow ball (as said by P2) in left hand. Then P1 turns his back to P2 and tosses a coin. If the

coin comes up “head” then P1 keeps the ball as it is, otherwise he switches the balls. Now again P1 asks

P2 the color of balls. If P2 is honest then he will say correct colors of given balls. But if P2 is dishonest
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then P2 is not able to guess the answer with probability better than 1/2. P1 repeats this procedure 100

times and finds out if P2 is lying with very high probability.

2. Cryptographic Protocols : IP underlies a huge research effort in cryptography, particularly in the study of

zero-knowledge protocols.

3. IP captures whole PSPACE and hence gives an alternate characterization of the class PSPACE. Study of

the class IP formed the background for another important result in complexity theory - the PCP theorem.

3.2. Interactive Proof with deterministic verifier and prover:

In this section we consider deterministic verifier and prover.

Let us consider the well known 3SAT problem. Suppose the verifier has a 3CNF boolean formula, the aim is

to check the satisfiability of formula using interaction with prover. The verifier proceeds clause by clause in the

3CNF formula and asks the prover the values of each literal in that clause. If there is no conflict in the literals’

values given by prover in every step and these values satisfy the given claues, then verifier is convinced that given

clause is satisfiable.

Definition 6.
Interaction between two deterministic functions: Let f, g : {0, 1}∗ → {0, 1}∗ be functions and k ≥ 0 be
an integer (allowed to depend upon the input size). A k-round interaction between f and g on input x ∈ {0, 1}∗,
denoted by < f, g > (x) is the sequence of strings a1, a2, ..., ak ∈ {0, 1}∗ defined as follows:
a1 = f(x)
a2 = g(x, a1)
a3 = f(x, a1, a2)
a4 = g(x, a1, a2, a3)
...

...
ak = · · ·
The output of f , denoted by OUTf (< f, g > (x)) is f(x, a1, a2, ..., ak) .

Definition 7.
Class DIP: A language L ⊆ {0, 1}∗ is in DIP, if there is a deterministic Turing machine V (verifier) which on
input x, a1, ..., ai runs in time poly(|x|), and interacts with a prover function P : {0, 1}∗ → {0, 1}∗, for poly(|x|)
many rounds such that,
x ∈ L⇒ ∃P s.t OUTV (< V,P > (x)) = 1 and, (Completeness)
x /∈ L⇒ ∀P s.t OUTV (< V,P > (x)) = 0 (Soundness)

Theorem 3.
DIP=NP

Proof. 1)Let L ∈ NP, then L has one round deterministic proof(certificate). Therefore L ∈ DIP.

2)Let L ∈ DIP, then there exists a transcript (a1, a2, .., ak) for k = polynomial in size of input.

Let V be the verifier, checks indeed,

V (x) = a1,
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V (x, a1, a2) = a3,

V (x, a1, a2, a3, a4) = a5,
...

...

V (x, a1, ..., ak) = 1, [By definition of DIP]

Here the transcript serves as the certificate for x ∈ L. Therefore L is in NP.

3.3. Probabilistic Interactive Proofs

In the previous section we have seen that DIP=NP, i.e by assuming the verifier is deterministic we are not

getting anything new. In order for interaction to provide any extra power (over the class NP), we make the

verifier probabilistic (i.e verifier questions will be computed using a probabilistic algorithm). The verifier can

accept the proof for wrong statement with small probability(≤ 1
3
) and can reject the proof for a wrong statement

with high probability(≥ 2
3
) regardless of the strategy the prover uses.

Definition 8.
Probabilistic verifier function: In order to model an interaction between f(probabilistic verifier function) and
g(deterministic prover function), f works on an additional random string r ∈r {0, 1}m.
An interaction between f and g on input x is a sequence of strings,
a1 = f(x, r)
a2 = g(x, a1)
a3 = f(x, r, a1, a2)
a4 = g(x, a1, a2, a3)
...

...
ak = :.....
Since the verifier can see the random string r, and the prover doesn’t have access to r, so we call this private coin
model.

Definition 9.
Class IP[k]: A language L ⊆ {0, 1}∗ is in IP if there is a probabilistic Turing machine V that on input
x, r, a1, a2, ..., ai runs in time poly(|x|) and interacts with a prover function P : {0, 1}∗ → {0, 1}∗ for an integer
k ≥ 1(may depend on the input length) rounds such that,
x ∈ L⇒ ∃P s.t Prr[OUTV (< V,P > (x)) = 1] ≥ 2/3, and (Completeness)
x /∈ L⇒ ∀P s.t Prr[OUTV (< V,P > (x)) = 1] ≤ 1/3 (Soundness)

Definition 10.
Class IP: IP=

⋃
c>0 IP[nc]

3.4. Remarks:

1. IP=PSPACE (we will see a proof of this later).

2. Class IP definition is unchanged if we replace the completeness parameter 2/3 by 1−2−ns

and the soundness

parameter 1/3 by 2−ns

for any fixed constant s > 0

4



Lecturer: Chandan Saha , Scribe: Jaiprakash

3. In fact, completeness probability can be assumed to be 1 without loss of generality. (we will see this when

we prove IP=PSPACE).

4. Irrespective of completeness probability, soundness probability =0 implies the class is NP.

5. Allowing the prover to use random bits doesn’t give us any additional power(simple averaging argument).
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